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RNAseq data can be used to infer genetic variants, yet its use for estimating genetic popu-

lation structure remains underexplored. Here, we construct a freely available computational

tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and

assess whether RG-PCs can be used to control for population structure in gene expression

analyses. Using whole blood samples from understudied Nepalese populations and the

Geuvadis study, we show that RG-PCs had comparable results to paired array-based geno-

types, with high genotype concordance and high correlations of genetic principal compo-

nents, capturing subpopulations within the dataset. In differential gene expression analysis,

we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper

demonstrates that genetic population structure can be directly inferred and controlled for

using RNAseq data, thus facilitating improved retrospective and future analyses of tran-

scriptomic data.
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RNA sequencing (RNAseq) has revolutionized our under-
standing of the transcriptome, offering both accurate
quantification method for gene expression as well as

identification of specific alternative splicing sites and cell-type-
specific transcripts1,2. Its application extends to the clinical set-
ting, allowing us to further elucidate complex diseases and
identify prospective biomarkers in both communicable and non-
communicable diseases3.

Yet, studies using RNAseq rarely consider the germline genetic
variation also contained within RNAseq read sets. Studies which
do not leverage this information may be vulnerable to bias and
confounding, such as population stratification, which may affect
transcription between groups4–7. To overcome this issue,
researchers have typically relied on genome-wide array or whole
genome sequence (WGS) data matched for the same individuals
with RNAseq. This allows researchers to deploy approaches to
control for population stratification, such as the calculation of
genetic principal components (PCs) and their use as covariates in
subsequent statistical association models8–10. The genetic PCs are
taken to represent the latent genetic structure within and between
populations, which introduce confounding due to differences in
social environment11 or (in the case of differential gene expres-
sion) due to heterogeneity of quantitative trait loci between
groups. However, the need for genome-wide array or WGS to
match with RNAseq data is potentially unnecessary and indeed
may not be possible in settings where resources are limited, such
as Low and Low Middle Income Countries (LMICs) with highly
diverse and understudied populations.

It has been demonstrated that genotype calls can be made from
RNAseq data using tools such as GATK12–14. The approach of
utilizing RNAseq data to capture genetic structure has been
applied for livestock and agricultural purposes15–18, for example
to investigate the population structure, history and adaptation of
domesticated barley (Hordeum vulgare)17. While proof-of-
concept and subsequent utility of RNAseq-based genotypes
have been demonstrated such as for tissue-specific variants19, its
application to infer human population structure shows promise
yet remains relatively underexplored20.

The aims of this study are to (i) demonstrate that RNAseq-
based genotypes can capture the genetic population structure of a
diverse yet understudied human population, and (ii) show that
use of RNAseq-based genetic principal components (RG-PCs)
can effectively control for population structure in association
analysis. Here, we recruited and generated whole blood RNAseq
data of 376 individuals from Nepal, a landlocked country situated
in the Himalayas with over 125 ethnic groups21,22. We developed
an RNAseq analysis pipeline (RGStraP) to calculate genetic
principal components directly from RNAseq data, then validated
RGStraP’s performance with genome-wide array genotype data
from the same Nepalese individuals. We also tested the pipeline
on samples from the Geuvadis consortium, which contains
465 samples with paired genotype-RNAseq data from five of the
1000 Genomes populations23. Finally, we show the validity of
adjusting for RG-PCs in an association analysis to identify sex-
specific gene expression. Overall, our study establishes that
human population structure, particularly from an understudied
but diverse population, can be effectively captured and controlled
directly using RNAseq data.

Results
In this study, we constructed the RGStraP pipeline to calculate
RG-PCs from genetic variants called from RNAseq data. RGStraP
relies on GATK for its variant calling suite, as well as PLINK and
flashPCA to filter the SNPs and calculate genetic principal
components from them, respectively (Methods). We make

RGStraP available to the community via github (https://github.
com/fachrulm/RGStraP)24.

RNAseq-based variant calling captures comparable population
structure to paired array genotypes. We collected whole blood
samples from 376 individuals recruited in Latlipur, Nepal as part
of the STRATAA study, then performed whole blood RNAseq
using Illumina Novaseq (Methods). The cohort included indivi-
duals with and without confirmed S. Typhi infection; for the
purpose of this study, the disease groups were used as a regression
covariate to adjust for gene expression during downstream ana-
lyses. Self-reported ethnicity showed individuals belonging to 6
broad ethnic / caste groups.

We ran the RGStraP pipeline (Fig. 1) on 376 whole blood
RNAseq samples, of which 362 passed QC after genetic variant
calling. A total of 4,921,472 genetic variants were called across all
samples (Methods). With a median of 92,782,803 reads per
sample (range 21,545,569 to 182,140,303), sequencing depths
were moderately correlated (ρ= 0.487) with the total genetic
variants called per sample (Supplementary Fig. 1a).

To determine the efficiency of estimating genetic PCs from
RNAseq data, we investigated the effects of minor allele frequency
(MAF), linkage disequilibrium (LD) and the use of a pre-specified
set of genetic variants. We found that the selection of a MAF
threshold of >0.05 and a pairwise LD threshold of r2 < 0.05 struck
the optimal balance of offering the most variants for analysis and
the highest correlation between RNAseq- and array-based genetic
PCs (Supplementary Fig. 2). From the total of 4,921,472 genetic
variants, 152,072 SNPs passed the MAF filter (MAF > 0.05), and
36,440 SNPs further passed the LD filter (LD < 0.05). Genetic
variants from paired genomic data are available for 299 out of the
initial 376 individuals; a total of 552,758 SNPs were identified and
passed initial quality control filters (Methods), of which 315,615
SNPs and 29,943 SNPs then passed MAF > 0.05 and further
LD < 0.05 filters, respectively. Out of the 299 samples with both
RNAseq and paired array genotypes, 280 of them passed quality
control and were used for further downstream analyses.

Among the 280 samples with matched array and RNAseq-
based genotypes, we found 7343 overlapping SNPs between the
MAF-filtered RNAseq and array SNP sets based on their exact
chromosome positions. Genetic concordance was then calculated
from the common SNPs based on matching allele genotypes for
each position, taking into consideration strand flipping. Most
RNAseq samples were found concordant with their respective
paired array genotypes, with mean concordance of 0.925 for all
samples and 232 sample-pairs (82.8%) having concordance
higher than 0.90 (Fig. 2a). We found that high RNAseq depth
was positively correlated with high genetic concordance with
paired array genotypes; however, outliers of low genetic
concordance were also present at high depths (ρ= 0.1926;
Supplementary Fig. 1b).

When looking at the correlations between array-based genetic
PCs and RG-PCs, we found that merely filtering based on MAF
and LD was not adequate, as the main RG-PCs (specifically PCs 1
and 2) did not represent the genetic structure found in the array-
based PCs, and meaningful correlation was only found from RG-
PC3 and on (Supplementary Fig. 3). We found that the common
approach of subsetting the genotype calls to the variants in
HapMap325 offered higher quality genotype calls and improved
correlation between RNAseq and array-based genetic PCs
(Supplementary Fig. 4). An overlap of 23,227 well-defined SNPs
was found between HapMap3 and the MAF-filtered (MAF > 0.05)
variants, of which 4887 passed the LD filter (LD < 0.05) and were
used to calculate RG-PCs. We also calculated genetic PCs from
the 29,943 paired genotype array SNPs as a measure of true
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genetic structure to be compared against RG-PCs. To assess the
consistency of inferred population structure between the two
approaches, we calculated Spearman correlation between genetic
PCs from paired genotype array SNPs and the RG-PCs. PC1 of
both RNAseq and array sets correlated strongly with each other
(|ρ|= 0.93), followed by RG-PC3 and PC2 from array data
(|ρ|= 0.61) and RG-PC2 and PC3 from array data (|ρ|= 0.6)
(Supplementary Fig. 4). As expected, the genetic PCs of one
approach do not exclusively correspond to only one PC of the
other approach, as can be seen with significant correlations of a
single array PC with several RG-PCs. To investigate this further,
we performed canonical correlation analysis between the top 10
array PCs and the RG-PCs and found that the RG-PCs fully
explained the variance of the top 10 array PCs (Fig. 2b).

PCA of both array and RG-PCs showed visible clustering by
self-reported patient ethnicity. Array PC1 vs PC2 captured the
clustering of Janajati-Hill, Newar, and Madhesi groups, with array
PC3 showing a clear distinction between the Newar samples and
other samples (Fig. 3). Consistent with their Spearman correla-
tions, RG-PC1, RG-PC2, and RG-PC3 also captured the
clustering of the groups shown by the array data yet lacked
some distance between the groups primarily due to array PC2.

RNAseq-based variant calling can differentiate the genetic
structure of distinct groups between and within populations
akin to paired array genotypes. We also tested RGStraP’s

performance on a dataset of 465 samples from the Geuvadis
consortium, spread across 5 different populations: British in
England and Scotland (GBR), Utah residents with Northern and
Western European ancestry (CEU), Finnish in Finland (FIN),
Toscani in Italy (TSI), and Yoruba in Ibadan, Nigeria (YRI)23. A
total of 463 samples passed the downstream filtering as part of the
variant calling process (Methods). Clustering by each population
can be seen in the main PCs from both paired array and RNAseq
data: PC1 separates the European (EUR) and African (AFR)
samples, while PC2 separates the EUR samples, with more dis-
tinct clusters seen for FIN and TSI samples (Supplementary
Fig. 5A). Canonical correlation analysis between the top 10 array
PCs and RG-PCs showed that RG-PCs fully explained the var-
iance of the array PCs, with CV1 from RG-PCs representing
0.903 proportion of variance shared and the first 3 CVs (Rc1=
0.994, Rc2= 0.942, Rc3= 0.752) reaching a cumulative propor-
tion of shared variance of 0.998 (Fig. 4a).

To project the Nepalese samples into PC space with other
populations, we performed PCA of the Nepalese and Geuvadis
samples together. Akin to the array PCs, results from RGStraP
were able to distinguish the broad ancestry groups; RG-PC1 was
able to separate between AFR and other samples, whereas RG-
PC2 distinguished the EUR and Nepal (in this case, representing
South Asian) samples (Fig. 4b). Separation within the EUR
samples was also visible in RG-PC4, showing distinct clusters of
FIN and TSI samples (Fig. 4b). When projected with the
Geuvadis samples, clusters of the Nepalese self-reported ethnicity

Fig. 1 The analysis pipeline used in this study, mainly following GATK’s recommended variant discovery pipeline to call genetic variants from RNAseq
samples. Further filtering based on missingness, MAF, and LD was then done before generating principal components (PCs) representing the population
structure.
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groups were also still visible (Supplementary Fig. 5b). This
analysis further validates the performance of RGStraP in
capturing genetic structure comparable to array genotypes across
diverse populations, which is also supported by the canonical
correlation analysis results (Supplementary Fig. 5c).

RNAseq-based genetic PCs in differential gene expression
analysis. To assess the extent to which genetic PCs control
population stratification in differential gene expression analysis
(DGE) of these individuals, we performed DGE on the 280 Nepal
samples to identify sex-specific gene expression, with and without
adjustment for genetic PCs using either array PCs or RG-PCs
(Methods). Prior to using edgeR for DGE analysis, we filtered out
lowly expressed genes based on counts per million (CPM > 0.05)
to account for differences in sequencing depths. Only autosomal
genes were included in the analyses.

A systematic reduction was evident when adjusting for
population structure in DGE analysis. A total of 3038 (p-
value < 0.05) and 325 (FDR < 0.05) genes were differentially
expressed when adjusting only for age and disease groups,
whereas the number declined after adjusting with genetic PCs;
inclusion of array PCs reduced the numbers of differentially
expressed genes to 2585 (p-value < 0.05) and 144 (FDR < 0.05),
while the number declined to 2778 (p-value < 0.05) and 272
(FDR < 0.05) when including RG-PCs. The majority of the
differentially expressed genes identified without considering
genetic PCs were still found after including either array PCs or
RG-PCs (2478 and 2381 at p-value < 0.05, respectively; 138 and
213 at FDR < 0.05, respectively). The majority of DE genes were
shared between the results using array PCs and RG-PCs (2175 at
p-value < 0.05 and 130 at FDR < 0.05). When taking into
consideration log-fold change, 4 genes passed the filter (FDR <
0.05, |logFC| > 1) in the set without considering genetic PCs, and
the number decreased to 3 when including either array or RG-
PCs. This demonstrates how RG-PCs control for population
stratification in downstream RNAseq analysis similar to the

genetic PCs calculated from paired array genotypes, reducing
significant associations that reflected variations in population
structure instead of the biology of interest.

Effects of population structure were visible in quantile-quantile
(QQ) plots, with attenuated test statistics across the transcriptome
in the analysis with RG-PCs (Fig. 5a). This is quantitatively
supported by lower systematic inflation (m); comparing the ratio
of medians of the chi-square statistics between DGE results
without genetic PCs and with RG-PCs as covariates, we found a
slight systematic reduction of test statistics after including RG-
PCs (m= 0.935). A similar reduction is also found when using
array PCs as covariates (m= 0.92; Supplementary Fig. 6). Finally,
we assessed a mixed linear model (MLM) with a genomic
relationship matrix (GRM) constructed from the RNAseq-based
SNPs (Methods). Similarly, we found that RG-PCs were able to
control for population structure in the RNAseq-based GRM
(m= 0.985) (Fig. 5b).

Discussion
Population structure is typically captured via genotype arrays,
which are not always done for projects focused on gene expres-
sion analyses. Genotyping may not be practical when resources
are limited, or when analyzing existing and/or publicly available
RNAseq datasets which nearly always do not offer access to
original samples. In this study, we demonstrated how SNPs
acquired solely from RNAseq variant calling were able to capture
population structure comparable to the results from array data.
We further showed that RNAseq-based genetic principal com-
ponents (RG-PCs) were able to control for population structure
in differential gene expression analysis, and that mixed linear
model analysis using a genetic relatedness matrix based on
RNAseq genotype calls was able to achieve similar. To facilitate
the use of RG-PCs, we also construct and make freely available
the tool RGStraP (https://github.com/fachrulm/RGStraP) for the
wider research community.

Fig. 2 RGStraP was able to capture population structure in the Nepal cohort comparable to paired array genotype. a Genotype concordance of common
SNPs between array and RNAseq samples was found to be high, with most samples (232 out of 280) reaching >0.90 concordances. b Canonical
correlation analysis between ten RG-PCs and ten array PCs showed significant (Wilks’ Lambda, p-value < 0.05) correlations for the first 7 canonical
variates (CVs) between the two sets. The first 3 CVs from 10 RG-PCs strongly captured the genetic information from array PCs (Rc1= 0.946, Rc2= 0.864,
Rc3= 0.853), in which the cumulative proportion of shared variance between the two sets reached up to 0.956 from just the 3 CVs.
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Our study enables the control of genetic population structure
in analyses of current and historic transcriptomic datasets, which
frequently do not come with matched genotypes. This is parti-
cularly important in low resource settings, in particular LMICs
(e.g. Nepal) with highly diverse and structured populations or for
traits where fine-scale genetic population structure may be
confounding.

Our study has several limitations. The main challenge of
constructing genetic PCs from RNAseq variant calling results is
how to properly curate the SNPs to include, as MAF and LD
filtering are not enough to remove uninformative SNPs, resulting
in the main PCs not corresponding to self-reported ethnicity.
This was addressed by using the overlapping SNPs between the
RNAseq variant calling results and HapMap3 variants, allowing
us to acquire a set of well-established SNPs; however, this SNP set
may still miss important genetic structure, e.g. low-frequency and
rare variants. Due to the nature of RNAseq platforms only cap-
turing variants in transcribed regions, rarer variants that fall in
crucial functional regions such as promoter and enhancer regions
go unaccounted for25. These rare, non-transcribed variants are
mostly linked to increased risk of various diseases and are enri-
ched within expressed quantitative trait loci (eQTLs)26–28.

Variants called from RNAseq data using a comparable GATK
method have been reported to be reliable for tissue-specific eQTL
mapping and allele-specific expression (ASE) analyses19. How-
ever, the approach heavily relied on genotype imputation using a

reference panel that remains predominantly European, rendering
the approach still suboptimal for eQTL analysis in other popu-
lations, especially those that are understudied. Thus, the method
described in our study should not be utilized as a one-to-one
replacement for conventional genotyping array or whole genome
sequencing.

In summary, we have developed an approach and tool for
inferring genetic population structure directly from RNAseq data
across diverse populations, then demonstrated its use in differ-
ential gene expression analysis to control for genetic structure
where genotyping data are unavailable. We hope that our results
enable better control for confounding in RNAseq analyses and
facilitate more rigorous retrospective and meta-analyses of
RNAseq data.

Methods
Human ethics. The STRATAA study was approved by the Nepal Health Research
Council (NHRC, ref 306/2015) and OxTREC (Oxford Tropical Research Ethics
Committee, ref 39-15). All participants provided informed consent for human
genetic tests. Blood and nucleic acid samples, and associated data, were de-
identified by the STRATAA team in Nepal prior to being sent to overseas for
analysis.

Sample processing, library preparation, and sequencing conditions. This study
utilized blood samples collected in Lalitpur, Nepal as part of the Strategic Typhoid
Alliance across Africa and Asia (STRATAA) study, which included passive sur-
veillance for enteric fever and a population-based serosurvey29,30. Blood was

Fig. 3 Population structure from both RGStrap and paired array genotype were consistent with self-reported ethnicities. SNPs from the overlap of
RNAseq variant calling results and HapMap3 were able to capture genetic structure separating self-reported ethnicities in Nepal when compared to the
paired array genotypes, shown by the groupings in the PCA plots.
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collected from febrile participants recruited into the passive surveillance study,
specifically those presenting >38.5 °C temperature or history of fever for >72 h.
From the total blood sample volumes (≤16 mL for patients >16 years of age, ≤7 mL
for ≤16 years), aliquots were subjected to (i) bacteriological culture to identify
presence of Salmonella enterica serovars Typhi (S. Typhi); (ii) storage in PAXgene

tubes for later RNA extraction; and (iii) DNA extraction and subsequent human
genotyping. Blood was also collected from healthy participants in the serosurvey
(≤8 mL for patients >16 years of age, ≤7 mL for ≤16 years), from which aliquots
were also subjected to (i) serological analysis; (ii) PAXgene storage for RNA
analysis; and (iii) DNA extraction.

Fig. 4 RGStraP was also tested on samples from the Geuvadis cohort, which includes 5 populations of European and African ancestries. a Canonical
correlation analysis between ten RG-PCs and ten array PCs of the Geuvadis samples showed significant (Wilks’ Lambda, p-value < 0.05) correlations for
the first 4 canonical variates (CVs) between the two sets. The first 3 CVs from 10 RG-PCs strongly captured the genetic information from array PCs
(Rc1= 0.994, Rc2= 0.942, Rc3= 0.752). The cumulative proportion of shared variance between the three sets reached 0.998 from just the 3 CVs, 0.903 of
them represented by CV1. b PCA plots of the Nepal and Geuvadis samples showing comparable population structure between the array-based PCs and RG-
PCs, separating the ancestry groups (European, African, and South Asian) in the main PCs.

Fig. 5 Quantile-quantile (Q-Q) plots showing the distribution of the probabilities between analyses with and without including genetic PCs. Differential
gene expression analysis results between samples of different sex show (a) systematic reduction in test statistics when including RNAseq-based genetic
PCs as covariates compared to without, demonstrated by the low systematic inflation metric (m); b Distribution of probabilities after mixed linear model
(MLM) on a genetic relationship matrix (GRM) was also found to be slightly deflated in the analysis with genetic PCs compared to the one without, though
not to the extent of the DGE analysis.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05171-9

6 COMMUNICATIONS BIOLOGY |           (2023) 6:804 | https://doi.org/10.1038/s42003-023-05171-9 | www.nature.com/commsbio

www.nature.com/commsbio


We analysed RNA from 49 S. Typhi culture-positive participants and 275 S.
Typhi culture-negative participants from passive surveillance, and 52 healthy
controls from the serosurvey. PAXgene tubes were sent to Monash University in
Melbourne, Australia, where RNA was extracted using PAXgene Blood RNA Kit.
An aliquot of RNA (60 μl, 10–20 ng/ul) for each sample was sent to the Wellcome
Sanger Institute in Hinxton, England for sequencing. Library preparation was done
using NEBNext Ultra II RNA custom kit performed on an Agilent Bravo WS
automation platform, pulling down poly(A) tails. After polymerase chain reaction
(PCR) cycles (14 standard cycles), plates were purified using Agencourt AMPure
XP SPRI beads and libraries were then quantified using Biotium Accuclear Ultra
high sensitivity dsDNA Quantitative kit. Pooled libraries were quantified using
Agilent bioanalyser and normalised to 2.8 nM. Samples were then subjected to
globin depletion using the KAPA RNA HyperPrep with RiboErase (HMR) Globin
kit. Libraries were subjected to 2 × 100 bp paired-end sequencing using the
Illumina Novaseq platform. Depending on the level of multiplexing, each library
was sequenced up to three times to generate an average of up to 80 million reads
per sample.

For 299 of the Nepalese participants with RNAseq data, human DNA was
successfully extracted (at Patan Hospital in Nepal) using the QIAamp DNA blood
midi kit (QIAGEN) and DNA aliquot was shipped to the Genome Institute of
Singapore for SNP genotyping. Genotyping was performed using the Illumina
Infinium Global Screening Array-24 Kit (GSAMD-24v2_A1 chip). Stringent
quality control filters were used to remove poorly performing SNP markers. SNPs
were removed based on the following parameters; SNPs with a call rate of <95%;
SNPs with differential call-rate between cases vs control P value < 0.001; SNPs with
a Hardy-Weinberg equilibrium P value < 1e−07 in controls; SNPs with a Hardy-
Weinberg equilibrium P value < 1e−11 in cases. Samples with a call rate of <95%,
those with a lower call rate sample from each sample pair having first- or second-
degree relationship from identity by descent (IBD), and those that were PCA
outlier samples were removed.

We also used a validation dataset from the Geuvadis consortium, which
contains 465 lymphoblastoid cell line (LCL) samples from five of the 1000
Genomes populations: British in England and Scotland (GBR), Utah residents with
Northern and Western European ancestry (CEU), Finnish in Finland (FIN),
Toscani in Italy (TSI), and Yoruba in Ibadan, Nigeria (YRI)23,31. After extraction of
total RNA with TRIzol Reagent (Ambion) and assessment of RNA quality with
Agilent Bioanalyzer RNA 6000 Nano Kit, library preparation was done using
TruSeq RNA Sample Prep Kit v2 for 2 × 75 bp paired-end mRNA sequencing on
the Illumina HiSeq2000 platform23. The available paired genotype data was
obtained from the 1000 Genomes Project Phase 3 dataset31.

Quality control and sequencing data processing. Computational analyses were
performed on an HPC cluster with 6 nodes, each equipped with 2 × 16 cores (32
threads) CPUs and 512GB memory. It is advised to run RGStraP on a high-
performance computing (HC) cluster as the alignment step alone requires a
minimum RAM of 32GB. We recommend at least 100GB of memory, a multi-core
processor with at least 8 cores, and ample storage depending on the number of
samples processed. A workload management system such as SLURM is also
recommended for better resource management.

Quality control (QC) was done to the sequencing data according to the FastQC
(bioinformatics.babraham.ac.uk/projects/fastqc) readouts. Illumina adapters were
then trimmed using Trim Galore! (bioinformatics.babraham.ac.uk/projects/
trim_galore), and optical duplicates were removed using bbmap’s Clumpify. We
then followed GATK’s best practices pipeline for RNAseq short variant discovery,
which commenced with a 2-pass mapping process to human genome GRCh38
using STAR32, from which the resulting sequencing alignment map (BAM) files
from the different runs of each sample were merged using Picard33. Low quality
reads (MAPQ < 20) were filtered out from the merged files using SAMtools34,
followed by further QC, variant calling and filtering steps with GATK412. The
analysis-ready variants were then filtered using PLINK35,36, removing duplicated
and palindromic variants and only keeping autosomal single nucleotide
polymorphisms (SNPs). We excluded individuals with more than 20% missing
genotypes and further filtered RNAseq-based SNPs, after removing variants in the
HLA region, based on minor allele frequency (MAF; maf= 0.01, hwe= 0,
geno= 0.1, mind= 0.2) as well as linkage disequilibrium (LD; win= 1000,
step= 50, r2= 0.05). RG-PCs were successfully captured for 351 and 463
individuals in the Nepal and Geuvadis cohorts, respectively. The same SNP filters
were also applied to the array-based SNPs, and for the SNP-level correlation
analyses we converted genome annotations of the array SNPs from GRCh37 to
GRCh38 (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Merging of the SNP sets
from the Nepal and Geuvadis samples was done using PLINK35,36.

Calculating concordance and visualizing stratification. To calculate SNP-level
concordance, we took overlapping SNPs between MAF-filtered array and RNAseq
results based on chromosome position and calculated paired sample concordance
based on matching genotype (considering heterozygosity and possible strand
flipping) for each SNP in both results. A total of 280 Nepalese samples with RG-
PCs and matching array genotype was used for this analysis.

To keep only meaningful SNPs from the RNAseq variant calling results for
generating genetic principal components (PCs), we took overlapping SNPs

(identical chromosome positions and matching genotypes taking into
consideration possible strand flipping) between MAF-filtered RNAseq SNPs and
HapMap3 variants to get a set of well-defined SNPs, after which LD filtering was
performed on the set. We then generated genetic PCs for the LD-filtered RNAseq
and array SNP sets separately using flashPCA37, from which PCA plots were
created with ggplot238 and Spearman correlations between the two sets of PCs were
calculated using the function from the stats package of R39. We also calculated
canonical correlation coefficients40–42 between the array PCs and RG-PCs to assess
how well the latter captured genetic structure information presented by the former,
as a single array PC may be represented by multiple RG-PCs.

Differential gene expression analysis between phenotypes. Sequencing count
data of the Nepalese samples were extracted from the aligned sequence files using
featureCounts (http://bioinf.wehi.edu.au/featureCounts/), from which we kept only
autosomal genes and genes with CPM > 0.05 in at least 20% of the samples from
the analyses. Differential gene expression (DGE) analyses was done contrasting
males and females using edgeR43,44, taking into account age, disease group, and
sequencing batches; we ran the analyses with and without populations structure
PCs as an additional covariate to then compare how genetic structure may stratify
gene expression. From both results, we also plotted the Q-Q plot and calculated the
systematic inflation (m), which is the ratio of the median of the empirically
observed chi-squared test statistics (in our case, results of DGE analysis with RG-
PCs) to the expected median chi-squared test statistics (results of DGE analysis
without RG-PCs), to quantify the stratification due to population structure in gene
expression data.

We also created a genetic relationship matrix (GRM) and ran a mixed linear
model (MLM) on the RNAseq SNPs with and without population structure PCs as
random effects with fastGWA45. From the two results, a quantile-quantile (Q-Q)
plot was created and systematic inflation (m) was then calculated to quantify the
effect of populations structure PCs on the genomic data46.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data associated with this study were deposited to the European Genome-
phenome Archive (EGA) under accession number EGAD00001011131. All other data
supporting the findings are either presented as Supplementary Data 1 or may be obtained
from the STRATAA study group (contact Dr Mila Shakya at milashakya@oucru.org).

Code availability
The RGStraP pipeline is available at https://github.com/fachrulm/RGStraP and Zenodo
at https://doi.org/10.5281/zenodo.808023024.
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