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Upcycling rice yield trial data using a weather-
driven crop growth model
Hiroyuki Shimono 1,2✉, Akira Abe 3, Chyon Hae Kim4, Chikashi Sato5 & Hiroyoshi Iwata6

Efficient plant breeding plays a significant role in increasing crop yields and attaining food

security under climate change. Screening new cultivars through yield trials in multi-

environments has improved crop yields, but the accumulated data from these trials has not

been effectively upcycled. We propose a simple method that quantifies cultivar-specific

productivity characteristics using two regression coefficients: yield-ability (β) and yield-

plasticity (α). The recorded yields of each cultivar are expressed as a unique linear regression

in response to the theoretical potential yield (Yp) calculated by a weather-driven crop growth

model, called as the “YpCGM method”. We apply this to 72510 independent datasets from

yield trials of rice that used 237 cultivars measured at 110 locations in Japan over 38 years.

The YpCGM method can upcycle accumulated yield data for use in genetic-gain analysis and

genome-wide-association studies to guide future breeding programs for developing new

cultivars suitable for the world’s changing climate.
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Crop yield must improve to ensure food security by meeting
the growing demand for food, which is predicted to
increase by 70% by 20501; however, this challenge must be

accomplished under the constraints imposed by future climate
change. Genetic improvement of crop performance will be one
important solution. Recent advances in genotyping technologies
have accelerated our ability to screen candidate high-yielding
cultivars efficiently using methods such as genome-wide asso-
ciation studies (GWAS) and genomic prediction (GP)2–10.
Although genotyping a given cultivar is now relatively easy and
affordable using genome-wide DNA sequencing, phenotypic
analyses based on crop yield must be repeatedly evaluated in
season-long field trials across a range of environments. The yield
of a given cultivar is not stable across environments since yield
results from the interactions of many physiological processes that
respond to environmental fluctuations throughout the growing
season. Thus, strong genotype by environment (G × E) interac-
tions make it difficult to predict crop yields across a range of
environments.

The pioneering study of Finlay and Wilkinson11 proposed a
method for quantifying the G × E interaction by linear regression
(the FW method). The FW method standardized the observed
yield of each cultivar in a given environment against a mean yield
of all cultivars in a comparable environment (Supplementary
Fig. S1a). The slope of the regression of the observed yield as a
function of the mean yield represents the plasticity of the yield
response, with the average plasticity equal to 1.0; cultivars with
above-average plasticity have slopes >1.0, and cultivars with
below-average plasticity have slopes <1.0. This method represents
a foundational achievement for evaluating G × E interactions and
has been widely used in plant science, including for genomic
analyses12–18. However, the FW method can only be used to
compare cultivars with yield data measured at the same site and
season in a side-by-side yield comparison, in which different
cultivars grow together. The plasticities of a cultivar determined
under independent experiments, not side-by-side yield compar-
isons, are consequently not comparable.

To solve this problem, we designed this study to develop a new
method for characterizing the cultivar-specific yield response
standardized using the theoretical potential yield (Yp) by using a
weather-driven crop growth model (CGM). We call this the
‘YpCGM method’ (Supplementary Fig. S1b). The novelty of this
method is that it lets researchers combine yield trial data from
different studies to estimate Yp from weather data as inputs for
the CGM. Only two parameters are required: the yield-plasticity
(α; dimensionless) and the yield-ability (β; t/ha). These values
represent the slope and estimated yield, respectively, at the
standardized potential yield (SPY; t/ha) in a cultivar-specific
regression (described in the Methods section). The regression
provides a simple expression of a cultivar’s yield characteristics
(α and β). This analysis differs from previous modeling studies
that required the measurement and parameterization of many
physiological processes for each cultivar, including leaf expansion,
photosynthesis, biomass production, and carbon allocation to
harvestable organs19,20. Our method can be applied in a ‘big data’
context using the accumulated yield data from many previous
studies, including studies that recorded only yield without mea-
suring the wide range of physiological processes required to
parameterize a CGM. Reuse (i.e., upcycling) of these data for yield
phenotyping has great potential to help breeders identify pro-
mising cultivars that will permit them to boost crop yields.

We applied this method to datasets from 72,510 yield trials
under similar management practices for disease and pest control
with 237 core cultivars of rice (Oryza sativa L.) evaluated from
1980 to 2017 at 110 public agricultural experimental stations in
Japan along a climatic transect from south to north and from west

(facing the Sea of Japan) to east (facing the Pacific Ocean), cov-
ering the latitudes from 30°N to 43°N (Supplementary Fig. S2).
We validated the reliability of our method of calculating Yp using
10 replications of 10-fold cross-validation for the cultivars based
on their pedigree and genome. Cultivar-specific parameters were
used to analyze the genetic gain, and GWAS can be used to
evaluate future cultivars suitable for the world’s changing climate.

Results
Yp captures cultivar-specific yield characteristics. The pheno-
type data for the 237 cultivars were recorded from 20 to 6342 yield
trials under a range of environmental conditions. For example, the
popular cultivar ‘Koshihikari’, which was a parent of 853 progeny,
provided phenotypic data from 6342 trials, with yields that ranged
from 0.9 to 8.7 t/ha (Supplementary Fig. S6vii). Days to heading
ranged from 39 to 117 (Supplementary Fig. S6xvii), panicles per m2

ranged from 178 to 684 (Supplementary Fig. S6xxvii), and panicle
length ranged from 12.6 to 23.8 cm (Supplementary Fig. S6xxxvii).
The other nine cultivars in Supplementary Fig. S6i–xl, which cur-
rently account for more than 70% of the rice production in Japan,
showed a similar range of variation in their phenotypes. Data for all
237 cultivars are listed in Supplementary Data 7 and 8.

To quantify the genotypic coefficients of yield-ability (β in
equation 1, defined as the expected yield at Yp= 8 t/ha SPY) of a
given cultivar and its plasticity (α) using the YpCGM method, we
plotted the observed yields per cultivar against Yp estimated from
weather records by the weather-driven CGM. Prediction accuracy
was evaluated by comparison with the cumulative air temperature
and solar radiation and with the observed panicle number and the
observed panicle length, two characteristics that strongly
determine yield variation in rice21. The RMSE of the difference
between the observed yield and the yield predicted by Yp ranged
from 0.36 to 1.45 t/ha and averaged 0.84 t/ha for the 237 cultivars
(Supplementary Data 8, Fig. S7i–x). To evaluate the accuracy, the
RMSE of the yield predicted by Yp was plotted against the RMSE
predicted by the four variables (Supplementary Fig. S8). RMSE
predicted by Yp was 3.8% to 4.2% smaller than that predicted
by the cumulative air temperature (Supplementary Fig. S8a),
the cumulative solar radiation (Supplementary Fig. S8b), and
the observed panicle length (Supplementary Fig. S8c and
Fig. S7xxi–xxx). The RMSE predicted by Yp was lower than that
of all four variables, and it was notable 1.2% lower than that
predicted by the observed panicle number, which is key driver of
variation of rice yield to environments21 (Supplementary Fig. S8d
and Fig. S7xi–xx). On this basis, Yp appears to be an appropriate
index that accounts for the variation of the observed yield of each
cultivar in response to environmental changes.

The genotypic β coefficient ranged from 2.5 to 7.3 t/ha among
the 237 cultivars (Fig. 1a and Supplementary Data 1), and the α
coefficient ranged from −0.23 to +0.95 (Fig. 1b, Supplementary
Data 1). Figure S7i–x is an example of how the coefficients were
quantified for the 10 major cultivars by YpCGM. Supplementary
Data 7 lists the coefficients of all 237 cultivars. The robustness of
the regression models estimated for each cultivar was evaluated
by leave-one-out cross-validation. As a result, the difference
between the predicted and the fitted coefficients of determination
was small for all cultivars (Supplementary Fig. S9), suggesting
that the regression model does not tend to overfit and is robust in
prediction. Note that there were cultivars in which the coefficient
of determination for prediction was lower than the coefficient of
determination for fitting, but these were those for which the
number of environments (number of data used in the regression)
was less than 50. In other words, as the number of data increases,
the robustness of the regression model is expected to improve
further.
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The relationships of α and β to the observed values of mean
yield, panicle number, and panicle length for each cultivar are
examined in Supplementary Fig. S10. Both α and β were
significantly positively correlated with mean observed yield
(Supplementary Fig. S10a, d) although the correlation coefficient
of α was lower. Interestingly, both coefficients were correlated
significantly negatively with the mean observed panicle length
(Supplementary Fig. S10b, e) and significantly positively with the
mean observed panicle number (Supplementary Fig. S10c, f).

GP for explaining variations in the genotypic coefficients.
Using 10-fold cross-validation with 10 replicates, genomic pre-
diction explained the variation of β based on genomic informa-
tion from 91,800 SNPs, with a significant positive correlation
(r= 0:562 ± 0:012) in the gBLUP, which was similar to the
result for the pBLUP (r= 0:481 ± 0:009) and the gpBLUP
(r= 0.571 ± 0.008) and the g×pBLUP (r= 0.576 ± 0.008) for β
(Fig. 2a and Supplementary Data 2). The α was predicted with
similar accuracy by the four types of BLUPs, at r= 0.178 to 0.211,

and the values were lower than the correlations for β. Interest-
ingly, the b parameter in the basic form of equation 1 that does
not include SPY was not explained by the genome and pedigree
information (r = �0:133 to �0:054) (Fig. 2b and Supplementary
Data 3). This result demonstrates the effectiveness of using β
rather than b for characterizing genotypic characteristics.

The heritability of β was significant and high; the heritability
was 0.740 for genomic information and 0.745 for pedigree
information (Fig. 2c). These values were much higher than the
heritability values for α, at 0.326 and 0.408, respectively.
Heritability for b was also poor, at 0.181 and 0.278, respectively
(Fig. 2d).

Genetic improvements in Japanese rice breeding since 1920.
Genetic gain is defined as the yield increase over time and can be
measured by evaluating the yield performance of rice cultivars
released in different years but grown under the same experi-
mental conditions22,23. Our novel method let us compare the
genetic gain in studies conducted in different years and at
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Fig. 1 Genotypic coefficients for yield-ability (β) and yield-plasticity (α) of the 237 core cultivars. Frequency distributions for (a) yield-ability and
(b) yield-plasticity. Relationships between the year when a cultivar was released and the (c) yield-ability and (d) yield-plasticity. e Relationship between
yield-ability and yield-plasticity. Red, light blue, and dark blue arrows in (a) and (b) represent ‘Koshihikari’, a long-time popular cultivar; ‘Nipponbare’, an
older popular cultivar that was used for the rice genome project; and ‘Hokuriku 193’, a high-yielding cultivar, respectively. Black and red data points in (c),
(d), and (e) indicate data for all 237 cultivars and for the 23 major cultivars that represent the most widely grown cultivars from 1920 to 2020 (i.e., farmer
favorite historical cultivars), respectively. ***P < 0.001, +P < 0.1, ns not significant. The 23 major cultivars were ‘Norin 22’ (1941), ‘Kimmaze’ (1948),
‘Hounenwase’ (1952), ‘Koshihikari’ (1953), ‘Etsujiwase’ (1953), ‘Fujiminori’ (1958), ‘Sasanishiki’ (1960), ‘Nipponbare’ (1961), ‘Reimei’ (1963),
‘Todorokiwase’ (1965), ‘Toyonishiki’ (1966), ‘Reiho’ (1966), ‘Ishihikari’ (1968), ‘Akihikari’ (1974), ‘Yukihikari’ (1981), ‘Akitakomachi’ (1982), ‘Kirara 397’
(1985), ‘Hinohikari’ (1986), ‘Hitomebore’ (1988), ‘Fukuhibiki’ (1988), ‘Nanatsuboshi’ (1998), ‘Masshigura’ (1999), ‘Hokuriku 193’ (2001). The numbers in
parentheses are the release years.
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different locations with Japan’s 237 core cultivars by calculating
just two genetic coefficients (α and β). We also analysed the 23
most widely grown cultivars from 1920 to the present (i.e., farmer
favorites; Supplementary Fig. S11). The cultivars that we included
in our analysis represent a diverse range of maturity groups
whose productivity could not be easily compared directly side by
side, particularly owing to their differences in photoperiod
sensitivity24.

Figure 1c shows that the genetic gain in β of yield-ability from
1926 to 2010 was 10.2 kg/ha/year among all 237 core cultivars
combined and more than double that value, at 21.8 kg/ha/year,
among the 23 major cultivars. In terms of the yield-plasticity (α),
the genetic gain of the 237 core cultivars was not significant, but
interestingly, that of the 23 major cultivars was marginally
significant (P= 0.065), with a 1.1% annual increase relative to the
mean plasticity of the 23 cultivars (Fig. 1d). This finding suggests
that local farmers have been choosing cultivars not only for
higher potential yield but also with the intent to obtain higher
yields to cope with a changing climate. In contrast, Japanese rice
breeders have continuously improved only the potential yield of
their rice cultivars.

It is worth noting that we observed no significant relationship
between the potential yield and yield-plasticity of all 237 cultivars
combined or of the 23 major cultivars (Fig. 1e). This result suggests
that the two traits are genetically controlled independently.

Exploring new genomic regions related to yield by means of a
GWAS. Principal-components analysis was performed to test the
genetic background that might be responsible for the false posi-
tives (Supplementary Fig. S12). PC1 separated the cultivars bred
in the northern region of Japan (Hokkaido) from those bred in

other regions of Japan. We performed the GWAS by using a
mixed linear model with covariates to correct for population
structure so as to identify genomic regions associated with yield
for either α or β. A significant peak associated with α was detected
on the short arm of chromosome 10 (Fig. 3a and Supplementary
Figs. S12 and S13). In the GWAS for β, which had a high her-
itability (Fig. 2c), the GWAS did not identify a significant peak,
but several possible peaks corresponding to chromosomes 9, 11,
and 12 were identified (Fig. 3b and Supplementary Fig. S13).
Local Manhattan plots and linkage disequilibrium (LD) analysis
of the significant peak associated with α showed that the geno-
types of the five significant SNPs were highly correlated, sug-
gesting that the candidate region was within 3–4Mb on
chromosome 10 (Fig. 3c). We classified the 237 core cultivars into
five haplotypes based on the genotype of five significant SNPs,
excluding cultivars with heterogeneous genotypes (Fig. 3d). The
cultivars carrying Hap5 showed a higher α value than cultivars
carrying Hap1 and Hap2 (Fig. 3e and Supplementary Data 4).

Discussion
We successfully standardized the cultivar characteristics of rice
yield by using Yp from the CGM to account for environmental
effects on the observed yield data, and then used these data to
characterize two genotypic coefficients that describe yield: α and
β. We call this the YpCGM method. This method extends the
pioneering FW method11 and allows the use of independent yield
data measured at different sites and in different years as inputs for
CGM analysis. In fact, the two parameters quantified by using a
‘big data’ approach were then used for genomic prediction (Fig. 2)
and for exploring new genomic regions related to yield by means
of GWAS analysis (Fig. 3). Our YpCGM method allowed the use
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of a large volume of yield data, and allowed new insights obtained
by means of upcycling yield data from a large number of trials.

Our GWAS let us explore genomic regions related to yield, and
the results can provide guidance for future breeding targets.
However, one limitation of GWAS is that the analyses require a
large quantity of yield phenotype data for a large number of
cultivars (e.g., ref. 25). Our new method may let breeders use the
large number of available historical records to calculate the two
genotypic coefficients that we identified. Figure 3 shows the
results of our GWAS and the ability of this method to identify
new genomic regions associated with yield. The significant peaks
detected for α justify additional research using our approach.
Although we did not detect significant peaks for β, our analysis
suggested the existence of several non-significant peaks that
deserve additional study. One site on chromosome 1 for potential
yield (position 5,484,598; −log10(p)= 3.72) is close to the yield-
related gene Gn1a26 for cytokinin oxidase regulation and panicle
morphology. In addition, peaks on chromosome 2 (position
15,039 574; −log10(p)= 4.02) and chromosome 12 (position
12 792 478; −log10(p)= 4.37) are close to the respective locations
of TAC4, which controls tiller angle by regulating the endogenous
auxin content27, and T20, which encodes ζ-carotene isomerase
and is related to tiller formation28. Four additional previously
unknown regions for potential yield may exist. Our methodology
therefore appears to be a useful way to do GWAS supported by

other forms of genomic analysis such as detection of quantitative
trait loci by upcycling data from previous research, without
requiring slow and labor-intensive field trials.

Genetic gain analysis revealed a significant improvement in β
in response to breeding efforts (10.2 kg/ha/year among all 237
core cultivars) and even greater gains from local farmers’ cultivar
choices (21.8 kg/ha/year among the 23 major cultivars) (Fig. 1c).
The magnitude of the improvement was similar to the range
reported by ref. 29. in Hokkaido, at 21 to 29 kg/ha/year among
the eight cultivars that were introduced between 1905 and 1988
in a 2-year trial, and the results of Zhang and Kokubun30, at
17 kg/ha/year among 10 cultivars introduced between 1893 and
1991 at three sites with different environments in the Tohoku
region (calculated from their Fig. 1).

In terms of yield-plasticity (α), genetic gain was apparent among
the 23 major cultivars, with a 1.1% annual increase relative to the
mean plasticity, but not among the 237 core cultivars (Fig. 1d).
These results suggest that local farmers have been choosing culti-
vars not only for higher potential yields, but also with the goal of
obtaining higher yields despite a changing climate. A similar
breeding direction to increase yield-plasticity in wheat cultivars was
reported in Argentina, Australia, Italy, the UK31, and the USA32.
We hypothesized that a cultivar with higher yield-plasticity may
increase yield when grown in Japan with no constraints imposed by
water availability but with constraints from climate change. We

Fig. 3 The genome-wide association study for yield-plasticity and yield-ability. a Manhattan plot for yield-plasticity. Orange dots indicate significant
SNPs. A genome-wide significant threshold –log10 (p)= 6.191 was determined by the Bonferroni multiple test correction q < 0.05. b Manhattan plot for
yield-ability. The Manhattan plots were visualized with the R gaston package68. c Local Manhattan plot (upper) and LD heatmap (lower) surrounding the
five significant SNPs (orange dots in the local Manhattan plot) on chromosome 10 ranging from 2.8 to 4Mb for yield-plasticity. The LD heatmap on the
lower left indicates the correlation among the five significant SNPs. The white to red gradient (lower panel) indicates the range of R2 values. d DNA
polymorphism of the five significant SNPs and haplotypes (Hap) based on them. e Boxplots for yield-plasticity based on the haplotypes. Hap2 and Hap3
had a small number of cultivars and were excluded. Box edges represent the 0.25 and 0.75 quantiles, with the median values shown by bold lines.
Whiskers extend to data no more than 1.5 times the interquartile range. Differences between the haplotypes were analyzed by the Steel–Dwass test, and
the same letter indicates no significant difference at α= 0.05.
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tested six scenarios based on different yield plasticities (α), with
values ranging from 0.0 to 0.6, in scenarios CV1 to CV6 (i.e., six α
values within the observed range) (Fig. 4a). These results are based
on the assumption of a fixed yield-ability (here, β= 8 t/ha) in 6342
field trial environments using the cultivar ‘Koshihikari’ and data
from 1980 to 2017. Simulation CV1, with zero plasticity, provided a
constant yield of 8 t/ha; increasing the plasticity increased the yield,
with the maximum increase in scenario CV6, with α= 0.6 (Fig. 4b
and Supplementary Data 5). The simulated yield increased with
increasing plasticity throughout the simulation period, with the
greatest gain in the 2010s, at 14%, versus the 1980s, at 8%. This
simulation was based on historical weather records and suggested
that yield-plasticity is a promising future breeding target with
which to accelerate genetic gain in rice yield as an adaptation
to climate change in Japan. Similar positive effects of higher
yield-plasticity were observed in scenarios in which βwas set to 6 to
9 t/ha in increments of 1 t/ha.

In fact, environmental conditions in Japan improved for
‘Koshihikari’ from 1980 to 2017, leading to an observed yield

increase of 13.5 kg/ha/year (n= 6342; Fig. 4c). This trend may
have resulted from an increase in the mean air temperature before
heading, of 0.03 °C/year in the range from ca. 18 to 26 °C
(Fig. 4d), but without a significant trend in solar radiation
(Fig. 4e). Yp, which reflects the cumulative effect of environmental
resources, increased by 21.5 kg/ha/year (Fig. 4f) even without
accounting for the CO2 fertilization effect in this model33–35.

This simulation was based on historical weather records and
suggested that yield-plasticity is a promising future breeding
target for accelerating genetic gain in rice yield as an adaptation
to climate change in Japan since plant growth under favorable
environmental conditions generally benefits from increased
availability of resources, including temperature36,37, atmospheric
CO2

33–35,38, and solar radiation39. Jagermeyr et al.40 predicted
increased rice yields globally from 2069 to 2099 under future
climate scenario SSP585, especially at higher latitudes but with a
decreased yield at lower latitudes. Their prediction means that
environmental resources will become more suitable for rice at
higher latitudes. The genetic control of yield-plasticity should be a
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powerful option to compensate for the predicted yield losses at
lower latitudes and could boost global crop productivity under
future climatic conditions if this plasticity can strengthen abiotic
stress tolerance41. This approach, combined with stronger toler-
ance to abiotic stresses to mitigate the effects of unusual climate
events, which are expected to increase in frequency and severity,
could play a key role in securing global food security for the
predicted world population of 9 billion people in 2050.

Compared to previous approaches using CGM to evaluate cul-
tivar effects on crop yield, the YpCGM method has certain lim-
itations and advantages. A CGM can predict crop yield
by integrating mathematical descriptions of plant physiological
processes in response to changes in their environment and in
management practices throughout the cropping cycle. In
general modeling studies, cultivar characteristics are expressed by
the cultivar-specific parameters used in the mathematical equations
that describe a plant’s physiological processes, and the parameters
are used for genomic analysis of plant yield19,42,43, leaf expansion44,
and flowering time45,46. Our method eliminates the need to para-
meterize the many process models in a CGM by combining easily
available climate data with parameterization of two cultivar-specific
variables, α and β, that determine the overall ability of yield for-
mation by means of linear regression in response to Yp calculated
with fixed default parameters in the CGM for the attainable yield to
represent the effects of the growing environment.

One disadvantage with our approach is that, unlike previous
modeling studies that required parameterization of coefficients
for physiological processes, it cannot identify the causal physio-
logical processes that explain differences among cultivars in
general modeling studies. Also, the relatively low heritability of α
(Fig. 2c) might have resulted from the cumulative error in each
physiological process caused by pooling many studies. This
drawback is offset by the ability of our method (a ‘big data’
approach) to compensate for limited data from studies that
examined many cultivars simultaneously across a range of
environments to parameterize the CGM’s process models.

Recently, Jighly et al.47. examined a method that partially
parameterized cultivar-specific parameters in a CGM. They
measured five traits (grain size, grain number, grain protein
content, phenology, and yield) of 590 wheat cultivars in six field
trials from 2017 to 2020 in Australia. From this parameterization,
they estimated cultivar-specific parameters in the ABIOGP-
Wheat model and successfully used this approach for genomic
prediction. Kadam et al.48. attempted a similar analysis in rice for
five traits (plant height, grain size, ripening percentage, yield, and
phenology) of 267 cultivars using the GECROS model. They used
default parameters in the model for leaf area development,
radiation use efficiency et al. except for parameters that reflected
differences between cultivars. The method of partially para-
meterizing a CGM has the advantage of revealing the causal
factors for cultivar-specific yield variation. However, in most of
'big data', the data required to accurately parameterize a model
may not be available. Our new method can provide sufficiently
good data to accelerate the breeding efficiency to produce culti-
vars adapted to future climates.

The YpCGMmethod can be improved. First, we used only a single
CGM (Supplementary Fig. S5)49 to calculate Yp. This means that α
and β include an error component caused by the structure of the
model, which, for example, does not account for soil type and
fertility50, atmospheric CO2

20, or the temperature of the irrigation
water51. Combining Yp from multiple models might improve
the prediction accuracy. Second, future research should test the
potential of ensemble multi-model analysis using models with dif-
ferent complexities and abilities to account for specific physiological

processes, thereby increasing the accuracy of the Yp calculation, as
was done recently in simulations of future crop yield40,52–54. Third,
we used observed phenology data as input data to improve the
accuracy of parameterization for cultivar-specific variables. The
incorporation of phenology sub-models would let us use additional
data when phenology data is not available. This could also extend our
methods to test the performance of cultivars in environments where
they have not previously been tested and to predict their perfor-
mance under future climates. Fourth, our new approach is made
possible by the sacrificed statistical power of n in the big data, which
compiled data on the yield variations in 72,510 trials of a large
number of cultivars, then performed linear regression for 237 cul-
tivars to identify the values of the two genotypic coefficients. Using
the full dataset of 72,510 individual yield trials would improve the
model’s ability to account for G × E interactions and the genotypic
characteristics of each cultivar. Recently, several authors tried to
improve the accuracy of GP for genomic and phenotyping data by
using intermediate secondary traits of means of environmental
parameters during a specific growth period or to improve a model’s
output2,6,8,9. In future research, it may be possible to extend our
approach to extract cultivar-specific values of α and β by using data
from all 72,510 yield trials of the 237 cultivars.

The YpCGM method may be applicable to other crop species.
We have shown the validity of this method for rice in Japan
grown under no water constraints and relatively uniform soil and
management conditions. This captured the variation of yields,
and let us use a simple empirical model that requires daily solar
radiation and air temperature as inputs (Supplementary Fig. S5).
To apply the YpCGM method more widely, it’s necessary to use a
CGM capable of expressing the performance of different crop
species under diverse environmental conditions. Many CGMs
have been developed for specific species such as wheat, soybean,
maize, and sorghum. These include APSIM, the Agricultural
Production Systems sIMulator55, and DSSAT, the Decision
Support System for Agrotechnology Transfer56, and species-
specific crop models for wheat54, maize52, and rice53. Large
phenotype datasets are available for crop species such as
wheat3,17, maize2,5, sorghum10, chickpea7, and common bean4.
These data are based on field trials conducted under a diverse set
of growing conditions. These datasets can be analysed by using
the YpCGM method to upcycle previous phenotyping data and
increase breeding efficiency by calculating the genotypic coeffi-
cients for yield-ability and yield-plasticity.

We developed a new method for mitigating the effects of the
genotype × environment (G × E) interaction by developing the
YpCGM method. In this approach, we used a weather-driven
crop growth model to combine data from independent yield trials
conducted under varying environmental conditions, with the
model’s estimated potential yield based on weather data. This
approach let us reanalyse a large quantity of valuable data from
previous trials. To the best of our knowledge, we are the first to
use this approach to mitigate the effects of the G × E interaction
and characterize the productivity of cultivars by integrating data
from many trials across a range of environments using only two
regression coefficients. The YpCGM method upcycles accumu-
lated yield data from measurements such as genetic gain analysis
and GWAS to guide future breeding programs toward developing
new cultivars suitable for the world’s changing climate. Because
our analysis is only valid for a specific set of conditions (i.e.,
flooded rice in temperate Japan), the model should not be used to
extrapolate beyond the conditions included in the range of field
trials we studied. However, the approach could, in principle, be
repeated for other combinations of conditions to provide new
values of the two parameters.
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Materials and methods
Phenotype data. We obtained yield datasets for rice (Oryza sativa L.) from
207,331 trials with 8524 cultivars during the 38 years from 1980 to 2017. The data
were obtained from field trials at 110 public agricultural experimental stations in
Japan conducted by the Institute of Crop Science of the National Agriculture and
Food Research Organization, Japan (NARO; 2017 version)57. From the database,
we selected 237 core cultivars, for a total of 72,510 yield datasets, as follows: (i)
From the pedigree network information of 14,032 rice cultivars, we selected 200
cultivars that were central nodes in the classification by the k-medoids method
(k= 200) (Supplementary Fig. S3); (ii) From the hierarchical clustering of the
pedigree relationship matrix using the Wards method in R, we selected 158 cul-
tivars with as many phenotypic records as possible, one cultivar from each cluster;
(iii) Finally, from this total of 358 cultivars, we selected 237 core cultivars for which
data were available from more than 20 trials per cultivar in a location × year
combination (to maintain the accuracy of the regression analysis when the number
of trials was incrementally increased) and for which seed was available at the gene
bank. Supplementary Fig. S2 shows the locations of the study sites, and Supple-
mentary Data 6 provides geographical details, time periods, and numbers of cul-
tivars. The data availability for each of the 237 cultivars ranged from 20 to 6342
datasets (with a median of 163 and an average of 306).

We cleaned the phenotypic data to remove outliers by excluding values that lay
more than 4.0 standard deviations from the median value for each cultivar. The 237
cultivars included the oldest released (‘Asahimochi’, 1926) and the most recently
released (‘Tachiharuka’ and ‘Yukigozen’, 2010) (Supplementary Data 7 and 8).
Each cultivar provided data from 20 to 6342 yield trials that reported phenotype
datasets (yield, days to heading and maturity, panicle number, and panicle length).
Rice plants were grown in paddies under flooded conditions and with consistent
management practices; each study used the best management practices at the time
for site preparation, fertilization rate, and pest and disease control. Because the
cultivation methods were similar between studies, but not identical, future research
should determine whether these differences may have decreased the accuracy of
our analysis. All yields were converted to a 14% moisture content.

YpCGM method. In the YpCGM method, we standardized the yields of each
cultivar by using the theoretical potential yield (Yp). We used a weather-driven
crop growth model (Supplementary Fig. S1b). The standardized values are calcu-
lated using the slope and estimated yield at the SPY (t/ha) to quantify the cultivar-
specific characterization of yield using two parameters: the yield-plasticity (α;
dimensionless) and the yield-ability (β; t/ha) from previous field trials:

Yobsði;jÞ ¼αðiÞYpði;jÞ þ bðiÞ
¼αðiÞðYpði;jÞ � SPYÞ þ βðiÞ

ð1Þ

where Yobs(i, j) and Yp(i, j) represent the observed and potential yield, respectively, of
cultivar i in environment j (year, location, and management regime), and b(i) is the
intercept at Yp= 0. Our conversion of equation 1 to a form that uses SPY lets us
characterize the yield-ability β(i), which represents the x-axis intercept at Yp= SPY;
thus, it is the expected yield at Yp= SPY. SPY can be set by accounting for the
majority (more than 85%) of the Yp experienced for the tested cultivars. This result
covers the observed range of yields and provides a straightforward understanding
of the productivity of a given cultivar. We set SPY to 8 t/ha because 85% of all
cultivars (201 of the 237 cultivars) had experienced Yp= 8 t/ha (Supplementary
Fig. S4). The value of Yp among the 237 cultivars averaged 5.0 t/ha, with a mini-
mum of 0.1 t/ha and a maximum of 9.8 t/ha. We called α(i), β(i) and b(i) as
genotypic coefficients in the followings.

We estimated Yp for a cultivar in each year and at each location by using a
simple empirical CGM developed by Masuya and Shimono49 (Supplementary
Fig. S5). The model integrates daily canopy radiation capture and radiation use as a
function of the daily air temperature and solar radiation58. Leaf senescence is
expressed as a function of photosynthate partitioning, radiation-use efficiency, and
spikelet fertility51. In the cold stress sub-model, the cooling degree-days for
inducing spikelet sterility (at a base temperature of 20 °C) was calculated during the
reproductive growth phase59. In the development sub-model, we predicted the
phenology of a developmental index (DVI60); and combined this model with the
observed heading and maturity dates. The DVI on each date was calculated from
the air temperature by using the ratio of the actual temperature to the cumulative
effective air temperature (here, defined as >10 °C) for each period between the
observed transplanting, heading, and maturity dates. This calculation eliminated
the need for daylength input data and cultivar-specific parameters that accounted
for different phenological responses. This procedure also let us standardize the
yield per unit area by using the observed solar energy capture even for identical
cultivars grown in different years and at different locations and for cultivars with
different maturity dates. Note that other abiotic stresses (heat, drought, and
atmospheric CO2) that influence rice yields in Japan were not considered in our
model to simplify the calculations. Also, the effects of soil fertility and fertilization
were not considered, because all agricultural experimental stations grew rice within
the range of optimal nutrient conditions. The daily air temperature and solar
radiation during the study periods at the weather station closest to each of the 110
locations that provided yield data for 38 years were obtained from the MeteoCrop
database (https://meteocrop.dc.affrc.go.jp/real/top.php) (Supplementary Fig. S2).

The accuracy of the predictions of observed yield by Yp was evaluated with the
root-mean-square error (RMSE) for each cultivar compared to the cumulative air
temperature and solar radiation throughout the season, and the observed panicle
number and length.

To validate the robustness of the regression model (1), the regression
parameters αðiÞ and βðiÞ were estimated for each cultivar i, excluding data from
environment j, and Y in environment j was predicted based on the estimated
parameters. That is, the prediction ability of the regression model (1) was evaluated
via leave-one-out cross-validation. To evaluate the accuracy of the predictions, we
calculated the coefficient of determination in fitting (the ratio of the variation in the
fitted value of Y to the total variation) and the coefficient of determination in
prediction (the ratio of the variation in the predicted value of Y to the total
variation) and compared the coefficient values. If the difference between them is
small, the regression model (1) is expected to make robust predictions without
overfitting.

Genotype data. We resequenced 166 rice cultivars (Supplementary Data 9). First,
we extracted genomic DNA from young leaf tissue of each cultivar with
NucleoSpin Plant II kits (Macherey-Nagel GmbH & Co. KG, Düren, Germany).
We then quantified the DNA with a Qubit fluorometer (Invitrogen, Waltham, MA,
USA). Next, we constructed libraries with Riptide High Throughput Rapid DNA
Library Prep kits (iGenomX, Carlsbad, CA, USA), following the manufacturer’s
protocol. We sequenced the Riptide libraries on the Illumina NovaSeq platform
(Illumina, San Diego, CA, USA), using 150-bp paired-end reads, and then
demultiplexed the results in fgbio v. 1.3.0 software (https://github.com/
fulcrumgenomics/fgbio). We sequenced additional cultivars with a low number
(<6,300,000) of sequence reads on the Illumina HiSeq platform. In addition, we
obtained FASTQ files from the DNA Data Bank of Japan Sequence Read Archive
(DRA) for 70 rice cultivars61,62.

The raw sequence reads of 236 cultivars were cleaned to improve their quality
(quality trimming and adapter clipping) using the Trimmomatic software v. 0.3963

with the options ‘PE -phred 33 ILLUMINACLIP:TruSeq3-PE.fa:2:30:10
LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15 MINLEN:75’. We retained
only paired output reads. After these pre-processing steps, we mapped the
remaining reads onto the ‘Nipponbare’ reference genome IRGSP-1.0, using the bwa
mem command in BWA64, with the options ‘-a -T 0’. We obtained coordinate-
sorted files in BAM format using the SAMtools sort command in SAMtools v.
1.965. We obtained BAM files that contained only correctly oriented and properly
paired mapped reads by filtering the specified bit in the FLAG field during
scanning with the SAMtools view command. The BAM files were filled in as mate
coordinates using the SAMtools fixmate command. Finally, we obtained BAM files
that contained only paired mapped reads by using the samtools view
command again.

SNP-based genotype calling can be obtained as a file in variant call format
(VCF). First, the VCF file was generated as follows: (i) BCFtools v. 1.965 mpileup
command with the options ‘-a DP,AD,SP,ADF,ADR -B -q 10 -Q 13 -C 50’; (ii)
BCFtools call command with the option ‘-vm -f GQ,GP’; and (iii) BCFtools filter
command with the option “-i “INFO/MQ >= 10”. Next, we only retained reliable
SNPs where (1) the SNP had a frequency of 0.8 or greater for samples with a depth
of 5 or higher and a genotype quality of 20 or higher, and (2) the mapping quality
was 30 or higher. Subsequently, we converted the genotypes with low depth and
low genotype quality to ‘missing’ using VCFtools66 with the options ‘‑‑minGQ 20
‑‑minDP 2’. Afterward, we entered the resulting genotype dataset in BEAGLE v.
5.167. Furthermore, we filtered out SNPs where the minor allele frequency (MAF)
was lower than 0.05 among the 237 samples. Finally, we completed a core cultivar
genotype dataset with 91,800 SNPs from 237 cultivars, including ‘Nipponbare’.

GP analysis: prediction of genotypic coefficients and calculation of herit-
ability. The accuracy of the predictions based on genomic and pedigree data for the
genotypic coefficients α and β was evaluated based on the genomic (realization)
relationship matrix and the pedigree (numerator) relationship matrix. We tested the
genomic best linear unbiased prediction (gBLUP), the pedigree-based best linear
unbiased prediction (pBLUP), a combination of the two approaches (gpBLUP), and a
prediction based on the genome × pedigree information (g×pBLUP). In all BLUP　
modeling, we built a multiple trait model that allowed us to account for correlations
between α and β.

The accuracy of the predictions based on genomic and pedigree data for the
genotypic coefficients α and β was evaluated. Predictions were based on the
genomic (realization) relationship matrix and the pedigree (numerator)
relationship matrix.

The genomic relationship matrix was calculated with the same set of SNPs used
for the GWAS (91,800 SNPs satisfying the condition MAF ≥ 0.05). Specifically, the
value was calculated as G ¼ XX0=m from the matrix X representing the SNP
genotypes of the 237 cultivars, where the ði; jÞ elements of X represent the genotype
of the j-th SNP of the i-th cultivar, first scored as 0 for reference-type homozygous,
2 for non-reference-type homozygous, and 1 for heterozygous; they were then
standardized to have a zero mean and unit variance, and where m represents the
number of SNPs. The pedigree relationship matrix was calculated based on the
parental information of each cultivar obtained from the NARO (https://ineweb.
narcc.affrc.go.jp/) rice cultivar database. The pedigree relationship matrix, A, was
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calculated based on pedigree information of 15,145 cultivars, including lines that
were included as dummies to account for backcrossing steps.

Prediction models were constructed using the genomic and pedigree
relationship matrices. Specifically, the following four BLUP models were
constructed as shown below:

gBLUP:

y ¼ μ þ gg þ ε ð2Þ
pBLUP

y ¼ μ þ gp þ ε ð3Þ
gpBLUP

y ¼ μ þ gg þ gp þ ε ð4Þ
g×pBLUP

y ¼ μ þ gg þ gp þ ggxp þ ε ð5Þ

where y is the vector with a length of n ´ 2 (n genotypes and two YpCGM
parameters) whose i-th and nþ i-th elements are αðiÞ are βðiÞ (or αðiÞ are bðiÞ),
respectively, μ is the vector whose elements are the overall mean, gg is the vector of
genetic effects accounted for by the between-parameter covariance and the
genomic-based relationships, i.e., gg �Nð0;Σ� Gσ2GÞ, where ΣG is the genomic-
based genetic covariance matrix of the two parameters and � is the kronecker
product, gp is the vector of genetic effects accounted for by the pedigree-based

relationships, i.e., gp �Nð0;ΣA � Aσ2AÞ, where ΣA is the pedigree-based genetic
covariance matrix, and gg´ p is the vector of genetic effects accounted for by the
interaction between genomic- and pedigree-based relationships, i.e.,
γ�N 0;ΣGA � ðG� AÞ� �

, where ΣGA is the genetic covariance matrix of the
interaction effects and � is the element-wise product (the Hadamard product) of
the matrices, and ϵ is the vector of residuals assuming ϵ�Nð0;R� IÞ, where R is
the residual covariance matrix between two coefficients. The g×pBLUP is the full
model with interaction terms between genomic and pedigree relationships
(Howard et al., 2019). The MTM function in the R package MTM (de los Campos
and Grüneberg 2016) was used to estimate the parameters of the model and to
calculate BLUP values. In the estimation, a total of 20,000 iterations of a Gibbs
sampler were run, and the first 5000 iterations were discarded.

To evaluate the model’s prediction accuracy, we conducted 10 replicates of 10-
fold cross-validation. Specifically, we estimated the parameters of each prediction
model, calculated BLUPs for cultivars in 9 of the folds, and then predicted the y
value for cultivars in the one fold that had been left out. This step was repeated for
all folds. Predicted values for all 10 folds were aggregated, and correlations between
observed and predicted values and RMSE values were calculated. This procedure
was repeated 10 times.

To evaluate the levels of genetic control of the genotypic coefficients α and β, we
calculated heritability using genomic and pedigree relationship matrices. One
estimate was obtained for each cultivar for each of the genotypic coefficients, and
there were no replications. Thus, heritability was calculated using the genetic
variance (a diagonal element of ΣG or ΣP) and the residual variance (a diagonal
element of R) estimated for the gBLUP and pBLUP models in each genetic
coefficient. Specifically, when σ2G was the diagonal element of ΣG or ΣP

corresponding to the parameter of interest (α, β or b) and σ2G was the diagonal
element of R corresponding to the parameter, the ratio σ2G=ðσ2G þ σ2EÞ was
calculated as an estimate of the heritability of the parameter. In the calculation, the
parameters of the gBLUP and pBLUP models were estimated using data from all
237 cultivars. The MTM function in the MTM R package (de los Campos and
Grüneberg 2016) was used for the calculation. The iterations in the Gibbs sampling
were the same as the iterations used for calculating the BLUP parameters.

The accuracy of the predictions based on genomic and pedigree data for the
genotypic coefficients α and β was evaluated based on the genomic (realization)
relationship matrix and the pedigree (numerator) relationship matrices.

GWAS analysis. We performed a GWAS of the α and β of the 237 cultivars listed in
Supplementary Data 7 using the genotype set of 91,800 SNPs. Population structure
was estimated (i.e., calculation of PCA [n= 4] and kinship [K] matrixes) and a
GWAS based on the mixed linear model was performed in the R package gaston68. A
genome-wide significance threshold, –log10 (p)= 6.191, was determined by a
Bonferroni-adjusted multiple test correction (q < 0.05). The R gaston package
visualized the Manhattan, Q–Q, and local Manhattan plots. LD-heatmaps were
generated in the R LDheatmap package69. Statistical analysis to compare the haplo-
types for α was performed in Python v. 3.10.4. The Shapiro–Wilk test (the shapiro
function from the stats library of the scipy package) was used to check that the data
were normally distributed. The Levene test (the levene function from the stats library
of the scipy package) was used to confirm the homogeneity of variance. The data were
not normally distributed, nor was the variance homogeneous. Means were therefore
compared by Kruskal–Wallis test (the kruskal function from the stats library of the
scipy package) followed by the Steel–Dwass test (the posthoc_dscf function from
the scikit_posthocs package). All statistical significances were set to P < 0.05.

Statistics and reproducibility. Graphs were generated using Microsoft Excel 365
(Figs. 1, 2, 4) or R v4.2.1 (Fig. 3).

All graphs show the mean as a bar or fitted curve and individual data points as a
scatter plot.

The analysis used a value for each of 237 cultivars obtained from regressions of
20–6342 field trials across locations and years. The source data for all graphs
presented are included as Supplementary Data.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence reads for SNP genotyping used in this study were deposited at the DNA
Databank of Japan (DDBJ, https://www.ddbj.nig.ac.jp/index-e.html) (Supplementary
Data 9). The SNP genotype dataset from the 237 rice cultivars used in this study is
available at https://doi.org/10.5281/zenodo.7593964. The source data for the graphs that
are presented are in Supplementary Data. All other data are available from the
corresponding author on reasonable request.
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