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Dynamic thresholding and tissue dissociation
optimization for CITE-seq identifies differential
surface protein abundance in metastatic melanoma
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Phil F. Cheng2, Julia M. Martínez Gómez2, Federica Sella 2, Veronika Haunerdinger2, Christian Beisel 1,7 &

Mitchell P. Levesque 2,7✉

Multi-omics profiling by CITE-seq bridges the RNA-protein gap in single-cell analysis but has

been largely applied to liquid biopsies. Applying CITE-seq to clinically relevant solid biopsies

to characterize healthy tissue and the tumor microenvironment is an essential next step in

single-cell translational studies. In this study, gating of cell populations based on their

transcriptome signatures for use in cell type-specific ridge plots allowed identification of

positive antibody signals and setting of manual thresholds. Next, we compare five skin

dissociation protocols by taking into account dissociation efficiency, captured cell type het-

erogeneity and recovered surface proteome. To assess the effect of enzymatic digestion on

transcriptome and epitope expression in immune cell populations, we analyze peripheral

blood mononuclear cells (PBMCs) with and without dissociation. To further assess the RNA-

protein gap, RNA-protein we perform codetection and correlation analyses on thresholded

protein values. Finally, in a proof-of-concept study, using protein abundance analysis on

selected surface markers in a cohort of healthy skin, primary, and metastatic melanoma we

identify CD56 surface marker expression on metastatic melanoma cells, which was further

confirmed by multiplex immunohistochemistry. This work provides practical guidelines for

processing and analysis of clinically relevant solid tissue biopsies for biomarker discovery.
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The last decade has been marked by immense progress in
the field of single-cell RNA sequencing (scRNA-seq)1,2. As
an unbiased technology that does not profile a panel of

preselected transcripts, it is ideally suited to resolve cellular het-
erogeneity in complex healthy or diseased tissues. Single-nuclei
RNA-sequencing has been proposed for larger cohorts of fresh-
frozen samples or where tissue dissociation is hard to achieve,
such as for mature interconnected brain tissues3–5 but this is not
without its drawbacks6. Notably, both single-cell and single-
nuclei RNA-seq do not address the gap between RNA and protein
expression, which can result from technical capture difficulties
(lack in transcript capture/drop-out) and biological processes
(translational impediments, post-translational influences, RNA
degradation kinetics or protein trafficking to and from the cell
surface)7,8. Compared to other single-cell proteomics technolo-
gies such as flow and mass cytometry, cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) allows
simultaneous capture of gene and protein information as well as
the implementation of larger antibody panels by virtue of a highly
diverse combinatorial DNA sequence space that can be utilized to
tag individual antibodies, thereby avoiding previous limitations of
spectral overlap or matching isotope selections9. Increasing
antibody panel size is essential for improved cell type and cell
state resolution of highly heterogeneous tissue samples such as
clinical specimens as well as for novel biomarker discovery. The
same principle of DNA-barcoded antibodies can be applied for
sample multiplexing by cell hashing through the use of antibodies
targeting ubiquitously expressed epitopes, which reduces experi-
mental costs, allows doublet detection, and minimizes batch
effects10.

Despite their differences in signal detection, CITE-seq, and
flow cytometry share the same requirements of careful experi-
mental setups and considerations in panel design. This includes
testing antibody panels for detection of the epitopes of interest,
working with optimal antibody titers, washing out unbound
antibodies after staining, including appropriate controls, and
addressing background staining signals11. However, tailoring an
antibody panel is easier for biological samples where the cell type
composition is known or expected a priori, such as for PBMCs or
healthy tissues. In disease states such as cancer, heterogeneous
sample types can vary substantially in tumor content and tumor
microenvironment composition from, e.g., low to high tumor
presence and immune-rich to stroma-rich sample types. More-
over, clinical biopsies are often limited in tissue size, making
antibody panel testings practically difficult.

Currently, CITE-seq applications focus mainly on immuno-
phenotyping of liquid12–14 and solid biopsies15,16. Opening the
field to clinically relevant solid tissue samples comes with the
challenge of potential bias in gene expression (GEX)17–19 and
surface protein expression (SPEX)20,21 introduced by dissociation
and cell handling processes. Most tissue types require enzymatic
or mechanical processing steps. The proteolytic enzymes used to
dissociate the extracellular matrix and cell–cell-junctions require
incubation at 37 °C for a prolonged time for optimal function,
which can cause stress responses in cellular transcriptomes17–19.
Hence, whenever the tissue sample allows, cold digestion or
mechanical dissociation is preferred to avoid these stress
signatures22,23. In addition, the selection of enzyme cocktails,
incubation times, and steps will also influence the types of
released cells, with specific cell types being either more sensitive
to the dissociation process or requiring extended dissociation to
be released from the tissue24. Lastly, the proteolytic activity of
digestion enzymes can cleave cell surface proteins, which poses a
problem for surface protein measurement techniques such as
cytometry and CITE-seq. Trypsin and dispase are examples of
such enzymes25. In summary, the choice of tissue dissociation

protocol can greatly affect the observed cell type composition,
gene expression, and the spectrum of detectable surface proteins
making protocol optimization to minimize these effects impera-
tive. This could be in the form of optimizing for shortest and least
harsh dissociation protocols that result in high cell release,
avoiding surface protein-cleaving enzymes such as trypsin, and
testing if the obtained cell composition matches expected ratios.

Protein expression is usually inferred from RNA expression
and vice versa. However, while protein concentrations positively
correlate with transcript abundances, the association is not
strong7,26,27. The correlation coefficient of RNA and protein
expression has been reported to be between 0.5 and 0.7. Large
differences could be seen depending on whether observations are
based on single-cell or population level7, with lower correlations
on cell level attributed to the noise observed in scRNA-seq data,
such as technical dropouts or differences in biological half-lives
between RNA and protein28. RNA-protein correlations are also
dependent on measuring technologies and their precision and
accuracy in feature (RNA or protein) detection as well as on types
of data analyses29,30. For example, correlations vary depending on
whether they are calculated between or within features. Between-
feature correlations take the average of all feature correlations per
tissue leading to higher correlations, while within-feature corre-
lations are proposed to be more appropriate as they take feature-
specific variation in RNA-protein correlations into account30.
Thus, with low protein predictions from RNA levels for many
features, simultaneous profiling of both is necessary to identify
actionable targets, although this is rarely performed31,32.

Here, we report the performance of CITE-seq on a range of
liquid and solid tissue biopsies. We developed an improved
bioinformatics technique using cell type-specific ridge plots on
which we implemented antibody signal thresholds to account for
background staining signals and visualized their variance across
experiments. Solid biopsies included healthy skin, for which we
established an optimized dissociation protocol and primary and
metastatic melanoma samples. Using a PBMC model, we assessed
dissociation-specific gene perturbations and epitope loss on
immune cell populations. We evaluated RNA-protein codetection
and calculated feature-specific correlations on aggregated sample
and single-cell level and report varying correlations depending on
the profiled feature, the cohort, and the type of analysis (sample
or single cell-based). Finally, we demonstrated the potential for
biomarker discovery by applying large antibody panels with
minimal prior selection of included surface markers. In summary,
we highlight the applicability and possible pitfalls of CITE-seq for
liquid and solid tissue samples and paired differential gene
expression and protein abundance analysis on clinical samples.

Results
Workflow overview. CITE-seq and cell hashing were performed
on liquid and solid tissue biopsies (Fig. 1a, b). Experimentally, cells
from 17 samples (Supplementary Data 2) were hashed and stained
with a panel of 97 antibodies (Supplementary Data 2) covering key
as well as exploratory immuno-oncology markers resulting in
57,261 cells after preprocessing and quality control. Biopsies
included slow-frozen biobanked PBMCs, healthy skin, primary
melanoma, and lymph node (LN) melanoma metastasis samples.
For skin biopsies, five different dissociation protocols were com-
pared for optimal yield, viability, and epitope preservation (Sup-
plementary Note 1). Stringent red blood cell lysis, dead cell, and
clump removal improved the quality of the final single-cell sus-
pension prior to CITE-seq processing. Computationally, we
implemented cell type-specific gating and setting of sample-specific
manual thresholds in analogy to FACS analysis allowing us to
perform RNA-protein correlation and differential abundance (DA)
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analysis (Fig. 1c). Finally, experimental and analytical improve-
ments demonstrated CITE-seq utility for multimodal single-cell
profiling and its potential for biomarker discovery.

Dynamic thresholding for the removal of background noise
improves cell surface protein signal detection. Taking advantage
of single-cell resolution and gene expression-based cell type
annotation, we first implemented major cell type-specific protein
abundance ridge plots for each sample’s SPEX analysis to identify
the protein feature abundance. This strategy is visualized on
healthy PBMCs (Supplementary Fig. 1a). In contrast to all-cells
protein abundance distribution plots where a marker is plotted
for all cells within the sample (Supplementary Fig. 1b), protein
abundance visualized on cell type-specific ridge plots allowed for
marker detection on individual cell populations (Supplementary
Fig. 1c). Furthermore, manual thresholds were set to reduce
background noise and increase confidence in antibody signal
detection (Supplementary Data 1, Supplementary Data 2) as well
as to capture positive antibody signals from cell populations
present at a lower frequency (Supplementary Fig. 1). This

approach allowed to confirm protein detection on expected cell
types as for CD2 on lymphocytes and rare cell types such as CD16
on natural killer (NK) cells or CD123 on plasmacytoid dendritic
cells (Supplementary Fig. 1d and e). Finally, we visualized
threshold variation for the top 30 antibodies with the largest
variance across experiments underscoring that thresholds vary
across experiments and cannot be easily automated or transferred
from one experiment to another (Supplementary Fig. 2, Supple-
mentary Data 1). In summary, manual thresholds need to be
adapted for each experiment and processed samples, but allow for
background signal removal in CITE-seq antibody analysis.

Because of the improved antibody signal detection, we applied
the manual thresholds on all samples throughout this study.

Optimization of healthy skin dissociation protocols. The main
objective of the study was to establish CITE-seq for skin and
primary cutaneous melanoma samples. Skin is a collagen-rich
tissue that is difficult to dissociate, requiring several enzymatic
digestion steps33. Therefore, we set out to optimize a dissociation
protocol suitable for CITE-seq applications. The following five
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protocols were tested on surplus healthy skin material from
surgery (arm and breast areas, Fig. 2, Supplementary Data 2):
MACS skin dissociation kit with and without mechanical dis-
sociation using the gentleMACS Octo Dissociator (MACSM and
MACS, respectively), three-step tissue dissociation protocols
consisting of consecutive Dispase I, Collagenase IV and Trypsin
with EDTA (0.25%) (D/C/T), a combination of Dispase I and
cold-active protease (D/CP) and LiberasesDH. In both experi-
ments, the D/C/T protocol had the highest dissociation efficiency,
defined as the number of isolated viable cells per mg of tissue with
2–6 fold more released cells (Fig. 2a, Supplementary Data 2).
Moreover, this protocol yielded the highest number of cells in the
analysis and was able to capture a heterogeneous cell type com-
position including keratinocytes, melanocytes (in the UV-exposed
arm flap skin sample), fibroblasts, and immune cells (Fig. 2b,
Supplementary Data 1) with clear cell type clustering (Fig. 2c). In
comparison, the MACS protocol-treated sample did not capture
the pericyte population; however, it contained a high number of
T cells compared to D/C/T and D/CP. Furthermore, the D/C/T
protocol yielded high numbers of detected antibodies with 40 and
35 antibodies confirmed in arm flap and breast tissues, respec-
tively (Fig. 2d, Supplementary Data 1, Supplementary Data 2),
indicating it retained many epitopes. The selected D/C/T (SkinD)
protocol was then applied to a cohort of three healthy skin
biopsies from the head and neck area (Fig. 3). The three samples
shared similarly diverse cell type compositions including kerati-
nocytes, melanocytes, pericytes, immune cells, and endothelial
cells (Fig. 3a, Supplementary Data 1). Combined sample UMAP
visualization showed clear clustering into different cell types
(Fig. 3b), while the clustering was not affected or biased by
hashing or sample origin (Fig. 3c). Finally, cell lineage protein
(Fig. 3d, Supplementary Data 1) and gene (Fig. 3e, Supplementary
Data 1) marker expression confirmed the cell identities.

A PBMC model reveals the effects of enzymatic treatment on
gene expression and epitope preservation. CITE-seq is mainly
used on liquid biopsies, which do not require extensive tissue

dissociation steps that could affect cell surface protein presenta-
tion. In order to investigate the impact of enzymatic treatments
on gene expression and epitope preservation on major immune
cell populations, we tested the optimized skin dissociation proto-
col (SkinD, D/C/T) and a well working solid soft tumor dis-
sociation (TumorD, Supplementary Note 1) protocol34 on PBMC
aliquots of three healthy donors against an untreated control
(Fig. 4a). Individually treated aliquots of each patient were
hashtag-antibody stained, washed and pooled, followed by
staining with the panel comprising 97 antibodies (Supplementary
Data 2). Stained pools were washed and processed for single-cell
sequencing. UMAP visualization of all samples (three donors,
each with three treatment conditions) showed robust clustering
into B cell, T cell, and myeloid/monocyte populations (Fig. 4b).
Major cell types from each donor and treatment condition were
pooled and selected protein marker expression was plotted on
non-thresholded and thresholded protein data, revealing the
degree of background signal in the data and highlighting the
impact of setting manual thresholds (Supplementary Fig. 3a and
b), see also Grob et al.35. Next, antibody signal detection was
assessed between different treatment conditions. Out of 97 tested
antibodies, 39 were detected across all samples (Fig. 4c, Supple-
mentary Data 1, Supplementary Data 2); untreated PBMCs
showed the highest number with up to 61 detected antibody
markers. In addition, three antibodies were detected in all con-
ditions, except for the Donor 2 untreated sample (Fig. 4c, Sup-
plementary Data 1, Supplementary Data 2). Looking at
treatment-specific effects in individual samples, the monocyte
population clustered separately from untreated ones in both
dissociation protocols, while B and T cell populations were
mainly unaffected (Fig. 4d, Supplementary Fig. 3c and d). To
identify digestion-sensitive surface proteins on major cell types,
we performed protein differential abundance (DA) analysis based
on normalized counts using the Seurat function findMarkers.
Loss of surface protein expression was observed under both
digestion protocols in all cell types (Fig. 4e). Specifically, we
observed loss of CD4, CD8, CD27, CD335 on T cells, CD335,
CD31, CD49f, CD62L, CD69 on monocytes, CD21, CD81,

Fig. 2 Protocol optimization for healthy skin dissociation. a Table summarizing dissociation efficiency of tested protocols (n= 2, biologically independent
samples). b Cell type composition bar plots, and c UMAP plots, of each tested protocol and biopsy type. d UpSet plot showing number of detected
antibodies per tested protocol.
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CD196, CD278, CD335, CD336 on B cells as well as ITGB7,
CD48, CD31, CD49f, and CD141 on dendritic cells. CD4 and
CD336 loss was observed on T cells, dendritic cells, and mono-
cytes, while CD45RA expression was decreased on both B and

T cells (Fig. 4e). Moreover, the DA analysis between treatment
conditions by cell type showed upregulation of various surface
proteins (Fig. 4e). T cells showed an increase in CD3, CD5, and
CD69 under either one or both of the digestion protocols. Cell

Fig. 3 CITE-seq performance on healthy skin biopsies. a Cell type composition bar plots per sample; left, HS3_1; middle, HS3_2; right, HS3_4 (n= 3,
biologically independent samples). b UMAP plots with cell type, and c sample information. d Protein and e gene lineage marker expression dot plots per
major cell type.

Fig. 4 PBMC model revealing the influence of enzymatic dissociation on gene expression and epitope preservation. a Experiment design: healthy PBMC
from three healthy donors were aliquoted each in three parts that were left untreated at 37 °C for 1 h or underwent SkinD or TumorD enzymatic incubation
at 37 °C for 1 h. b Integrated UMAP visualization of all 9 samples (3 donors, 3 treatment conditions) with cell type information. c UpSet plot showing
confirmed antibody detection across all samples. d Representative UMAP plot from Donor 3 showing protocol-specific influence on clustering of different
cell types. e Differential SPEX and f GEX heatmap by sample and major cell type aggregated over three donors showing top differentially expressed features
across treatment conditions.
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surface proteins associated with antigen presentation (CD1d,
HLA-A-B-C), adhesion and migration (CD11a, CD11b, CD44,
CD47), immune regulation (CD39, CD107a) as well as activation
(CD11c, CD32, CD33, CD48) were upregulated on monocytes
(Fig. 4e). Differential gene expression (DE) between conditions
showed upregulation of signatures of innate immune activation
(SLC2A3, TOLLIP, SAT1, FOSB), autophagy (SQSTM1), stress
response and apoptosis (DDIT3, DUSP1) as well as down-
regulation of genes involved in heat shock response (HSP1A1,
HSP90AA1, HSPH1, DNAJB1) in enzymatically treated cells
compared to untreated (Fig. 4f). Thus, the PBMC model com-
paring untreated versus enzymatically treated conditions
informed on dissociation-sensitive genes and identified not only
loss of certain surface epitopes but also increased protein pre-
sentation by the enzymatic digestion.

RNA and surface protein codetection. Most differential mRNA
expression studies assume the expression of the corresponding
protein product, and some studies provide parallel protein
stainings from paired formalin-fixed paraffin-embedded (FFPE)
slides to demonstrate the translation of mRNA transcript into a
protein product. Here, we assessed the codetection of RNA-
protein pairs for the CITE-seq antibody panel (n= 97) in PBMCs
from three healthy donors and three immunotherapy-treated
melanoma patient samples (liquid biopsies, n= 6, no digestion
applied) as well as in five healthy skin, three primary melanoma,
and three lymph node metastatic melanoma samples (solid
biopsies, n= 11, Supplementary Fig. 4, Supplementary Data 2).
We analyzed codetection in RNA-protein detection in each cell of
the solid and liquid biopsy cohorts by looking at four conditions

(Fig. 5a and b, respectively; RNA-protein pairs sorted by
decreasing codetection, Supplementary Data 1. Supplementary
Fig. 4; alphabetically listed RNA-protein pairs): (i) detection of
RNA only (minimal count of 1 transcript per cell), (ii) detection
of protein only (signal above manually defined threshold per cell;
Supplementary Fig. 1, Supplementary Data 1), (iii) detection of
both RNA and protein, and (iv) absence of both RNA and pro-
tein. Next, for both solid and liquid biopsy cohorts, we assessed to
which category (“RNA only”, “protein only”, “RNA and protein”)
each feature was predominantly assigned (>50% of cells per
category) and calculated the percentages of these categories by
cohort (Fig. 5c, d, Supplementary Data 1). The first 15 markers
that showed the highest codetection in “RNA and protein”
expressions were shared between solid and liquid biopsies (left
side of the waterfall plots, Fig. 5a, b, Supplementary Data 1). We
found that with 43.4% and 67.0%, most of the markers were
predominantly detected only at the protein level, while 33.0% and
15.1% markers were detected at the RNA level only, and to the
lowest extent with 10.4% and 13.2% markers were detected on
RNA and protein levels in solid and liquid biopsy cohorts,
respectively (Fig. 5c, d, Supplementary Data 1). “Protein only”
and paired “RNA and protein” were detected more often in liquid
biopsies compared to solid biopsies. In both biopsy cohorts,
overlap in RNA and protein detection was observed in cell surface
markers important for regular cell functions such as major his-
tocompatibility antigens (HLA-A/B/C, HLA-DR), cell lineage
markers (CD45, CD3, CD8a), cell surface glycoproteins (CD44)
and immunoglobulins (CD48). CD45RO and CD45RA are iso-
forms used to distinguish between different naïve and memory
subpopulations, which could not be distinguished at the RNA

Fig. 5 RNA and protein codetection plots. a Feature codetection waterfall plot of solid tissue biopsy cohort including five skin, three primary, and three
metastatic melanoma samples (n= 11, biologically independent samples) and of b liquid biopsy cohort including PBMCs from three healthy donors (no
digestion) and three immunotherapy-treated melanoma patients samples (n= 6, biologically independent samples). Plots show the percentages of cells
with “RNA only”, “RNA and protein”, “protein only”, or “neither RNA nor protein” detection category. c Percentage of feature pairs in the solid and d liquid
cohort that were predominantly assigned to one category based on a threshold of >50% of cells. Feature pairs where the threshold was not reached for
either of the three categories were assigned to “other”.
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level (PTPRC) without full-length transcript information. Higher
CD45RA expression was observed in the liquid biopsy cohort, as
expected in peripheral blood with a higher fraction of naïve
cells36; whereas, in solid biopsies, CD45RA and CD45RO were
detected on the same level indicating that immune cells found in
the tissues are more activated and/or differentiated. Markers that
showed “RNA only” expression included chemokine receptors
and activation markers such as CXCR3 (CD183), CXCR4
(CD184), IL4R (CD124), IL7R (CD137), CCR7 (CD197), LAG3
(CD223), and TIGIT. Markers predominantly detected at the
“protein only” level included among others CD10, CD39, CD36,
CD56, B7-H4, CD195, and CD70 with missing GEX information
indicating low RNA expression or difficulties in transcript cap-
ture. In both liquid and solid biopsy samples, “protein only”
expression was detected in cases where no single RNA directly
translates into the epitope such as various types of T cell receptor
epitopes (TCR-α/β, TCRV δ2, TCR-Vα7.2, TCR-Vα24-Jα18) and
CD57 (glycoepitope). In the case of the B cell immunoglobulin M
(IgM) isotype, the immunoglobulin heavy constant mu gene
(IGHM) could not be detected because the gene is located on the
3-prime end of the B cell receptor mRNA molecule37, which was
not covered with our 5-prime sequencing approach. The
decreased protein detection in the solid cohort, seen as a higher
fraction of “RNA only” detection, was attributed to enzymatic
digestion-associated loss of epitopes as shown in the PBMC
model (Fig. 4e). In summary, the assessment of RNA-protein
codetection highlighted similarities and differences in feature
detection in liquid and solid biopsy cohorts.

RNA and protein expression correlation. Next, we asked how
well RNA and protein expression is correlated and calculated
RNA-protein correlation coefficients on a sample level (Fig. 6a,
Supplementary Fig. 5a, Supplementary Data 1) and a cell level
(Fig. 6b, Supplementary Fig. 5b, Supplementary Data 1) for the
solid biopsy (Fig. 6, Supplementary Data 1) and the liquid biopsy
cohorts (Supplementary Fig. 5). Only RNA-protein pairs were
included for which both features were detected. More RNA-
protein pairs with significant positive correlations (p < 0.05) were
detected in the solid cohort compared to the liquid cohort on a
sample (57% vs. 25%) and cell (88% vs. 80%) level reflecting
broader feature detection due to a higher cell type diversity. In
addition, the higher number of solid samples provided better
statistical power compared to the liquid biopsy cohort. Strong
differences were observed depending on whether correlations
were computed on a sample (population) or single-cell level.
While only 57% (53 out of 93 included pairs) of RNA-protein
pairs reached positive significance on a sample level in the solid
cohort, the correlation of these was high (mean r= 0.83). On a
single-cell level, 88% (82 out of 93 pairs) of pairs were sig-
nificantly positively correlated in the solid cohort; however, these
displayed an overall lower correlation (mean r= 0.17). Only three
features (3% of all pairs) showed a correlation coefficient above
0.5 and six pairs (6% of all pairs) were significantly anti-corre-
lated, albeit with coefficients equal to or lower than 0.09, indi-
cating that noise or other small fluctuations can reach significance
with a large number of observations. The same was observed for
significantly positively correlated pairs in the liquid cohort with

Fig. 6 RNA and protein expression correlation. Pearson correlation coefficients of 93 RNA-protein pairs on aggregated a sample level (n= 11, biologically
independent samples) and b cell level (n= 12,665 single cells) for the solid tissue biopsy cohort. The Pearson correlation coefficient between each RNA-
protein pair is shown along with its related p-value. The significance threshold is set to 0.05 and indicated as a red, dotted vertical line. Pairs were excluded
if either one or both members of the pair were not detected.
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mean r= 0.92 on a sample and mean r= 0.24 on a cell level. In
summary, this analysis provides a list of highly correlated features
that could guide antibody or gene panel design in future studies.

RNA and protein abundance analysis of PBMCs. Application of
CITE-seq to DA and DE analysis was assessed on a PBMC cohort
consisting of three healthy donors and three immunotherapy-
treated (IT) melanoma patients (Supplementary Data 2). UMAP
visualization showed cell clustering according to distinct cell
types, and not according to sample origin (Fig. 7a). IT-treated
patients’ PBMCs showed higher numbers of detected antibodies,
which included CD161, CD137, CD272, and CD335 markers
(Fig. 7b, Supplementary Data 1, Supplementary Data 2). We next
performed DA/DE analysis between PBMCs from healthy donors
and IT-treated melanoma patients on SPEX (Fig. 7c) and GEX
(Fig. 7d) levels, respectively. Because the thresholding introduces
changes in count distribution, DA was computed on non-
thresholded data, however, thresholds were applied in the final
results of the visualization of the heatmaps (see methods). DE
analysis on GEX level detected strong upregulation of activation,
checkpoint, and memory markers such as CTLA4, TIGIT, and
CD27 on IT-treated T cells, a finding that could not be verified on
SPEX level due to above reported poor protein detection of these
markers. The absence of CTLA-4 protein expression could be
explained by anti-CTLA-4 treatment in case the epitope is already
occupied by a therapeutic antibody. However, one of the IT-
treated patients received anti-PD-L1 treatment only (Supple-
mentary Data 2). Therefore, to validate the CITE-seq results, the
same infusion of PBMCs from three patients that were processed
for CITE-seq were selected for an orthogonal experiment. To test
variability in antibody clone performance, in addition to the clone
included in the CITE-seq panel (BNI3), clone L3D10 was selected
based on reports from other studies38. Interestingly, although
CTLA-4 is a surface receptor, both instructions from the manu-
facturer and previous publications on CTLA-4 expression on
T-cells39 utilize prior cell stimulation and intracellular staining to
detect the protein expression. Therefore, PBMCs were first sti-
mulated for 4 hours with PMA/ionomycin, followed by extra-
cellular and intracellular staining. Cells were gated as
lymphocytes/single cells/CD3+/CD4+ CD8− and gates for
CTLA-4 were adjusted according to the matching isotype control
(Supplementary Fig. 6a).CTLA-4 protein expression was only
observed when both stimulation and intracellular staining was
performed (Supplementary Fig. 6b and c). In addition, compared
to the L3D10 clone, lower CTLA-4 detection was observed using
the BNI3 clone (Supplementary Fig. 6b and c).

Overall, GEX and SPEX DE analysis provided different results
as a consequence of feature limitations in SPEX space and
different capture strengths of both types of measured molecules.

Proof-of-concept CITE-seq application on a melanoma cohort
for biomarker discovery: differential protein abundance and
validation. As a proof-of-concept study of CITE-seq applicability
for biomarker discovery, we next performed differential protein
abundance analysis on healthy skin melanocytes, primary mela-
noma, and metastatic melanoma cells and visualized protein and
corresponding RNA expression (Fig. 8a, b, Supplementary
Data 1). Various markers associated with immune evasion (CD47
and CD274)40,41, invasion and metastasis initiation (CD44,
CD49f, CD81, and HLA-DR)42,43 were found on metastatic
melanoma cells. HLA-DR was detected at low, medium, and high
levels in melanocytes, primary melanoma, and metastatic mela-
noma cells, respectively, although these biopsies contained BRAF
and not the NRAS mutation, which is associated with higher
HLA-DR expression43,44. CD107a abundance, a marker for

organelles of endosomal-lysosomal lineage and proxy for vesicle
secretion45, was detected on a larger fraction of healthy mela-
nocytes and reduced on primary and metastatic melanoma cells
(Fig. 8a, Supplementary Data 1, Supplementary Data 2). CD117
expression was detected on healthy melanocytes and metastatic
melanoma cells but absent on primary melanoma cells. Metastatic
melanoma cells showed CD81 expression, a marker associated
with metastatic progression46 and high expression of CD49f. In
addition, protein expression was observed for CD56 (neural cell
adhesion molecule 1 (NCAM1), involved in cell–cell adhesion),
CD71 (transferrin receptor 1)47 and CD73 (ecto-5'-nucleotidase
responsible for extracellular adenosine production with immu-
nosuppressive function)48,49. CD56 (NCAM1) as well as CD274
(PD-L1) were only detected in metastatic melanoma cells and
primarily on a protein-only level (Fig. 8a, b) consistent with the
overall detection pattern for these markers in liquid and solid
cohorts (Fig. 5a, b, Supplementary Fig. 4). While CD274 (PD-L1)
is a known immune checkpoint inhibitor50,51, less is reported on
CD56 expression on metastatic melanoma cells52. To validate and
spatially resolve the expression of CD56, a paired FFPE section of
the metastatic melanoma LN was analyzed using Akoya multiplex
immunohistochemistry (Fig. 8c). Quantification of CD56/
MLANA double-positive melanoma cells, MLANA+ melanoma
cells, CD68+ macrophages, and CD8+ T-cells in five regions of
interest (ROI) (Fig. 8d, e, Supplementary Data 1) showed that on
average 13% of all MLANA+ cells (3,171 cells) were CD56/
MLANA double-positive (430 cells).

Discussion
Application of antibody panels for multiplexed protein detection
requires careful tailoring of optimal working concentrations,
which is typically established by titration experiments. For assays
in which antibodies are conjugated to fluorophores (flow cyto-
metry) or isotopes (mass cytometry), compensation steps for each
conjugate are performed to separate the true positive signal from
the background staining. In addition, the number of antibodies in
the panels is limited by the number of unique conjugates due to
technological limitations to resolve the signals. Oligo-conjugated
antibody barcoding technology such as CITE-seq is based on the
unique DNA sequence and due to its immense combinatorial
sequence space offers a virtually limitless number of antibodies to
be included in the panel. When possible, reducing staining con-
centrations was proposed to decrease antibody-related sequencing
costs53. Titration of a large antibody panel is costly, time-con-
suming, and not always possible when using clinical samples due
to limited tissue material, which is a potential limitation when
applying CITE-seq on patient-derived biopsies. In this study, we
tested a panel of 97 antibodies without prior titration and
achieved good signal-to-noise ratios allowing us to identify
positive antibody signals. The background staining was resolved
using transcriptome-based gating and plotting cell type-specific
protein abundance ridge plots. First, the ridge plots visualize
individual cell types, which allows antibody signal detection on
rare cell populations that otherwise would have been lost on all-
cells protein abundance distribution plots. Further, the back-
ground staining was removed by applying dynamic manual
thresholds to display only true positive antibody signals. We also
demonstrated that these thresholds vary between experiments
and cannot be easily transferred from one dataset to another.
With wider application of CITE-seq analysis, new approaches are
being developed that aim to calculate the background staining
from empty droplets as well as by simultaneous staining with
non-human species directed antibodies54,55; however, manual
examination of each protein marker would still be necessary to
correct for possible inaccuracies.
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Fig. 7 Differential protein abundance analysis in PBMCs from healthy donors and immunotherapy-treated melanoma patients. a UMAP visualization of
6 samples by sample identifier with labeled cell types (healthy donors n= 3, immunotherapy treated melanoma patients n= 3, biologically independent
samples). b Antibody detection per sample. c Differential protein abundance and d differential gene expression analysis by treatment and cell type.
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Surface protein detection on solid tissues is more complicated
due to the pre-processing into single-cell suspensions using
mechanical or enzymatic digestion that introduces bias into cel-
lular composition as well as affects the transcriptome and the
surface proteome of the cells56. Dissociation of solid tissues using
proteolytic enzymes is the most reliable method to obtain single-
cell suspensions that capture the heterogeneity of the original
tissue and optimization is required to obtain heterogeneous cell
populations and preserve cell viability25. Immune cell release can
be achieved by shorter treatment times (~15 min), while stromal
cells require prolonged enzymatic treatment due to complex
cell–cell and cell–matrix connections57. Although prolonged
dissociation is often necessary to extract most cell types from
tissues, it also introduces bias in gene expression by upregulating
early stress57 and heat shock signatures23 and can cause artifac-
tual loss of surface protein expression21. To investigate pre-
servation of surface epitopes on immune cells, we treated healthy
PBMCs with skin (SkinD) and tumor dissociation (TumorD)
protocols and compared the RNA and protein expression pat-
terns against an untreated control. In agreement with previous
reports, enzymatically treated PBMCs showed loss of CD4, CD8,
CD21, and CD62L in our CITE-seq analysis in samples treated by
both SkinD and TumorD protocols20,21. CD141 signal was
reduced in SkinD-treated dendritic cells, consistent with trypsin
sensitivity as previously reported58. Interestingly, differential gene
and surface protein expression analysis showed that lymphocytes
were most affected by enzymatic digestion compared to other cell
populations with loss of dissociation-sensitive epitopes (such as
CD4, CD8, CD21). The monocyte population showed prominent
gains in many cell surface markers such as CD107a (degranula-
tion and activation), CD39 (metabolic activation), CD1d (antigen
presentation) and CD33 (macrophage differentiation) indicating
functional sensitivity to enzymatic exposure. This is in line with
previous reports of transcriptomic and proteomic changes of

microglia in enzymatically digested mouse brain tissues compared
to mechanical dissociation22 and collagen-induced chemotaxis of
human blood monocytes59.

Global single-cell transcriptome profiling of primary tissues
from various tumors and non-malignant samples revealed
intrinsic cell type heterogeneity and greatly improved our
understanding of disease mechanisms and drug actions in mul-
tiple clinical fields60–63. However, scRNA-seq studies are limited
only to the description of the transcriptome, while protein
expression is either inferred from gene expression or orthogonally
validated from paired FFPE samples62. Single-cell analysis pipe-
lines are rapidly advancing into technologies that can integrate
multiple profiling modalities, and recent progress in sequencing-
based technologies allows simultaneous capture of cell surface
protein and gene expression from a single cell9,63,64, thereby
linking genes and their protein products and capturing a more
realistic functional state. In clinical settings, CITE-seq was applied
to monitor responses to therapy and relapse by Ibrutinib (irre-
versible Bruton Tyrosine Kinase inhibitor) treatment of chronic
lymphocytic leukemia (CLL)14. The analysis revealed that CD3 is
well identified by both protein-labeling as well as by gene
expression, whereas CD69 or CD19 were mainly detected by the
cell surface protein labeling. CITE-seq analysis showed a decrease
in CD69 expression (prognostic factor) correlated to clinical
progression in CLL at three months post-treatment, and sub-
sequent increase at month 27 correlating with disease
progression14. A study that applied CITE-seq to myeloid popu-
lations within human and mouse glioblastoma samples reported
RNA-protein codetection for many markers; other features,
however, were differentially expressed on protein level only65. In
this study, we analyzed the detection intersection in 97 RNA-
protein pairs, reported predominant detection (more than 50% of
cells with at least one observation), and calculated their correla-
tion. We corroborate previous observations of varying degrees of

Fig. 8 Proof of concept CITE-seq application for biomarker discovery on a cohort of solid tissues. a Protein and b gene marker expression dot plot per
cell type and sample. Melanocytes from healthy skin samples (n= 4, biologically independent samples, dissociated with D/C/T protocol—the skin biopsy
from breast reduction was excluded from this analysis because of lack of melanocyte presence), primary melanoma cells from primary melanoma samples
(n= 3, biologically independent samples), and metastatic melanoma cells from the metastatic lymph node samples (n= 3, biologically independent
samples). c Multiplex immunohistochemistry staining of a matched metastatic melanoma lymph node tissue sample showing CD56 signal on MLANA-
positive melanoma cells. d Analysis of a representative region of interest (ROI) quantifying single cells positive for: CD8 (T cells), CD68 (macrophages),
MLANA (melanoma cells), and DAPI (nuclei staining). e Cell type composition bar plots from five analyzed ROIs.
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feature detection, provide calculations on feature correlation and
list features in each category that can serve as a lookup table for
future investigators. The high amount of features that could only
be well detected in protein space highlights the additional value
CITE-seq can provide considering clinically relevant readouts.
Nevertheless, markers such as TIGIT and LAG3 were better
detected at the RNA level showing neither technology alone is
superior in feature detection, thus highlighting the added value of
combining both omics arms. Furthermore, transcript isoforms are
not covered with the short read sequencing data. As noted by Liu
et al.29, the possibility that protein levels may be compared to
splice isoforms that do not contain the respective protein
sequence may distort the RNA-protein correlation. An example
of this is the detection of CD45RA and CD45RO splice isoforms
of CD45 on immune cells, which could be detected with isoform-
specific antibodies. Due to the lack of full-transcript sequence
coverage, they could not be detected at the transcript level.
Coupling long-read sequencing technologies allowing for isoform
detection66,67 with surface protein capture would be the next
logical step to further gain biological insights. More “protein
only” and “RNA and protein” expression was observed in liquid
biopsies (three healthy and three immunotherapy-treated
PBMCs) or in solid biopsies that were digested with a milder
enzymatic blend (metastatic melanoma in LN) indicating
digestion-associated loss of cell surface proteins. The absence of
positive antibody signals could also be influenced by other factors
such as suboptimal antibody clone performance (e.g., CD4 and
CD8 clones SK3 and SK8, performed better than clones RPA-T4
and RPA-T8, respectively). An additional limitation of the CITE-
seq method might be due to how liquid biopsy is processed prior
to single cell droplet generation. Usually, to have minimal impact
on the transcriptome of cells derived from patients, samples are
processed as quickly as possible. However, for certain surface
proteins, such as CTLA-4, it has been described that surface
receptors reside on the cell surface only for a short time, and are
internalized in the absence of a ligand, which means that at any
given time point, there is very low surface expression of CTLA-
468. In vitro stimulation is necessary for reliable detection of
CTLA-4 expression, which is not feasible if fast sample processing
is required. Therefore, surface protein expression of such markers
might be overlooked during CITE-seq profiling. Moreover, our
analysis compared well with RNA-protein detections in an
independent study comprised of glioblastoma-isolated immune
cells65, which showed higher protein detection for CD36, podo-
planin, CD64, CD49f, CD86, CD15, CD56, CD90, CD11a and
CD11b, high RNA and protein codetection for CD44 and higher
RNA detection for CXCR4 (CD184). This was consistent with our
classifications of predominantly “protein only”, “RNA and pro-
tein”, and “RNA only”, indicating that technological and biolo-
gical effects influencing RNA-protein detection are preserved
across studies and experiments, thus supporting a wider appli-
cation of CITE-seq in basic and translational research. CITE-seq
applications on liquid biopsies enabled the identification of cell
populations present at low frequencies, such as antigen-
presenting cells (CD1c+ and CD141+ cells) or naïve and
memory phenotypes by discriminating expression of CD45RA
and CD45RO69. RNA and protein correlation analysis was cal-
culated on a sample and cell level with more significantly posi-
tively correlated pairs found in the solid cohort due to higher cell
diversity and sample numbers. Cell-based correlations provided
more significantly correlated pairs resulting from a higher num-
ber of observations, however, had lower correlation coefficients.
The generalized low correlation in single-cell observations
reflected most likely differences in transcript detection, cell-to-cell
variability, transcriptional noise, and potentially poor antibody
binding and is in line with previously reported differences in

correlations on sample (population) or single-cell levels7. This
indicates that to mitigate these effects and to achieve higher
confidence in feature detection, RNA-protein correlations should
be investigated at least on a cluster or cell type instead of single-
cell level.

Studies that used CITE-seq to analyze solid tissues so far have
only focused on subtyping the immune milieu of various organs
such as the brain15,65, kidney70, breast16, and skin71. Besides
immune cells, the tumor microenvironment (TME) is composed
of various cell types such as endothelial cells, pericytes, fibro-
blasts, and neural cells. As has been shown, the non-malignant
components of the TME can also contribute to tumorigenesis,
progression, and metastasis72,73. Therefore, understanding the
cell–cell interactions as well as profiling the functional states of
various cell types within the environment of the solid tissue
samples is as important. Commonly, in single-cell protein pro-
filing techniques such as flow cytometry or CyTOF, antibody
panels are pre-selected and prioritized based on previous
knowledge, and the combination of established and exploratory
markers is technologically limited. For biomarker discovery in
CITE-seq, in addition to well-established antibodies, we added a
panel of exploratory markers and identified known as well as less
described metastatic melanoma markers. After analysis of the
panel, we compared the expression of the selected surface mar-
kers on healthy melanocytes, as well as primary and metastatic
melanoma cells. Among markers identified on metastatic mel-
anoma cells, protein expression did not correlate with the
corresponding gene expression in almost 50% of all markers (6
out of 13—CD56, CD70, CD71, CD81, CD107a, and CD274)
showing that application of CITE-seq extended antibody panels
can reveal unusual surface markers that would otherwise be
missed based on mere RNA profiling. Previously, CD56
expression was shown by immunohistochemistry staining in
various tumors with neuroendocrine differentiation74, including
melanoma52,75,76. CD56 is involved in cell–cell and cell–matrix
interactions during development and differentiation and was
implicated in homophilic and heterophilic interactions77.
NCAM1 gene expression did not correlate with CD56 protein
abundance in the cell type-specific analysis. CD56 was fur-
thermore predominantly found on “protein only” level in both
liquid and solid cohorts and in an independent study65. To
address the loss of spatial resolution and validate CD56
expression identified by CITE-seq, we performed multiplex
immunohistochemistry coupled with advanced multispectral
imaging. We profiled CD56 expression in a paired histological
section of metastatic melanoma LN and identified clusters of
MLANA-positive cells expressing CD56 that were organized in
circular shapes. Previous studies have highlighted the possible
role of CD56 as a predictive biomarker78, druggable target79,
and its role in NK-cell mediated immunity80. In primary mel-
anoma cultures, increased expression of CD56 was identified in
cells showing statistically significant higher capability to cross
the in vitro blood-brain-barrier model81 and all cultures
established from brain metastases of melanoma showed CD56
expression82, suggesting its role in invasion and its potential
importance as a biomarker in metastatic melanoma.

Limitations of CITE-seq analysis include the loss of surface
epitopes due to enzymatic dissociation, capture of only pre-
selected surface targets and loss of spatial resolution. These can be
addressed by complementary spatial profiling, which is required
to validate the findings and identify the biologically relevant
spatial interactions. A limitation of our CITE-seq analysis using
manual thresholds could be further optimized by using auto-
mated thresholding as recently proposed55, while general lim-
itations of antibodies for protein detection in regard to restricted
panels, binding specificity and cross-specificity should eventually
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be overcome by further developments in single-cell proteomics
using mass spectrometry such as reported by SCoPE-MS83.

In this study, we demonstrated that CITE-seq can be applied to
clinically relevant solid tissue biopsies and addressed common
limitations that arise from enzymatic digestion. We demonstrated
an optimization of the enzymatic digestion protocol for a com-
plex solid tissue such as healthy skin and presented a simple
method of applying thresholds on cell type-specific ridge plots to
utilize large antibody panels for CITE-seq without prior titration
steps. Finally, we applied the CITE-seq method for biomarker
discovery, identified a potentially druggable surface protein
CD5684,85 on metastatic melanoma cells, and validated its
expression on a matched tissue. CITE-seq represents a powerful
profiling modality that by virtue of its quantitative and qualitative
dual transcriptome and surface proteome readouts allows global
unbiased cell type composition analysis, RNA-protein correla-
tions quantification as well as simultaneous DE and DA analysis,
on RNA and protein levels, respectively.

Methods
Human primary tissue and live-cell biobanking. Human healthy skin, primary
and melanoma metastasis samples, as well as PBMCs from consenting patients
treated with immunotherapy were obtained from the Dermatology Biobank,
University Hospital Zurich (BASEC Nr.2017-00494). Experimental and clinical
information are summarized in Supplementary Data 2. After collection, tissue
sample biopsies and surgical material were live-cell biobanked. Briefly, collected
tissue samples were cut into small pieces of a maximum 2 × 2mm and up to four
pieces were placed into one cryovial (Sarstedt, cat. no. 72.380.002) containing 1 mL
of freezing medium consisting of 90% FBS (Biowenst, cat. no. S006420E01, batch
no. S169419181H), 10% DMSO (Sigma, cat. no. 102148154, filter-sterilized using
0.22 μM filter (Steriflip, Milipore, cat. no. SCGP00525)), slow-frozen in pre-chilled
CoolCell® Containers (Corning, cat. no. 432001) and stored in −80 °C fridges
within 30 min after collection.

PBMCs isolation: Buffy coats from healthy donors were obtained from
Blutspende Zurich (Kunden No. 6561, Biobank project). PBMCs were isolated
using a protocol described elsewhere (PBMC isolation and cryopreservation86)
with minor modifications. Briefly, buffy coats diluted with PBS (Ca2+/Mg2+-free,
Gibco, cat. no.10010-015) were layered onto HISTOPAQUE®−1077 (Sigma,
10771-500 mL) for healthy donor 1 and Ficoll-Paque-1084 (Cytiva, cat. no.17-
5446-52) for healthy donors 2-3. Gradient centrifugation was performed at 760 g
for 20 min with the brakes OFF. After collecting the mononuclear cell layer, cells
were washed four times with PBS and spun down at 350 × g for 8 min at room
temperature. Cell count and viability were accessed on Luna-FLTM cell counter
(Dual Fluorescence Cell counter, Logos Biosystems Inc., cat. no. L1001) using
acridine orange propidium iodide (AOPI, Logos Biosystems Inc., cat. no. F23001)
live/dead staining. Up to 107 PBMCs were cryopreserved as described above in the
live-cell biobanking section.

Processing of cryopreserved solid tissue and enzymatic dissociation. Live-cell
biobanked tissue samples were quickly thawed in a water bath set to 37 °C, re-
suspended in 10 mL of ice-cold RPMI (Sigma, cat. no. R0883) with 0.04% BSA
(Sigma-Aldrich, cat. no. A7906) and incubated for 10 min on ice to allow DMSO to
diffuse from the tissue. Samples were spun down at 300 × g for 5 min and cut into
small pieces with a scalpel. This step was performed to increase contact between the
enzymes and the total surface area of the tissues in a small amount of enzyme
mixture. Small tissue pieces were placed in the optimal enzymatic mixture and
incubated for 30 min to 3 h at 37 °C with continuous rotation on a MACSmix tube
rotator (Miltenyi Biotec, cat. no. 130-090-753) and trituration every 15 min using
wide-bore pipet tips (Supplementary Note 1).

After incubation with the respective enzymatic mixture, digested tissue was
sequentially filtered through 100 µm (Falcon, cat. no. 352360) and 35 µm cell
strainers (Falcon, blue capped FACS tubes - cat. no. 352235). For samples with
viability below 70% and when cell numbers allowed (>105 cells total), apoptotic and
dead cells were removed by immunomagnetic cell separation using the Annexin
Dead Cell Removal Kit (StemCell Technologies, cat. no. 17899) and EasySepTM

Magnet (StemCell Technologies, cat. no. 18000). If the cell pellet appeared red, red
blood cell (RBC) lysis was performed following the manufacturer’s instructions
(Roche, cat. no. 11814389001). Briefly, the cell pellet was resuspended in 500 μL of
RBC lysis buffer and incubated at room temperature for 3 min. Next, cells were
washed with a resuspension buffer (PBS with 0.04% BSA), spun down and
resuspended in a resuspension buffer. If the cell pellet appeared still red, RBC lysis
was repeated. Cell number and viability were assessed on a Cellometer K2 Image
Cytometer (Nexcelom Bioscience, cat. no. Cellometer K2) using ViaStain AOPI
Staining Solution (Nexcelom Bioscience, cat. no. CS2-0106-5mL) and PD100 cell
counting slides (Nexcelom Bioscience, cat. no. CHT4-PD100-003).

Optimization of healthy skin dissociation - experiment outline: we selected
slow-frozen healthy skin biopsies of sufficient size that allowed for testing of three
dissociation protocols on the same sample. In short, tissues were thawed and
DMSO washed out. Biopsies were cut into three pieces and weighed on a precision
scale. Each piece underwent a separate dissociation protocol as described in
Supplementary Note 1 and Fig. 2a. Dead cell removal was performed whenever
necessary and possible, and suspensions were stained with hashing antibodies
whenever possible. Finally, samples were pooled and stained with a CITE-seq
antibody cocktail.

Enzymatic digestion effect on PBMCs - experiment outline: three vials of
PBMCs from healthy donors were thawed, counted, and split into three equal parts.
Aliquot 1 was kept in PBS with 1% BSA and incubated for one hour at 37 °C
(untreated), aliquot 2 was treated with SkinD for one hour at 37 °C while aliquot 3
was treated with TumorD protocol for one hour at 37 °C. Processing for antibody
staining was performed as described below in the “Antibody staining” section.
Donors 2 and 3 were processed on a separate day from Donor 1.

Oligo-labeled antibody panels and staining. Oligo-labeled antibody panels were
ordered from the BioLegend TotalSeq-C product line compatible with 10x Geno-
mics 5P V(D)J immune profiling kits and concentrations were chosen according to
manufacturer instructions for each antibody. The panel consisting of 97 antibodies
(Supplementary Data 2) was pooled in a labeling buffer (PBS with 1% BSA).
Antibody staining was performed similarly to the demonstrated 10x Genomics
protocol Cell Surface Protein Labeling for Single Cell RNA Sequencing Protocols
(https://assets.ctfassets.net/an68im79xiti/6p0emIeLO8bsxinEbKgcfF/
275a5752f4e4347f75a1f649bd824463/CG000149_DemonstratedProtocol_
CellSurfaceProteinLabeling_RevB.pdf), omitting dextran sulfate staining as
recommended by BioLegend (https://www.biolegend.com/en-us/protocols/
totalseq-b-or-c-with-10x-feature-barcoding-technology). After Fc receptor block-
ing, samples were first stained with hashing antibodies (BioLegend, see Supple-
mentary Data 2) in ~100 µL volume for 30 min on ice. Afterwards, cells were
washed three times with labeling buffer (PBS with 1% BSA) before incubation in a
final pool of oligo-barcoded BioLegend TotalSeq-C antibodies in 100 µL volume for
another 30 min. Finally, cells were washed three times and resuspended in a
resuspension buffer (PBS with 0.04% BSA). Cell number and viability were profiled
as described in the above section (Processing of cryopreserved tissue and enzymatic
digestion) and optimal cell concentrations were set according to 10x Genomics
protocols (700-1200 cells/µL).

Single-cell droplet generation and processing. Stained cell suspensions were
loaded and processed using the 10x Genomics Chromium platform with the 5P
V(D)J immune profiling kit on 10x Genomics Chromium Single Cell Controller
(10x Genomics, PN-120263). Hashed samples were super-loaded with 9,000 to
20,000 cells per lane (see Supplementary Data 2). GEX and SPEX libraries were
amplified and sequenced on the Illumina NextSeq 500 or NovaSeq 6000 platform at
recommended sequencing depth (20,000-50,000 reads/cell for GEX libraries, and
>7000 reads/cell for SPEX libraries).

Multiplex immunohistochemistry staining and multispectral imaging (Akoya
Vector Polaris). Histological slides were stained with primary (at 1:100 con-
centration) and opal antibody pairs on a Leica Bond RXm following manufacturer
instructions supplied from Akoya (Table 1). Prior to scanning, the bottom of the
slides was cleaned with 70% ethanol. Multispectral slide scanning was performed
on the Vectra Polaris at ×40 magnification. Regions of interest (ROIs) were
annotated with PhenoChart and spectral unmixing and cell segmentation were
performed with inForm 2.4.9. Raw QPTIFF images were exported as TIFF files.

PBMCs stimulation and flow cytometry. Live-frozen PBMCs from three patients
receiving immunotherapy (Supplementary Data 2) were thawed by drop-wise
resuspension in media (RPMI 1640 (Sigma-Aldrich, cat. no. R0883) supplemented
with 5 nM L-glutamine (Gibco, Thermo Scientific, cat. no. 25030-024), 1 mM
sodium pyruvate (Sigma-Aldrich, cat. no. S8636), 10% heat-inactivated fetal bovine
serum (Biowest, cat. no. S181H) and 1% Pen-Strep (Gibco, Thermo Scientific, cat.
no. 15140-122)) and rested on ice for 10 min. Cells were counted with AOPI (Logos
Biosystems, cat. no. F23002) and viability was found to be over 90%. Cells were
seeded in round bottom 96 well plates in media at 0.5 Mio cells/well and incubated
with or without cell stimulation/protein export inhibitor cocktail (eBioscience, cat.
no. 00-4975-93) for 4 h at 37 °C and 5% CO2. Next, cells were washed with PBS
with 2% FCS, and stained with anti-human CD3 (APC, BioLegend, cat. no. 317318,
stock concentration 50 µg/ml, dilution 1:50, final concentration 1 µg/ml), anti-
human CD4 (PerCP, BioLegend, cat. no. 317432, stock concentration 200 µg/ml,
dilution 1:50, final concentration 5 µg/ml), anti-human CD8 (PE-Cy7, BioLegend,
cat. no. 344712, stock concentration 100 µg/ml, dilution 1:100, final concentration
1 µg/ml), anti-human CTLA-4 (Biolegend, clone BNI3, APC/Fire 750, cat. no.
369627, stock concentration 25 µg/ml, dilution 1:20, final concentration 1.25 µg/
ml) or Mouse IgG2a, κ Isotype control (APC/Fire 750, Biolegend, cat. no. 400283),
anti-human CTLA-4 (PE, Biolegend, clone L3D10, cat. no. 349905, stock con-
centration 200 µg/ml, dilution 1:20, final concentration 10 µg/ml) or PE Mouse
IgG1, κ Isotype control (PE, Biolegend, cat. no. 400113). Samples were analyzed on
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a LSRFortessa™ Cell Analyzer (BD Biosciences). Isotype controls were used at the
same concentrations as the matched antibodies. Compensation was performed with
UltraComp eBeads™ (Invitrogen, cat. no. 01-2222-42). The flow cytometry data
were analyzed in FlowJo™ v10.0.8.

Data analysis. All CITE-seq data analysis was embedded in a workflow for single-
cell GEX and SPEX analysis as well as hashing analysis35. In the following, we
describe in brief the main steps of the sequencing data analysis.

Preprocessing and hashing analysis: Raw reads were mapped to the GRCh38
reference genome using 10x Genomics Cell Ranger 3.1.0 to infer read counts per
gene per cell. GEX and SPEX libraries were processed independently, and the Cell
Ranger “–force-cells” option was set to initially retrieve the number of loaded cells
per experiment. For samples sequenced on the NovaSeq platform, index-hopping
removal using a method developed by Griffiths et al. was performed87. Next,
hashed samples were demultiplexed by first applying CITE-seq count in order to
count hashtags per cell and subsequent normalization and hashtag assignment
using Seurat88.

GEX analysis: After hashtag-based demultiplexing of samples, GEX data of each
sample was analyzed using the scAmpi workflow89. In brief, UMI counts were
quality controlled and cells and genes filtered to remove known contaminants: cells
where over 50% of the reads mapped to mitochondrial genes and cells with fewer
than 400 different expressed genes were removed, as well as non protein-coding
genes and genes that were expressed in <20 cells. The 400 DEG was chosen as the
default threshold and is in place to remove cells with low gene diversity, as those
“cells” have an increased risk of being artifacts. Subsequently, counts were
normalized and corrected for cell-cycle effects and library size using sctransform90.
Similar cells were grouped based on unsupervised clustering using Phenograph91

and an automated cell type classification was performed independently for each
cell92. Cell type annotation was performed using lists of cell type defining highly
expressed genes from previous publications as follows (Supplementary Data 2): for
lymph node melanoma metastasis and healthy skin samples, gene sets from Tirosh
et al.93 and Tabib et al.94 were used, respectively. For primary cutaneous melanoma
samples, gene sets from Tirosh et al.93 were enriched with keratinocyte gene sets from
Tabib et al.94. Healthy PBMC data was annotated using gene lists from Zhang et al.95

and Newman et al.96 and enriched with dendritic cell gene sets from Villani et al.97.
The label “unknown” was assigned if for a particular cell none of the compared cell
type marker lists showed sufficient similarity to the gene expression profile of the cell.
In contrast, a cell was labeled “uncertain”, if the expression profile of the cell is
sufficiently similar to more than one marker list (i.e., the p-values returned by the
Mann–Whitney U-Test performed by the scROSHI cell typing method92 are close to
the most similar cell type and the second most similar cell type).

SPEX processing: preprocessing, thresholding and visualization: Initial SPEX
counts per cell were determined using 10x Genomics Cell Ranger 3.1.0 (Hohhm/
CITE-seq-Count: 1.4.2 - https://zenodo.org/record/2590196#.YWcNFmQza2x).
Raw counts were log-transformed and visualized in a cell type-specific expression
ridge plot to allow manual threshold definition. Similar to, e.g., FACS experiments,
the observed raw counts contain background noise, which can be removed using
manually selected thresholds (for a manually set threshold overview, refer to
Supplementary Data 1). Based on the thresholds, only cells with a SPEX count
exceeding the threshold were determined as positive for the respective antibody
(Supplementary Data 2). GEX and SPEX counts were combined to calculate a
UMAP embedding that displays both GEX and SPEX-based effects. In addition, we
performed a clustering based on combined GEX and SPEX counts using BREM-
SC98. To inform on cell type-dependent SPEX counts, ridge plot visualization was
performed on a per cell type level.

Cohort integration: Samples originally part of the same hashing experiment are
assumed to show no sequencing or antibody staining batch effects, as they have
been pooled together before processing. Thus, when grouping samples from the
same hashing experiment, no additional batch correction was performed. Instead,
after grouping the individual samples, the original GEX and SPEX counts from the
single samples are visualized on the combined UMAP.

When integrating samples across hashing experiments the top 3000 genes
observed as variables in most samples were used as anchors; additional batch
correction was applied using the Seurat CCA method99 and multimodal integration
was performed using the Seurat WNN method88.

Differential gene expression and protein abundance analysis: To compare the
effect of different treatment protocols on PBMC samples (untreated versus SkinD
versus TumorD) a differential gene expression and surface protein abundance
analysis was performed on the integrated samples. To avoid any bias due to sample

composition differences across the compared groups, the DE analysis was
performed by major cell types as follows: Per cell type subset, expression levels were
compared using Seurat FindMarkers with a significance level of FDR < 0.0001 and |
logFC| > 3 for GEX data and FDR < 0.0001 and |logFC| > 0.5 for SPEX. Specifically
for SPEX data, the differential expression analysis is performed on un-thresholded
counts, as existing tools are not built to be aware of thresholding; the final results
are visualized however throughout the manuscript on the thresholded counts
(Supplementary Data 1) to reduce the noise and highlight expression differences
(Supplementary Fig. 1c and d), see also Grob et al.35.

GEX and SPEX codetection analysis: To compare the detection of GEX and
SPEX counts, the average of the fraction of cells was calculated when (i) positive for
both RNA and associated surface protein, (ii) negative for both RNA and surface
protein, (iii) positive for RNA but negative for surface protein, and (iv) negative for
RNA but positive for surface protein. A cell was identified as “positive” for a RNA
if the UMI count was greater than zero. A cell was identified as “positive” for a
surface protein if the UMI count was greater than the predefined threshold (see
Supplementary Data 1). The comparison was performed across six liquid biopsy
samples (three healthy and three immunotherapy-treated PBMCs) and across all
solid biopsy samples (five healthy skin samples, three primary melanomas and
three metastatic melanomas from the lymph node). For the three categories (“RNA
only”, “protein only” and “RNA and protein”), feature counts were converted into
percentages. Features belonged predominantly to one category, if >50% of cells
were assigned to one category. In case the threshold was not reached for a single
category, the feature was labeled as “other” (Supplementary Data 1).

RNA-protein correlation analysis: We calculated RNA-protein correlation
coefficients on aggregated sample and cell levels: Aggregated sample level: In brief,
counts were aggregated by samples and a matrix of counts for all RNAs and
proteins (antibody-derived oligos) was created for each sample. RNAs or proteins
without counts were excluded from the analysis. Next, RNA-protein pairs were
filtered, keeping only the relevant ones as shown in the RNA-protein match lookup
table (Supplementary Data 2). The Pearson correlation was computed on the
matrices, obtaining both the correlation coefficient and the significance level for
every possible pairing. Cell level: the expression of RNA and protein abundance was
extracted from each cell, the Pearson correlation was computed using each cell as a
separate observation and followed by multiple testing correction using the
Bonferroni method on the p-values.

The results were visualized in the form of barplots for all detected RNA-protein
pairs of the sorted correlation coefficients, with color coding for the p-values: gray-
to-blue gradient representing p-values below threshold; blue-to-red gradient
representing p-values above thresholds; the red dotted lines show the threshold
(p < 0.05) for both the positive and anti-correlated pairs. Pairs were positively
correlated if the expression of both RNA and protein in the available observations
showed a tendency to change in the same direction, i.e. a higher observed
expression of one feature in the pair corresponded to a higher observed expression
of the other feature. Anti-correlation was assigned to RNA-protein pairs if the
change in expression of one feature was opposite to the changes observed in the
other feature, i.e., a higher observed expression in either the RNA or the protein
corresponding to a lower observed expression of the other feature.

Single-cell spatial image analysis: Spatial expression analysis using Giotto
(version 2.0.0.957) was performed as follows. Cell segmentation data output from
inForm image processing was imported via the createGiottoObject function. The
giotto object was further filtered using filterGiottowith the following argument
thresholds:expression_threshold = 1, feat_det_in_min_cells = 3,
min_det_feats_per_cell = 1. Normalization was applied using normalizeGiotto
with the default scale factor of 6000, log_norm = FALSE, library_size_norm =
FALSE, scale_feats = FALSE, and scale_cells = TRUE. Dimensionality reduction
was performed with runPCA then runUMAP. Clustering was performed with
doLeidenCluster with a resolution of 0.2 and 100 iterations. Clusters with similar
expression patterns were merged and a final number of 5 clusters was chosen.
Clusters were named CD56+/MLANA+, CD68, CD8, MLANA, and Unknown
based on the average expression of the markers. Cell identities were mapped back
to the original image using ggplot2.

Statistics and reproducibility. In the following, we provide a summary of the
statistical analysis performed throughout this manuscript. Further details are
available as part of the methods.

GEX analysis included counts normalization, library size, and cell-cycle effect
correction using sctransform90. Cell type assignment was based on the p-values
returned by the Mann–Whitney U-Test performed by the scROSHI cell typing
method92. Combined GEX and SPEX counts clustering was performed using
BREM-SC98. Cohort integration included additional batch correction using the
Seurat CCA method99 and multimodal integration using the Seurat WNN
method88. Differential expression analysis was performed using Seurat
FindMarkers with a significance level of FDR < 0.0001 and |logFC| > 3 for GEX
data and FDR < 0.0001 and |logFC| > 0.5 for SPEX. Specifically for SPEX data, the
differential expression analysis is performed on un-thresholded counts, as existing
tools are not built to be aware of thresholding. RNA-protein correlation was
performed by calculating the Pearson correlation on the count matrices, obtaining
both the correlation coefficient and the significance level for every possible pairing.
The significance threshold was set to p < 0.05.

Table 1 Antibodies and Opal reagents for mIHC.

Primary Opal

MelanA (NBP1-30151, NovusBio) Opal 780 (NEL871001KT)
CD68 (ab213363, Abcam) Opal 690 (NEL871001KT)
CD56 (ab220360, Abcam) Opal 520 (NEL871001KT)
CD8 (ab4055, Abcam) Opal 620 (NEL871001KT)
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Patients’ samples were used for healthy skin, primary melanoma, metastatic
melanoma, healthy and immunotherapy-treated PBMCs to reach statistical power
in our investigations. The explorative nature of the study did not permit estimating
effect sizes prior to the analysis. Healthy skin samples were pre-processed, divided
into equal parts, and randomly assigned to one of the digestion protocols. All the
CITE-seq samples passed the QC of the 10x Cell Ranger data analysis pipeline. In
flow cytometry experiment, n= 3 represents biologically independent PBMCs
samples.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study has been deposited to the European
Genome-phenome Archive (EGA) database under accession code EGAS00001005849.
Source data is available from Supplementary Data 1.

Code availability
The scAmpi workflow89 for GEX analysis is available on github: https://github.com/
ETH-NEXUS/scAmpi_single_cell_RNA, as well as the gExcite workflow35 for GEX,
SPEX, and hashing analysis: https://github.com/ETH-NEXUS/gExcite_pipeline. The code
used for the downstream analysis is available on GitLab: https://gitlab.ethz.ch/nexuscbu/
cite-seq_method_paper. The custom scripts used for the paper are on Zenodo100.
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