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Automated phenotyping of postoperative delirium-
like behaviour in mice reveals the therapeutic
efficacy of dexmedetomidine
Silu Cao1,2,3,4,8, Yiling Wu5,8, Zilong Gao6,7,8, Jinxuan Tang1,2,3,4, Lize Xiong 1,2,3,4, Ji Hu 5✉ &

Cheng Li 1,2,3,4✉

Postoperative delirium (POD) is a complicated and harmful clinical syndrome. Traditional

behaviour analysis mostly focuses on static parameters. However, animal behaviour is a

bottom-up and hierarchical organizational structure composed of time-varying posture

dynamics. Spontaneous and task-driven behaviours are used to conduct comprehensive

profiling of behavioural data of various aspects of model animals. A machine-learning based

method is used to assess the effect of dexmedetomidine. Fourteen statistically different

spontaneous behaviours are used to distinguish the non-POD group from the POD group. In

the task-driven behaviour, the non-POD group has greater deep versus shallow investigation

preference, with no significant preference in the POD group. Hyperactive and hypoactive

subtypes can be distinguished through pose evaluation. Dexmedetomidine at a dose of

25 μg kg−1 reduces the severity and incidence of POD. Here we propose a multi-scaled

clustering analysis framework that includes pose, behaviour and action sequence evaluation.

This may represent the hierarchical dynamics of delirium-like behaviours.
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Postoperative delirium (POD) is the most common central
nervous system complication after surgery in the elderly,
with an incidence of 15–25%1. Key diagnostic features

include an acute onset and fluctuating course of symptoms,
inattention, impaired consciousness, and disturbance of
cognition2–5. Patients with POD demonstrate certain character-
istics including restlessness, wandering, fear, increased speech,
alertness, apathy, withdrawal6, neurocognitive disorders7, and
attention deficits8. POD is divided into two clinical subtypes
based on the appearance of two clinical psychomotor states:
hyperactive and hypoactive. POD mainly affects elderly people by
increasing the economic burden, cognitive impairment, worsen-
ing many medical illnesses, and increasing the risk of death9,10.

However, it is difficult to conduct in-depth research to solve
this challenging clinical condition. Some of the obstacles to
researching the basic mechanism of POD include the lack of
accurate behavioural detection of delirium in animal models, the
inability to sensitively detect animals with POD, and the inability
to accurately determine its subtypes. Previous studies have
examined delirium-like behaviours related to the natural and
learned behaviours of rodents11,12. The elevated plus maze (EPM)
and open field test (OFT) are mainly used for anxiety
assessment13,14. The classical anxiety parameter is the time spent
in a given area of the behavioural device in a fixed period. Maze
experiments and novel object recognition (NOR) are accepted
cognition-measuring paradigms for delirium in mice14–17. The
primary measure of assessment was the ability of the mice to
recognize the ‘novel’ and the ‘familiar’ after anaesthesia and
surgery. In summary, previous methods mainly evaluate animal
behaviours by constraining the animal to certain parameters and
evaluating animal performance.

Animal behaviour is driven by neural activity. The hierarchical,
multiscale neural activity also corresponds to hierarchical, mul-
tiscale behaviour. Behavioural changes caused by neural circuit
abnormalities can be reflected in all levels of behaviours, such as
short-scale kinematic abnormalities related to posture and long-
scale behaviour dynamic abnormalities related to action sequence
(AcSeq). Notably, animal behaviour is a bottom-up and hier-
archical organizational structure composed of time-varying pos-
ture dynamics18–20. Previous theories21 and recent data analysis20

have shown that animal behaviour is like the "letter-word-sen-
tence" of human language. Spontaneous behaviour has tradi-
tionally been perceived as being intrinsically stable22; and in past
reports, it has been used to distinguish transgenic animals23,24

and describe disease states25–27. Furthermore, task-related beha-
viours also change when it comes to cognitive processing. Task-
driven behaviour can be understood as animal behaviour is
influenced by different forms of behavioural contexts, such as
spatial attention, object-based attention, and feature-based
attention, as well as task-dependent and anticipative
effects28–31. These interactions are context-modulated by the
animal’s state of sustained attention28. Variability in internal
brain states related to cognitive variables (e.g., attention, alertness,
task engagement, and arousal) affect visual encoding and
perception32. Therefore, in addition to assessing the behaviour in
the constrained paradigm, it is more important to comprehen-
sively evaluate spontaneous and task-driven behaviour.

The latest advances in deep learning have allowed for accurate,
fast, and robust measurements of animal behaviour. Moreover, in
the past few years, many powerful tools have been specifically
designed to help measure pose and estimate behaviour24,33–35.
Recently, these tools have been used to evaluate diseases such as
anxiety and defensive behaviour36,37. However, behavioural
analysis strategies for complex syndromes, such as POD which is
characterized by different subtypes with very different manifes-
tations, are still lacking. Additionally, there have been a few

reports of dexmedetomidine (Dex) acting on POD38–41. More-
over, the mechanism of the neuroprotective effect of Dex has
been given more attention42. However, the efficacy of Dex has not
been verified in detail or in animal models.

To address these obstacles, in this study we proposed a multi-
scaled clustering analysis framework that includes pose, beha-
viour and AcSeq with spontaneous behaviour and task-driven
behaviour to estimate POD and its subtypes. First, we used
anaesthesia and surgery to establish the mouse model. We
established that the POD group that underwent anaesthesia and
surgery had abnormal behavioural patterns. Therefore, we dif-
ferentiated the POD and non-POD groups in the model by
unsupervised clustering of spontaneous behaviours. Second, for
the task-driven behaviour, we used AcSeq to assess the cognitive
level of the POD mice to reveal their exploratory behavioural
preferences. Third, we introduced an assessment of pose para-
meters that accurately captured the highly significant symptoms
of the two subtypes with opposite kinematics in the animal
models. Finally, using machine learning-based methods together
with the further effective analysis of behavioural monitoring
under Dex treatment, we demonstrate that our strategy confirms
the important role of Dex in reducing the severity and incidence
of POD in an animal model.

Results
Collecting mouse multi-scale data with a 3d multi-view motion
capture system. First, we performed abdominal surgery under
isoflurane anaesthesia to induce a delirium-like behaviour in the
mice (Fig. 1a). The group that underwent the anaesthesia and
surgery was named the model group, and the group without
anaesthesia and surgery was named the control group. Then, we
captured the delirium-like behavioural changes in multi-scale
patterns at 6, 30, 54, and 78 h in a featureless circular OFT and
NOR using a multi-view video capture system24 (Fig. 1b, S1). The
OFT was used to detect spontaneous behaviour. The NOR was
used to detect the task-driven behaviour.

All processes are described in Fig. 1c. Pipeline of mouse
behaviour recording and analysis via 3D-motion learning frame-
work. Top: 3 steps for single mouse 3D body reconstruction and
movement segmentation. First, using pre-trained DeepLabCut
model to track the 2D coordinates of 16 body parts from each
camera view; second, reconstructing the mouse 3D skeleton by
fusing four views 2D coordinates; third, using BehaviorAtlas
(BeA, see Methods) to decompose and segment mouse move-
ments. Bottom: merging all the movement segments of involved
mice and constructing the Similarity Kernel Matrix. Then using a
dimensional reduction algorithm Uniform Manifold Approxima-
tion and Projection and hierarchical clustering for movement
clustering. Finally, 40 types of movement were categorized for
further analysis of POD mice.

Delirium-like behaviour is accurately described with sponta-
neous behaviour in the model group. To classify the POD and
non-POD mice in the model group, the behavioural pattern of the
spontaneous behaviour was divided into two clusters: cluster1 and
cluster2 (Fig. 2a). Based on the assumption that POD mice were
from the model group, we identified the POD group (the most
different from the control group) and the non-POD group (the
most similar to the control group) (Fig. 2b, S2a). The traditional
diagnosis of POD usually used the static parameter composite Z
score13 (see Methods). Using this approach, we found significant
differences between the control group and the model group (Fig.
S2b). However, using this method, no significant differences were
found between the POD and non-POD groups (Fig. S2c).
Therefore, by comparing the behaviour between the two groups,
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Fig. 1 Collecting mouse multi-scale data with a 3D multi-view motion capture system. a Flow chart of exploratory laparotomy. Model group: undergo the
anaesthesia and exploratory laparotomy; control group: no anaesthesia or surgery. b Behavioural recordings under multi-view cameras in freely moving
aged mice. c Flow charts for obtaining ‘pose’ and ‘behaviour’ parameters. Top: 3D body reconstruction and movement segmentation for a single mouse.
Bottom: Movement clustering and phenotyping for all mice. For specific methods, refer to the ref. 24.
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delirium-like behaviour was found in previously unreported ways.
There were 14 movements with significant differences between
the POD and non-POD groups (Fig. 2c). POD mice spent a much
higher percentage of time exhibiting eight of these behaviours
(Fig. 2d). By manually reviewing these eight types of video clips,
we annotated M4 and M10 showing head shaking, M8 and M34

associated with walking, M9 indicates turning left, M22 indicates
freezing, and M35 indicates sniffing. In addition, M37 indicates
gait-change. Next, a significant reduction was observed in six
movements (Fig. 2e), M3 and M36 (rear with exploration) and
M40 (right-looking). Likewise, M25 and M38 indicate hunching.
M16 (launching) appears as a sudden acceleration.
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Next, fourteen significantly different behavioural modules were
combined with low-dimensional embeddings for further
analysis24. First, a bioinformatic approach was used followed by
using t-distributed stochastic neighbour embedding (t-SNE) to
reduce the 14 dimensions of the movement modules in 3D space
(Fig. 2f, see Methods). A linear classifier can completely classify
the two groups, demonstrating that t-SNE can represent high-
dimensional information of behaviour in a 3D space. Next, the
projection values of 52 data points to a linear classifier in 3D
space were calculated, and a one-dimensional (1D) representation
was obtained (Fig. 2g). A significant difference was observed
between the two groups with no overlapping data points. Thus,
our approach can detect the differences observed through
spontaneous behaviour paradigms.

Detailed description of task-driven behaviour in mice with
delirium. Mice interact with objects in their surroundings for dif-
ferent purposes such as collecting new information to test for
edibility or danger. Mice interact less with familiar objects than with
novel objects43–45. Using the NOR test under multi-angle shooting
(Fig. 3a, S3a), the behaviour of mice in the task environment28,29

was assessed and revealed that the POD group experienced more
M35 (sniffing) and less M39 (left-looking) (Fig. 3b). Next, the
interaction of mice with familiar and novel objects was carefully
assessed. The POD group developed less M20 (stretched attend)
and more M39 (left looking) when exposed to novel objects
(Fig. 3c). In addition, less M20 (stretched attend) and M31 (walking
with head down) and more M40 (right-looking) occurred during
contact with familiar objects in the POD group (Fig. 3d). Schematic
representations of these actions are shown in Fig. 3e. Next, deep
(sniff, touch, crab) and shallow (avoid) investigations were used to
describe the desire and curiosity of mice for exploring objects46

(Fig. 3f). The DSP was introduced (see Methods). The DSP is the
relative time a mouse carries out a deep investigation compared
with the time it spends in a shallow investigation46. This DSP was
much greater in the novel period than in the familiar period in the
non-POD group (Fig. 3g). However, no significant differences were
observed in the POD group (Fig. 3h).

The subtypes of delirium-like behaviour were revealed by
clustering methods on the pose. Based on the clinical diagnosis,
delirium has two disease state phenotypes: hyperactive and
hypoactive47–49. Classifying the syndromes of POD into different
subtypes based on behavioural tendencies is important when
studying the neurobiological mechanisms of POD50. Here, we

introduced 13 pose features, such as left front claw speed, length,
nose speed, and acceleration (Fig. 4a) to describe the two groups
of clinical subtypes that are kinematically opposite. To clarify the
differences between the two groups, the probability mass func-
tion (PMF) of these 13 postural features was extracted (see
Methods). First, using 91 eigenvalues, dimensionality reduction
and unsupervised clustering were performed (Fig. 4b). The means
of these 13 features from the mice of the two groups were
compared (Fig. S4a–m). The results revealed consistent kinematic
trends, which aligned with the characteristics of the two subtypes
of POD; thus, the two groups were named Hyper and Hypo. The
results revealed that the curves related to the kinematic para-
meters from the two groups were significantly different with a
large Ks-distance (Fig. 4c–g, see Methods). In addition, some
PMF curves of the five features from the two groups provided
more detailed information (Fig. S4n–u). Therefore, POD mice
were successfully categorized into Hyper and Hypo groups using
the pose descriptions. Next, the symptomatology characteristics
of the two subtypes were assessed (Fig. 4h), and the results
revealed that more M4 (head shaking) and M28 (right turning)
movements occurred in the hypoactive group (Fig. 4h).

Evaluating the effects of dex in the POD animal model. Dex is
considered an effective drug to reduce POD in non-cardiac
surgery41. However, the symptoms that can be improved have not
been elucidated in animal models. Given that our experimental
objective was to validate the efficacy of Dex for non-cardiac
surgery, we selected a dose that has been widely reported to have
neuroprotective and anti-inflammatory effects17,51,52. Here, we
explored the effects of Dex on postoperative behaviour at a dose
of 25 μg kg−1 (Fig. 5a). First, we assessed the effect of Dex on the
early improvement of spontaneous behaviour. Dex significantly
improved the three movements of M2 (sniff with turning left),
M6 (climbing), and M28 (right turning) (Fig. 5b). In addition, the
increase in M39 (left-looking) in the POD group in the NOR can
be improved (Fig. 5c), which was previously described in Fig. 3b.
These may be future research directions for studying the effect of
Dex on POD, especially for hyperactive subtypes. Schematic
representations of these actions are shown in Fig. 5d.

The effect of Dex on POD was evaluated in an animal model
using a machine learning-based method. First, we used all the
mice in the POD group and the non-POD group as the training
set and cross-validated the training model itself, and we then used
the Training Model to label the Dex-treated group (Figs. S5a, b,
see Methods). The results are represented by 3D plots in which
the corresponding samples were embedded in the POD and non-

Fig. 2 POD was diagnosed by unsupervised clustering and low-dimensional embedding based on spontaneous behaviours. a Schematic diagram of
open field behaviour under multi-angle shooting. b Clustergram of samples with 40 spontaneous behaviour modules (grey, model group, n= 52; orange,
control group, n= 46). c Comparison of the proportion of behaviour types between non-POD and POD mice. The bold traces and shadows indicate
the mean ± SEM. Fractions of each group and light colour traces are the fractions of all 52 samples (blue, non-POD, n= 33; pink, POD, n= 19). Fourteen
movements showed significant differences between the two groups. M4 (non-POD=−0.263 ± 0.12, POD=0.907 ± 0.31), M10 (non-POD=−0.389 ± 0.115,
POD= 1.179 ± 0.287), M8 (non-POD=−0.276 ± 0.140, POD= 1.168 ± 0.241), M34 (non-POD=−0.216 ± 0.181, POD= 0.947 ± 0.237), M9
(non-POD=−0.386 ± 0.168, POD=0.792 ± 0.213), M22 (non-POD=−0.237 ± 0.094, POD=0.886 ± 0.415), M37 (non-POD=−0.405 ± 0.092,
POD= 1.077 ± 0.344), M35 (non-POD=−0.321 ± 0.131, POD= 1.074 ± 0.256), M3 (non-POD= 0.477 ± 0.204, POD=−0.574 ± 0.161),；M36
(non-POD=0.410 ± 0.194, POD=−0.559 ± 0.189), M40 (non-POD=0.356 ± 0.224, POD=−0.694 ± 0.097), M25 (non-POD=0.408 ± 0.186,
POD=−0.985 ± 0.129), M38 (non-POD=0.457 ± 0.217, POD=−0.849 ± 0.124), M16 (non-POD=0.141 ± 0.168, POD=−0.896 ± 0.088). Statistics: two-
way ANOVA followed by the Sidak post hoc multiple comparison test, **M3, P=0.0061; **M4, P=0.0012; ****M8, P < 0.0001; **M9, P=0.0011; ****M10,
P < 0.0001; **M16, P=0.0069; **M22, P=0.0022; ****M25, P < 0.0001; **M34, P=0.0013; ****M35, P < 0.0001; *M36, P=0.0164; ****M37, P < 0.0001;
***M38, P= 0.0001; **M40, P=0.0061. d Schematic diagram of a series of behaviours that increase in the POD group. e Schematic diagram of a series of
behaviours that decrease in the POD group. f Low-dimensional representation of the two animal groups (blue, non-POD, n= 33; pink, POD, n= 19). The
52 samples in 3D space were dimensionally reduced from 14-dimensional movement fractions, and they are well separated. The grey plane is the decision
boundary in the 3D space of the two groups. g The projection values were calculated by projecting the points in (f) onto the decision boundary (pink,
POD= 3636 ± 332.8, blue, non-POD=−3793 ± 250.2; ****P < 0.0001, Mann–Whitney test). All data were presented as mean ± SEM.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05149-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:807 | https://doi.org/10.1038/s42003-023-05149-7 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


Familiar

Novel

Camera 1

Camera 4Camera 3

Camera 2

POD
non-POD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M35(✱✱✱✱) M39(✱✱✱✱)
sniffing left looking

Task-driven movement

Pr
op

or
tio

n

35
28

2
10

22
37

20
4

9
26

8
23

24
1

18
17

14
13

11
33

32
7

29
30

31
34

15
16

21
27

3
19

36
38

25
40

12
5

6
39

M20 stretched attend

M39 left looking

M31 walking with head down 

a

Movements

Investigation Action Sequence
f g h

b

c d e

M20 M39
0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

M20 M31 M40
0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n M39 left looking

M40 right looking

M35 sniffing

✱ ✱ ✱✱✱✱✱

-π/2:Shallow

π/2:deep
Pr

ob
ab

ilit
y

0

π/4

-π/4

0.05
0.10
0.15
0.20
0.25
0.30

0

π/4

-π/2

-π/4

π/2

D
SP

NS

POD Group

Familiar
Novel

Familiar Novel

0

π/4

-π/4

0.1

0.2

0.3

0.4
π/2:deep

-π/2:Shallow

Pr
ob

ab
ilit

y

non-POD Group

0

π/4

-π/2

-π/4

π/2

D
SP

✱

Familiar Novel

Familiar
Novel

Explore the novel object Explore the familiar object

Deep investigation Shallow investigation

Approach

Sniff

Touch

Crab

Avoid

non-POD
POD

Fig. 3 Assessment of task-driven behaviour in delirium mice. a Schematic diagram of a novel object recognized under multi-angle shooting. Schematic
diagram of the test. The orange quadrangular prism is a familiar object, which is an object that was repeatedly touched before the test. The green cone
represents objects that are touched for the first time, namely new objects. For detecting the replacement of new objects in daily behaviour, see the
Methods and Supplementary Figure 3. b Comparison of the fraction of task-driven movement types between non-POD mice and POD mice in NOR. The
bold traces and shadows indicate the mean ± SEM (blue, non-POD, n= 33; pink, POD, n= 19). Two movements showed significant differences between the
two groups, that POD mice prefer is sniffing (M35, non-POD= 0.028 ± 0.004, POD= 0.09 ± 0.039), less is left looking (M39, non-POD= 0.095 ± 0.011,
POD= 0.053 ± 0.011) ****M35, P < 0.0001; ****M39, <0.0001. c Comparison of the fraction of movement types between non-POD mice and POD mice
for exploring the novel objects. The bold traces and shadows indicate the mean ± SEM (blue, non-POD, n= 33; pink, POD, n= 19). Two movements
showed significant differences between the two groups, and the fractions of the four movements that POD mice prefer are stretching ahead (M20, non-
POD= 0.027 ± 0.009, POD= 0.074 ± 0.032), less is left looking (M39, non-POD= 0.096 ± 0.023, POD= 0.052 ± 0.018). *M20, P= 0.0127; *M39,
P= 0.0255. d Comparison of the fraction of movement types between non-POD mice and POD mice for exploring a familiar object. The bold traces and
shadows indicate the mean ± SEM (blue, non-POD, n= 33; pink, POD, n= 19). Three movements showed significant differences between the two groups,
and the fractions of the four behaviours that POD mice prefer are stretching ahead (M20, non-POD= 0.037 ± 0.11, POD= 0.095 ± 0.032) and walking
with head down (M31, non-POD= 0.017 ± 0.004, POD= 0.067 ± 0.052), less is right looking (M40, non-POD= 0.073 ± 0.018, POD= 0.028 ± 0.007).
***M20, P= 0.0006; *M31, P= 0.016; *M40, P= 0.0374. e Schematic diagram of the different behaviours. f We mapped the AcSeq to distinguish deep-
seeking behaviour and shallow seeking behaviour in mice. g Probability histogram and bar graph of the DSP index of POD mice exploring familiar and novel
objects. The deep versus shallow investigation preference (DSP) varies between -π/2 and π/2, where -π/2 and π/2 indicate the absolute preference for
shallow and deep investigation, respectively, and 0 indicates an equal preference for deep and shallow investigation. Probability histogram and bar graph of
the DSP index of POD mice(n= 19) exploring familiar and novel objects (Familiar=−0.359 ± 5.84, Novel= 8.854 ± 7.810). Statistics: (Mann–Whitney
test; NS not significant, P= 0.323). h Probability histogram and bar graph of the DSP index of non-POD mice exploring familiar and novel objects
(Familiar= 2.639 ± 3.59, Novel=14.02 ± 3.84). Statistics: (Mann–Whitney test; *P= 0.0340). All data were presented as mean ± SEM.
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POD groups (Fig. 5e, S5c). In addition, we found that the Dex-
treated-POD group was closer to and significantly different from
the projection value of the decision boundary than the POD
group (Fig. 5f, g), suggesting that Dex has the potential to reduce
the severity of delirium-like behaviours in animal models. Finally,
the incidence of POD in the Dex-treated group decreased from
62% to 50% compared with those in the model group (Fig. 5h).

Discussion
Inspired by the recent advances in computer vision, the current
study presents a multi-scaled clustering analysis framework for

assessing delirium-like status from pose, behaviours, and AcSeq
by combining unsupervised clustering and low-dimensionality
embedding. Delirium-like diagnosis was made using a clustering
approach to spontaneous behaviour to classify mice, and the
results fit well with the POD characteristics, disease pattern of
early onset, and fluctuating trend. Assessment of task-driven
behaviour indicated the presence of a cognitive decline in POD
mice, and we further evaluated cognitive changes using AcSeq.
Unsupervised clustering for pose parameters was used to describe
the POD subtypes, and further low-dimensionality embedding
was applied to represent the feature space of the subtypes. This
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demonstrates that the strategy can accurately describe the hier-
archical dynamics of delirium-like behaviour in detail and detect
delirium-like mice and their subtypes in animal disease models.
In addition, using a description of the effects of Dex on post-
operative spontaneous behaviours in mice, our framework aims
to potentially facilitate clinical medication guidance of Dex in the
preclinical stage.

Previous studies reported that anxiety-related performance13,53,
decreased attention54,55, and cognitive level changes were detected
in the POD model. These results are consistent with those of the
present study. However, their evidence has shown inconsistencies in
many fields. First, the control group in a previous experiment was a
“blank” control13; thus, the influence on the behaviour of a series of
other variables, such as surgical pain and intraoperative hypoxia,
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cannot be excluded. This is despite the fact that pain has been
implicated as a precipitating factor for POD in past reports1,5,56.
However, it is undeniable that in classical behavioural tests, the
activity-dependent parameters (centre time, mean velocity, etc.) are
affected by postoperative pain. Here, we used a recently developed
multi-angle behaviour recognition system that showed mice who
had undergone the same surgical procedure and anaesthesia dis-
played different spontaneous behavioural patterns. Applying the
Composite Z scores approach, we also detected differences between
the model group and the control group. However, this difference
disappeared once the POD and non-POD groups were compared at
the composite Z-score level. The possible cause of this discrepancy
could be that the mice who underwent the same surgical procedure
and anaesthesia also displayed different behavioural patterns, which
requires a more sensitive tool to detect subtle behavioural changes
in delirium-like levels. The spontaneous behaviour, which is of great
significance for the diagnosis of the disease models, might be the
reason for these phenomena24. In our study, we found 14 beha-
viours with significant differences. By manually reviewing them, we
annotated M4 and M10 (Supplementary Movie 1 and Supple-
mentary Movie 2) showing head shaking, which indicates attention
disorder57 and hallucination58 in previous reports. M8 and M34,
associated with walking (Supplementary Movie 3 and Supplemen-
tary Movie 4), are considered motor behaviours unrelated to the
social exploratory behaviour59–62. M9 (Supplementary Movie 5),
indicating turning left, and M22, (Supplementary Movie 6) indi-
cating freezing, are related to being in a state of anxiety, fear, and
defensiveness36,63–65. In addition, M37 indicates gait-change, which
is a powerful neurodegenerative disease measurement tool to
identify markers of early pathology66,67 (Supplementary Movie 7).
Next, a significant reduction was observed in exploration-related
behaviours60,68,69, annotated as M3 and M36 (rear with explora-
tion), M35 (sniffing) (Supplementary Movie 8, Supplementary
Movie 9 and Supplementary Movie 10), and M40 (right-looking)
(Supplementary Movie 11). Likewise, M25 and M38 (Supplemen-
tary Movie 12 and Supplementary Movie 13), indicating hunching,
were significantly reduced in relation to autism24 and visceral
pain70,71. M16 (launching) appears as a sudden acceleration, which
may be related to the change in the kinematic state of the POD
(Supplementary Movie 14).

Our study demonstrates the presence of POD subtypes in
mouse models of POD. These results are consistent with those of
some studies showing that biperiden-treated rats exhibited two
types of alternating behavioural changes, hyperactive and
hypoactive states72. Several studies have indicated that this
manifestation can be elicited in zebrafish73. In addition to evi-
dence from animal studies, several clinical trials have reported
that for postoperative central nervous system complications after
anaesthesia and surgery, there are two phenotypes on the oppo-
site psychomotor side47,74. These results support our findings,
which reveal that anaesthesia and surgical factors can elicit two
clinical subtypes in animal models with different kinematic
parameters. These results imply that the changes in the kinematic
parameters in the POD subtype are credible.

Finally, previous clinical studies reported that Dex improves
delirium after noncardiac surgery38–41,75. Limited by quantity
and quality, clinical trials investigating the utility of Dex are
controversial. Evidence from animal experiments shows that Dex
attenuates sepsis-related inflammation and encephalopathy
through central α2A adrenergic receptors76 and may also improve
postoperative cognition by exerting anti-inflammatory
effects76,77. The dose range of Dex is very wide in the study of
delirium17,42,78. Given that our experimental objective was to
validate the efficacy of Dex for non-cardiac surgery, we selected a
dose that has been widely reported to have neuroprotective and
anti-inflammatory effects17,51,52. The dexmedetomidine dose

dependence of the exploration experiment showed that the
addition of 25 μg kg−1 dexmedetomidine provided the most
potent protection that was significantly better than 1 or
10 μg kg−1 dexmedetomidine in each brain area78. Our results are
consistent with those of previous studies showing the involve-
ment of Dex in improving anxiety and cognition-related post-
operative behaviours. Currently, the optimal treatment for
delirium during critical illness is to avoid the occurrence of risk
factors. Thus, our results may expand on the benefits of the use of
agents such as Dex79.

The dynamics of complex symptoms generally include high-
dimensional, nonstationary, and nonlinear behaviours, all of which
pose fundamental challenges to quantitative understanding. Tra-
ditionally, the detection of delirium in animal models is based on
the population level80. However, the incidence of delirium varies
widely. In contrast, the two different subtypes are individual-based
measures of disease symptoms and are obscured by averaging
response probabilities across trials and individuals. Most impor-
tantly, when using the same surgical protocol, the postoperative
behavioural responses of mice are different. While many different
behavioural tests, such as the Y-Maze, EPM and others, have been
defined, the individual response collapses to a binary outcome: a
given group either does or does not respond to POD. It is obviously
inappropriate to use this rough index to describe a syndrome with
complex symptoms like POD. Although OFT and NOR are clas-
sical behavioural tests used to detect anxiety and cognition, we used
these two scenarios for spontaneous and task-driven behaviours.
Unlike centre time, mean speed and total distance, they can be
directly caused by neuronal activity46,81. Importantly, these two
scenarios are widely used to assess spontaneous and task-driven
behaviours;24,36,46,82,83 therefore, we creatively applied these two
scenarios to detect the spontaneous and task-driven behaviours
of POD.

The present study has several strengths. First, it simulates a
condition present in patients, namely, how to behave in situations
of an uncertainty subtype. In addition, a description of disease
status at different time points in the same mouse was constructed
to examine the accuracy of the identification and ensure that
unsupervised clustering could reliably detect and classify objects.
These behavioural variations provide the backdrop upon which
the brain operates, and understanding them is essential for
making progress in revealing the neural mechanisms underlying
the decline in behavioural and cognitive functions.

Although this study aimed to report the available up-to-date
animal behaviour-related evidence, the limitations of this study
include not enough studies on the meaning of spontaneous
behaviour, which can be attributed to the limited animal beha-
vioural repositories. This can be addressed through the con-
tinuous carrying out of animal behaviour studies. In 1974,
Teasdale and Jennett’s Glasgow coma scale (GCS) was published
in The Lancet. This standardized bedside tool to quantify con-
sciousness became a medical classic84. Altered consciousness is an
important clinical symptom of POD, and the GCS score has also
become an important scale for the clinical diagnosis of POD85.
However, quantifying consciousness in animal models is still an
important challenge86. We used animal sex protocols from other
basic studies of POD and selected female mice as subjects8,13,54,87.

A multi-scaled clustering analysis framework will allow us to
expand the scope of our research questions by considering the
interactions between different representative behaviours and
delirium-like neural mechanisms. Computing mnemonic links
may provide an important mechanism to build a cognitive map
that stretches beyond direct experience, thus supporting flexible
behaviour. The application of a multilayer data analysis strategy
offers a valuable opportunity to gain new insights into POD by
integrating different interactions and relationships within the
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same analytical framework. The use of a multi-layered approach
will provide an important new perspective on the complex
behaviour that is inherent in POD.

In conclusion, based on the findings of this study, we hypo-
thesize that, in humans, delirium states can be assessed by
spontaneous behaviour and can be accurately diagnosed in a
timely manner by categorizing subtle states, including facial
micro-expressions and body movements. If this hypothesis turns
out to be correct, we speculate that a novel diagnostic approach
that specifically affects the accuracy and promptness of POD
should be developed in the future. The diagnostic method of
dependency scale evaluation could then be destabilized, allowing
machines to carry out these tasks. This will facilitate risk factor
mitigation, identification of potential methods for interventional
studies, and informed patient and family counselling.

Methods
Animals and experimental groups. Behavioural tests were performed on 12-
month-old C57BL/6J female mice. The mice were maintained under standard
animal facility conditions at a temperature of 22–25 °C and a relative humidity of
50 ± 15%. Mice were housed under a reverse 12-h day/12-h night cycle with ad
libitum access to rodent food. The experimental group was divided into a model
group and a control group (Fig. 1a). The model group underwent anaesthesia and
exploratory laparotomy. In the control group, neither anaesthesia nor surgery was
performed. The POD group came from the model group but had a different
behaviour pattern compared with the control group. The non-POD group also
came from the model group but had similar behaviour patterns to the control
group. The control group was exposed to the same transparent acrylic room as the
experimental group and was exposed to air for two hours. The animal-related
protocol was performed and approved by the Standing Committee on Animals at
Tongji University (approval number: TJBH08423102), and C57BL/6 mice were
maintained according to the guidelines in the laboratory animal centre at Shang-
haiTech University.

Animal surgery. The exploratory laparotomy was used as the model to induce
POD11,13,14. Briefly, anaesthesia was induced and maintained using 2 ± 0.2% iso-
flurane in a transparent acrylic chamber with 90% oxygen. An incision was made
along the linea alba. The intestines were exteriorized and the superior mesenteric
artery (SMA) was dissected and clamped for 15 s. The clamping was repeated three
times. The total exploratory surgery duration was 10 min. After exploration, sterile
4–0 chromic gut sutures were used to suture the peritoneal lining and skin. After
the operation, the mice were moved into a transparent acrylic chamber and
received 2 ± 0.2% isoflurane over the 2 h exposure. After the anaesthesia, com-
pound lidocaine cream (2.5% lidocaine and 2.5% prilocaine) was applied to the
wound for pain relief, and the next application was 3 h after the operation and
10 min before the start of the behaviour tests. The mice were returned to their
home cage upon demonstrating the ability to walk.

Behaviour tasks. OFT was used to assess the spontaneous behaviour of mice. NOR
was used to assess task-driven behaviour. At the end of each task, the box was
cleaned with 75% ethanol before use, and the behavioural test was initiated after
ensuring that the ethanol was completely volatilized. The surgery was performed
on the seventh day (Supplement Fig. 1). We captured the delirium-like behavioural
changes in multi-scale patterns at 6, 30, 54, and 78 h after surgery using a multi-
view video capture system24 (Fig. 1b). During the entire process, a BeA instrument
was used for video recording. The resolution of the video is 640*360. The frame of
the video is 30.

Open field test. The open field test was performed after surgery. As described
previously24, the mice were gently placed in a transparent circular open field with a
diameter of 50 cm and a height of 50 cm, and they explored freely for 10 min. Based
on the absolute information of the coordinates, we calculated the time that the mice
stayed in the centre of the open field, where the radius of the centre of the open
field was defined as 50 mm.

Novel object recognized test. After the open field test, mice were subjected to the
NOR test. As described previously88, the mice performed exploratory activity in the
NOR environment (40 × 40 × 50 cm right quadrangular prism), and two identical
objects (training objects) were placed at opposite sides of the box during a training
session. The mouse was placed in the middle of the box and allowed to explore for
10 min. During the test, one of the training objects was randomly replaced with an
object of a different colour, material, and shape but of the same size and the same
difficulty for mice to explore. The mouse was allowed to explore for 10 min. The
ratio of time spent on the novel object to the total exploration time on both objects

was calculated.

Recognition index ¼ Time spent at novel� Time spent at familiar
� �
Time spent at novelþ Time spent at familiar
� � ð1Þ

Collecting mouse behaviour data. All processes are described in Fig. 1c, and we
reconstructed the 3D skeleton information of the mice using DLC89, which
included 16 body parts of the mice, including the nose, left ear, right ear, neck, left
front limb, right front limb, left hind limb, right hind limb, left front claw, right
front claw, left hind claw, right hind claw, back, root tail, middle tail, and tail tip.
We obtained the 3D skeletons of mice and 40 behavioural skeletons based on
BeA24. With this 3D skeleton information, we obtained behavioural descriptions of
every mouse.

Extraction and summary of poses data. Pre-processed behavioural recordings of
mice in the OFT were further summarized into descriptions of the pose. A variety
of summaries were constructed, based on the parameters described below.

Length: the three-dimensional distance from the mouse’s nose to the root of the
mouse’s tail.

Height: the height of the mouse’s neck and the mouse’s back.
Front width: the three-dimensional distance from the left forelimb to the right

forelimb of the mouse.
Hind width: the three-dimensional distance from the left hindlimb to the right

hindlimb of the mouse.
Back speed: the three-dimensional distance of the mouse’s back moving each

frame rate of change.
Nose speed: the rate of change of the mouse’s nose moving a three-dimensional

distance per frame.
Left front claw speed: the rate of change of the mouse’s left front paw’s three-

dimensional distance per frame.
Right front claw speed: the rate of change of the mouse’s right front paw’s three-

dimensional distance per frame.
Acceleration: the rate of change of the mouse’s back speed.
Angular velocity: the rate of change of the deflection per frame of the direction

vector formed by the root of the mouse’s tail to the neck.
Spine angle: the included angle formed by the vector pointing from back to neck

and the vector pointing from back to tail root.
After obtaining 13 poses, histogram analysis (bins= 50) was performed, and the

PMF was calculated. According to the knowledge of signalling, 7 eigenvalues
including the mean, median, standard deviation, 25% and 75% quantiles, minimum
value and maximum value were extracted for these 13 poses PMF curve. Therefore,
we obtain 91 eigenvalues. Here, the resampling work was performed using NumPy
in Python, and the Kolmogorov–Smirnov test calculation was performed using
scipy in Python.

Construction of the action sequence data. As described previously, we define
exploration as the occurrence of the following two situations46,83. (1) The two-
dimensional distance between the mouse’s nose and the object in the current frame
(regardless of the height difference) is less than 60 mm, and the direction vector
formed by the mouse’s neck to the nose is the same as the vector formed by the
mouse’s neck to the centre of the object. The direction vector formed by the
mouse’s nose is opposite, which means that the angle between the two direction
vectors mentioned above should be an acute angle. (2) The two-dimensional dis-
tance from the mouse’s nose to the object is less than 30 mm, and the height of the
mouse’s back is greater than the height of the top of the object, which means that
the mouse is climbing on the object. Previous reports have suggested that mice
showed two states of investigatory behaviour46,90: (1) shallow investigation:
approach and sniff without any other interactions and (2) deep investigation:
approach and sniff with further interactions. For every investigation test, Tdeep and
Tshallow were calculated as the sum of the durations of all deep investigation and
shallow investigation sequences, respectively. We introduced the DSP using the
relative time a mouse carries out deep investigation compared with the shallow
investigation.

DSP ¼ sin�1
Tdeep � Tshallow

Tdeep þ Tshallow

 !
ð2Þ

This index serves as a ratio between time spent in deep investigation and
shallow investigation, expressed as an angle. The DSP ranges from -π/2 to π/2 rad,
with -π/2 rad meaning the mouse exclusively displayed shallow investigation, π/
2 rad meaning that the mouse exclusively displayed deep investigation, and 0 rad
meaning equal preference for deep and shallow investigation.

Composite Z score. The Composite Zscore was obtained by adding the Zscore of the
centre time, total exploration time, and the Zscore of the exploration index. The
central area is defined as a circular area with a radius of 10 cm. In addition, the
recognition index of mouse exploration was also investigated. It refers to the
percentage of time the mouse spent exploring novel objects as a percentage of the
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total exploration time.

Zscore ¼
Model �MEAN Controlð Þ

SD Controlð Þ ð3Þ

Kolmogorov–Smirnov test. According to the PMF, the empirical distribution
function (EDF) was obtained. Based on the EDF, random samplings were per-
formed to test the distribution differences. We resampled 500 samples from the
EDF, and a two-sided Kolmogorov-Smirnov test was performed to compare the
EDF differences between the two groups. Detailed operations are as follows.

We denote the real distribution of one group as FðxÞ and the other as GðxÞ. We
took 500 samples x1; x2; :::; x500 from one group through the EDF of F(x), and
y1; y2; :::; y500 from another group through the EDF of G(x). The null hypothesis
H0 is FðxÞ ¼ GðxÞ, and the alternative hypothesis H1 is FðxÞ≠GðxÞ. We merged
and sorted the sampled data to depict respective EDF F0ðxÞ and G0ðxÞ and found
the K-S statistic D through finding the maximum value by subtracting the two
EDFs, i.e., D ¼ max jF0ðxÞ � G0ðxÞj. After obtaining D, we decided whether to
reject the H0 by looking up the statisitical table of Dn;α , where n ¼ 1000 represents
the number of samples and α is set to 0:05. Notably, F0ðxÞ can be obtained by a
sorted sample xð1Þ; xð2Þ; :::; xð500Þ and

F0 xð Þ ¼
0; for x < x 1ð Þ
k
n ; for x kð Þ ≤ x < x kþ1ð Þ; k ¼ 1; 2; ::; 500

1; for x ≥ x 500ð Þ

8><
>:

ð4Þ

and G0ðxÞ can be obtained similarly. The whole process was completed by Python.

Delirium-like behaviour space. The proportion of 14 movements xi1 ; xi2 ; :::; xi14
of a certain POD mouse i (Fig. 1b) constitutes a vector Xi in 14D delirium-like
behavioural vector space, i.e. Xi ¼ ½xi1 ; xi2 ; :::; xi14 �

T ; i ¼ 1; 2; :::; n, where n is the
total number of POD mice. X ¼ ½X1;X2; :::;Xn� is a 14 � n matrix representing the
propotion of all POD mice movements. We then used t-SNE to reduce the feature
dimensions of X from 14 to 3 dimensions, as follows:

Y ¼ f t�SNE xð Þ ð5Þ
where Y represent a 3 � n matrix generated by the t-SNE algorithm. The f t�SNE()
includes the parameters n neighbors set to 6, which are robust enough to change
across a wide range and discriminate between POD and non-POD mice in the
delirium-like behavioural space. To quantify the group differences, we fitted a
classification model to Y using a linear kernel by the svm.SVC function in Python
with default parameters.

Effect prediction based on machine learning. Classification based on behavioural
summaries was performed using logistic regression as implemented in the Clas-
sificationLeaner Matlab package. To avoid overfitting, we performed a 5-fold cross-
validation and then performed 30 iterations until the minimum classification error
converged. To evaluate performance, confusion matrices and a minimum classi-
fication error curve were computed (Supplement Fig. 5).

Statistics and reproducibility. All statistical analyses were performed using
MATLAB (R2020b, MathWorks, Natick, MA, United States of America),
GraphPad Prism 8, and Python (v3.8.5; Python Software Foundation). The
movement fractions data were normally distributed, with homogeneous var-
iances; thus, a two-way ANOVA followed by the Sidak post hoc multiple
comparison tests was used to compare the differences among the groups.
Data were considered statistically significant when P values were less than 0.05.
The asterisks denote statistical significance: *P < 0.05, **P < 0.01, and
***P < 0.001, ****P < 0.0001. Unless stated otherwise, values are presented as
the mean ± SEM.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
3D skeleton trajectories associated with spontaneous behaviour tests are available in the
figshare repository91 (https://doi.org/10.6084/m9.figshare.23538255). The samples of
supplementary videos are available in the figshare repository92 (https://doi.org/10.6084/
m9.figshare.23641914). All data related to this study have been included in the article and
its supplementary information. Source data used to generate bar figures are available as
Supplementary Data 1.

Code availability
The relevant data are available upon reasonable request.
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