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A high-quality genome assembly highlights the
evolutionary history of the great bustard (Otis
tarda, Otidiformes)
Haoran Luo 1,2,6, Xinrui Jiang1,6, Boping Li3,6, Jiahong Wu 1, Jiexin Shen1, Zaoxu Xu3, Xiaoping Zhou2,

Minghao Hou3, Zhen Huang 4,5✉, Xiaobin Ou 3✉ & Luohao Xu 1✉

Conservation genomics often relies on non-invasive methods to obtain DNA fragments which

limit the power of multi-omic analyses for threatened species. Here, we report multi-omic

analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that

was found dead in the mountainous region in Gansu, China. We generate a near-complete

genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chro-

mosomes. We characterize the DNA methylation landscape which is correlated with GC

content and gene expression. Our phylogenomic analysis suggests Otidiformes and Muso-

phagiformes are sister groups that diverged from each other 46.3 million years ago. The

genetic diversity of great bustard is found the lowest among the four available Otidiformes

genomes, possibly due to population declines during past glacial periods. As one of the

heaviest migratory birds, great bustard possesses several expanded gene families related to

cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively

selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary

stratum on the sex chromosome, a rare case among birds. Together, our study provides

insights into the conservation genomics, adaption and chromosome evolution of the great

bustard.
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Conservation genetics has moved towards an era where
high-quality reference genomes are often required1,2. For
threatened animals, one of major challenges in conserva-

tion genomics is to obtain fresh samples for genome sequencing,
in particular long-read sequencing3. Noninvasive sampling4,
including collecting hairs, feathers5,6, feces7, or museum
specimens8 has been widely used in conservation biology, but
severe RNA degradation, highly fragmented DNA and heavy
contamination limit the performance of high-quality DNA
extraction or transcriptome profiling9,10. The degeneration of
DNA and RNA is much slower in cold temperatures, therefore
sampling animals that recently died in frigid zones provides an
alternative strategy for obtaining well-preserved DNA or RNA.
This has been successful for several mammalian species11,12, but
such effort for avian species has been rare3.

The recent development of long-read sequencing provides an
unprecedented opportunity for complete genome assembly, or
telomere-to-telomere genome assembly13. This is critical to pre-
serve complete genomic information for endangered species, an
endeavor proposed by some initiatives such as the digital Noah’s
Ark14. Nanopore technology provides a fast and high throughput
method for sequencing long-reads that can be up to hundreds of
kilobases and has been widely used in conservation genomics15.
In addition, Nanopore reads contain DNA methylation signals,
allowing for identification of genome-wide epigenetic
modifications16,17 that are critical for the maintenance of genome
stability and gene expression regulation.

Birds have the most streamlined genomes among vertebrates
where large-scale genome sequencing projects have been over-
whelmingly successful18,19. To date, over 500 bird genomes are
available, though most were sequenced with short reads20. A
recent chicken pan-genome study using long-read sequencing,
however, suggests bird genomes are far from complete, missing
thousands of genes previously thought to be lost21. The Verte-
brate Genome Project recently also reports massive false gene
losses in bird genomes22. Moreover, a few microchromosomes
have been missing or incomplete in bird genome assemblies likely
due to their high GC content and accumulation of simple
repeats22,23.

The great bustard (Otis tarda) has been a vulnerable species
according to the IUCN Red List of Threatened Species since 1988.
The decline of great bustard population in recent years is mainly
caused by habitat loss due to human activity24, collisions with
power lines25 and hunting. Great bustard is amongst the heaviest
living flying animals. The male can range in weight from 5.8 to
18 kg26, and the heaviest verified specimen was about 21 kg, a
world record for the heaviest flying bird27. The great bustard is
also one of the most sexually dimorphic birds in body size, with
adult male great bustards being ~2.5 times heavier than females28.
Despite the heavy body, great bustard is a powered flier and can
reach speeds of 48 km/h to 98 km/h during migration29, and can
migrate over 2000 km in northern Mongolia breeding
populations29.

In the January of 2022, we spotted a dead adult male great
bustard in a mountainous region of Gansu, China. The cause of
death was unidentified, and the date of death was unclear. We
immediately relocated the animal to the lab for dissection, and
extracted samples for Nanopore ultra-long, Hi-C and RNA-seq
library preparation. Fortunately, both DNA and RNA was well
preserved, and we were able to retrieve a high-quality genome
assembly that contained complete chromosome models. Com-
bining genomic, epigenomic and transcriptomic analyses, we
illustrated the genetic diversity, demography, gene expression
landscape and the evolutionary history of the sex chromosomes of
great bustard.

Results
Near-complete genome assembly using ONT-only data. We
extracted high-molecular-weight DNA from thigh muscle tissues
of the frozen great bustard (Supplementary Fig. 1), and produced
134.1 Gb (~112X genome coverage, Supplementary Table 1,
Supplementary Fig. 2) ONT ultra-long reads. The N50 of the
ONT reads reached 37.7 kb, suggesting that long fragments of
DNA had been preserved. We used the ONT reads longer than
40 kb (~52X genome coverage) for de novo genome assembly,
resulting in a primary assembly with only 129 contigs. The total
assembly size is 1.20 Gb, a bit larger than short reads-based
estimation (1.09 Gb, Supplementary Fig. 3) by 112.6 Mb. The
contig N50 is 41.0 Mb, ranking the fourth longest among more
than 500 bird genome assemblies available in NCBI, only next to
a chicken30 and two parrots. To correct potential indel errors, we
polished the contigs using 73.3 Gb short-reads generated from the
same sample (Supplementary Fig. 4). The BUSCO completeness
score is 97.5%, suggesting a high level of genome completeness
(Supplementary Table 2).

We further anchored the contigs to chromosome models using
58.6 Gb Hi-C data, generating the final assembly OtiTar_swu.
The Hi-C heatmap revealed 40 chromosome models (Fig. 1a, b),
consistent with the known karyotype (2n= 80)31. Those 40
chromosomes include 39 autosomes and a Z chromosome,
accounting for 97.7% of the assembled sequence. The scaffold
N50 of OtiTar_swu is 82.8 Mb. Out of the 40 assembled
chromosome models, 32 contain zero gaps; the other eight
chromosomes have only 18 gaps (Supplementary Fig. 5).

To further evaluate the completeness of chromosomal
assembly, we searched for the presence of the telomere repeats
(TTAGGG)n and centromeric sequence. We found that the
telomeric repeats were present at the ends of 20 chromosomes
with a mean length of 2.3 kb (Supplementary Table 3). We
identified a putative centromere repeat (Cen191) that was 191 bp
long and was present in 38 out of 40 chromosomes. The Cen191
repeats appear at one end in all microchromosomes (Fig. 1a,
Supplementary Fig. 6), consistent with the acrocentric morphol-
ogy of bird microchromosomes32.

The repetitive sequences occupy 15.1% of the great bustard
genome (Supplementary Table 4, in contrast to the mean value of
~9.5% in other birds19. This partially explains the larger genome
size (~1.20 G) of great bustard compared with the average bird
genome size (~1.10 Gb)33.

Extremely conserved karyotype throughout avian evolution.
The diploid number of chromosomes (2n= 80) in great bustard
is equal to that in emu which is thought to represent the ancestral
avian karyotype34. In contrast to the complete assembly of
chromosomal models in OtiTar_swu, a few small micro-
chromosomes are unfortunately absent in the emu genome
assembly. We thus chose to compare OtiTar_swu with a new
zebra finch genome assembly (bTaeGut1.4.pri)22, and a recently
published chicken genome that has complete chromosome
models30. Our synteny analysis showed that all great bustard
chromosomes have one-to-one homology with chicken chromo-
somes except for chr4 and chr4a (Fig. 1c) which were known to
have fused in chicken35,36. Compared with chicken or great
bustard, the zebra finch genome experienced one known fission
leading to chr1 and chr1a35 and one newly identified fusion
between two small microchromosomes (Fig. 1c). According to
such chromosome comparisons, we inferred that the great bus-
tard likely retains the ancestral avian karyotype, reflecting
extreme conservation of karyotype during avian
diversification37,38.
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Phylogenomic analysis resolve the position of Otidiformes. The
phylogenetic position of Otidiformes which great bustard belongs
to is one of the unresolved problems in the bird tree of life
despite large-scale phylogenomic efforts in the past decade.
Using whole-genome alignment data, Jarvis et al. (2014) placed

Musophagiformes as the sister group of Otidiformes39 (Fig. 2a),
while targeted capture data40 suggested Cuculiformes to be the
sister group (Fig. 2b). Though the Musophagotides clade
(Musophagiformes+Otidiformes) is further supported by a
transcriptome-based phylogeny (Fig. 2c)41, a more recent

Otidiformes

Otis tarda

Ardeotis kori

Musophagiformes
Corythaixoides concolorwere

Cuculus canorus

Columba livia

Taeniopygia guttata

Gallus gallus

77.66

67.64

53.76

46.28

27.13

8 Mya

Musophagiformes

Cuculiformes

Columbiformes

a
15.33
(4.74, 27.71)

(64.74, 87.71)

(58.83, 80.40)

(37.21, 70.58)

(28.88, 63.24)

(9.52, 45.76)

Musophagotides

d
Otidiformes

+284/-2583 (+32/-39)*

+354/-2435 (+31/-15)*

+972/-688 (+41/-4)*

+1548/-908 (+95/-8)*

+404/-1479 (+38/-9)*

+420/-1772 (+44/-15)*

+690/-1480 (+63/-19)*

Musophagiformes

Cuculiformes

Columbiformes

b

Otidiformes
Musophagiformes

Cuculiformes

Columbiformes

c

Jarvis et al. 2014 

Kuhl et al. 2021

Prum et al. 2015
Feng  et al. 2020

Otidiformes
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phylogenomic study19 again suggested that Cuculiformes is closer
to Otidiformes (Fig. 2b). To resolve such phylogenetic uncer-
tainty, we generated both whole-genome alignments and align-
ment of coding sequences (CDS) for 5832 single-copy
orthologous genes from seven birds. Those birds include two
Otidiformes, one Musophagiformes, one Cuculiformes, one
Columbiformes species, and two outgroup species (chicken and
zebra finch) (Methods). The phylogeny derived from whole-
genome alignment and concatenated CDS alignment (Fig. 2a)
were in agreement with Jarvis et al. (2014), though concatenated
protein sequences-based phylogeny (Fig. 2c) supported the Kulh
et al. (2021) phylogeny. Based on the whole-genome or CDS
alignment topology we obtained, we estimated the divergence
time across the phylogeny. Our analysis showed that Otidiformes
diverged from Musophagiformes approximately 46.3 million
years ago (Fig. 2d).

Methylation landscape correlated with GC content and gene
expression. Across the great bustard genome 85.5% of the CpG
sites are methylated in the muscle tissue, a percentage somewhat
higher than that in human tissues (70–80%)42. This percentage
varies across chromosomes, with smaller chromosomes having
much fewer methylated CpG sites (Fig. 3a). Notably, dot chro-
mosomes (the smallest microchromosomes)30 have only 68.91%
of the CpG sites methylated (Fig. 3a), though they contain a
higher density of CpG sites and have higher GC content (Fig. 1b)
than microchromosomes or macrochromosomes (Supplementary
Tables 5–7). A lower percentage of methylated CpG sites at least
in part explains lower chromosome-wide methylation (5mC)
levels in dot chromosomes (0.501) than in microchromosomes
(0.580) or macrochromosomes (0.602) (Fig. 3b, Supplementary
Table 8). This is in contrast to a previous study in chicken where
dot chromosomes were found to have higher methylation levels30.

In chicken dot chromosomes the higher methylation levels are
likely driven by the large hypermethylated heterochromatic
regions which are, unfortunately, only partially assembled in
OtiTar_swu (Fig. 3c). The dot chromosomes in the OtiTar_swu
assembly instead contain mostly gene-rich euchromatic sequen-
ces (Fig. 3c).

To investigate the relationships between DNA methylation and
gene expression43, we collected RNA-seq data from muscles, the
same tissue where we measured methylation. We surprisingly
found the RNA still have a moderate quality according to A260/
280 values, Q20 and Q30 (Supplementary Table 9) despite the
animal exposed in the wild for a while after death. We found that
the methylation level and gene expression levels were significantly
negatively correlated (Pearson’s correlation P < 2 × 10−16,
R=−0.21) (Fig. 3d), corroborating the role the DNA methyla-
tion in repressing gene expression44. Our analysis also showed
that the methylation level was negatively correlated with gene
density (Pearson’s correlation P < 2 × 10−16, R=−0.25) (Fig. 3e).

Identifying genes involved in Adaption to powered flight. Next
we sought to identify rapidly expanded gene families and posi-
tively selected genes (PSGs) that may play a role in phenotypic
diversification and adaptation to the environment45. Among the
63 expanded gene families (Supplementary Data 1) are those
related to ATPase, short-chain dehydrogenases reductases,
mitochondrial inner membrane protein and immunoglobulin.
Out of the 24 hierarchy of enriched GO terms for the 432 genes
from the expanded gene families, ten directly related to cardiac
functions, including regulation of cardiac muscle contraction by
calcium ion signaling (GO:0010882) and cardiac muscle con-
traction (GO:0060048) (Supplementary Fig. 7, Supplementary
Data 2).
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We detected 763 PSGs after three rounds of robustness tests
(Supplementary Data 3), and found that they were enriched for
GO terms mainly related to metabolism processes, including
protein lipidation (GO:0006497), monocarboxylic acid catabolic
process (GO:0072329) and lipid catabolic process (GO:0016042)
(Supplementary Fig. 8, Supplementary Data 4). The PSGs
generally have higher expression levels than non-PGSs in all five
tissues we sampled (FDR < 0.0001, Supplementary Table 10), and
have the highest expression levels in muscles (Fig. 4a).

Among the PSGs, two (MYF5 and MYOD1) show specifically
high expression in muscles (Fig. 4b), a trend verified by RT-qPCR
(Fig. 4c). MYF5 encodes myogenic factor 5, known to be
associated with myogenin, involved in positive regulation of
muscle cell differentiation and skeletal muscle cell differentiation
processes46,47. MYOD1 (Myogenic Differentiation 1) promotes
muscle-specific target genes transcription48,49, also plays key role
in muscle differentiation46,47,50. The use of FEL (Fixed Effects
Likelihood) model further suggested that the positively selected
sites in MYF5 and MYOD1 were likely selected in the common
ancestor of great bustard and kori bustard (Fig. 4d).

Demographic history and genetic diversity. The genome-wide
nucleotide divergence between great bustard and kori bustard was
estimated to be 6.25% based on which we estimated that the
neutral mutation rate was 6.11 × 10−9 mutations per base per
generation in great bustard, and used this value to infer popu-
lation dynamics. The PSMC analysis suggests that the population
effective size (Ne) was up to ∼80,000 but decreased to ~30,000
from ~250 to ~130 Kya during the RISS glacial period. During the
last glacial period (LGP), the Ne stabilized, and gradually recov-
ered to ~40,000. Since then, the Ne fluctuated around ~40,000,
similar to the census population size (Fig. 5a). The low resolution
of PSMC model in the recent generations, however, warrants
future population-based estimation to understand the impact of
recent climate changes and human activities on great bustard
population dynamics.

Due to the lack of population samples, we used individual
genome heterozygosity to approximate the level of genetic
diversity51. The heterozygosity of great bustard was 0.14%, the
lowest among the four Otidiformes genomes we sampled
(Fig. 5b). To evaluate whether inbreeding may have caused the
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reduced heterozygosity, we calculated the lengths of ROH (run of
heterozygosity) using short-read sequencing data from a male
(the one used for genome assembly) and a female individual. The
average lengths of ROH were 0.27 and 0.36 Mb (Fig. 5c),
covering 7.6% and 8.8% of the genome (FROH) for the male and
female individual, respectively. The FROH is smaller than that in
kakapo (>15%)52 or California condor (>20%)53, but larger than
that in Tibetan chicken (4–6%)54 and many other non-threaten
birds. The moderate level of FROH and relatively short ROH
suggested possible inbreeding occurred in distant generations55,
consistent with the ancestral bottleneck inferred from the PSMC
analysis.

A recently evolved sex chromosome stratum. Neoaves birds
share a large non-recombining region of the ZW sex chromo-
somes, and many lineages further independently experienced an
additional event of recombination suppression56,57, leading to
varying lengths of the pseudoautosomal regions (PARs). We
demarcated the boundary of PAR in the great bustard by map-
ping female resequencing data to the male reference genome
OtiTar_swu. A ~10Mb sequence at the edge of the Z chromo-
some shows a diploid coverage and high female heterozygosity
(Fig. 6a, b). The diploid region was further restricted to the first
~2Mb when a stringent filtering criterion was used by removing
the reads with mismatch numbers larger than 2 (Fig. 6c). A likely
explanation for the disparity is that the region from ~2 to ~10Mb
(S3) experienced a recent event of recombination suppression
between the Z and W, and the W was insufficiently differentiated
from the Z, allowing the W-derived reads to be mapped to the
Z58. In such a case, only the first ~2Mb should be identified as
the PAR.

Similarly, the region from ~10 to ~28Mb showed a low density
of heterozygous sites, in contrast to the rest of the Z being almost
hemizygous (Fig. 6b), as well as fluctuation in coverage when a
standard mapping criterion was applied (Fig. 6a). This region is
likely the third evolutionary stratum (S2) whose range on the Z
chromosome matched what has been identified on other Neoaves
birds59. The boundary of S2 aligned with the breakpoint of an
inversion between the Z chromosomes of great bustard and emu
(Supplementary Fig. 9) that has been predicted to create the
Neognath S156.

Discussion
In this study, we generated a near-complete chromosome-level
genome assembly of the great bustard using DNA extracted from

a dead individual found in the wild. The OtiTar_swu is among
the most continuous bird genome assemblies, containing all 40
chromosome models. This has been rare in bird genome assem-
blies because the small microchromosomes, or dot chromosomes,
are difficult to be assembled due to their high GC content and
abundant tandem repeats22,23,30. We relied on ONT ultra-long
sequencing data alone for generating such a continuous genome
assembly. Though ONT reads suffer from lower read accuracy
compared with HiFi reads, they may have helped resolve the
assembly of dot chromosomes30. The ONT data alone has suffi-
cient power to resolve centromeric and telomeric sequences for
some of the chromosomes of great bustard, and the use of R10.4
flowcell is expected to further increase the capability of ONT data
to resolve complex regions60.

Great bustard has received increasing attention in recent years,
and large efforts have been made in species conservation,
including re-introduction (according to the Royal Society for the
Protection of Birds). Our study provides a high-quality genome
assembly of great bustard which will serve as an important
genomic resource for conservation management. The low genetic
diversity of great bustard revealed by our analysis is alarming,
demanding future surveys of genetic diversity among great bus-
tard populations.

The genomic sequence also allows for a comparative genomic
analysis to search for clues of genetic adaptation to powered flight
in great bustard that is among the heaviest flying birds. We
identified MYF5 and MYOD1 that were positively selected in
great bustard and have high expression levels in muscles. Both
genes are essential for muscle cell fate specification in bird
embryos61,62. Furthermore, we identified several expanded gene
families that were related to cardiac muscle contraction. Those
analyses suggest enhanced muscle function likely plays a role in
great bustard long-range powered flight, and future in-depth
functional analysis is needed to illustrate to molecular mechan-
isms of MYF5 and MYOD1 adaptation.

Our comparative genomic analyses have also provided insights
into avian genome evolution. Because the sampled individual is
male, the assembled genome lacks a female-limited W chromo-
some. Nevertheless, we were able to infer the evolutionary strata
on the Z chromosome based on sequencing coverage and het-
erozygosity. Further efforts are needed to assemble a female
genome in order to analyze the gene content and evolution of the
W chromosome63, and similar analyses are required for closely
related lineages, such as Musophagiformes, to illustrate a more
complete evolutionary history of sex chromosomes. Our chro-
mosomal comparison across Neognaths also provide direct
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genomic evidence for the evolutionary stasis of avian
chromosome37, including the smallest microchromosomes that
receive little study until recently30.

Methods
Sample collection and sequencing. An adult male great bustard was found dead
on the 17th of January, 2022, at Hesheng Town, Ning County, Qingyang City,
Gansu Province, China (35°431255′N, 107°782055′E). The local temperature was
−7 to 4 °C during the day we collected the animal. The frozen individual was
immediately relocated to the laboratory for dissection. Five tissues were collected
for sequencing, including leg thigh muscle, brain, heart, lung, and liver. We had a
previously preserved sample of a female great bustard, but its low preservation
quality only allowed for short-read but not long-read sequencing. The Institutional
Animal Care and Use Committee (IACUC) of Longdong University has approved
the animal ethics.

Genomic DNA for ultra-long reads sequencing was isolated from the thigh
muscle. Ultra-long DNA was extracted by the Phenol:Chloroform:Isoamyl alcohol
(25:24:1) method from the Tris+SDS (Sodium Dodecyl Sulphate)+EDTA+NaCl
lysing reagents treated64 tissues without a purification step to ensure a sustained
length of genomic DNA. Then, length >50 kb genomic DNA was size-selected in
the SageHLS HMW library system (Sage Science, USA), and sequencing libraries
were processed by using the Ligation sequencing 1D kit (SQK-LSK109, Oxford
Nanopore Technologies, UK) according to the manufacturer’s instructions. Three
DNA libraries were constructed and sequenced on the PromethION (Oxford
Nanopore Technologies, UK) at the Genome Center of Grandomics (Wuhan,
China).

For short-read sequencing, the cetyltrimethylammonium bromide (CTAB)
method was used to extract genomic DNA from thigh muscle. Genomic DNA was
randomly fragmented, then an average size of 200–400 bp fragments was selected
by Agencourt AMPure XP-Medium kit. The constructed library was then
sequenced on the MGISEQ-T7 platform (Genome Center of Grandomics,Wuhan,
China)65 with PE 150 bp mode.

Hi-C sequencing data was used to anchor assembled contigs onto
chromosomes. Muscle tissues were cut into pieces in nuclei isolation buffer
supplemented with 2% formaldehyde for cross-linking. Cross-linking was stopped
by adding glycine and additional vacuum infiltration. Fixed tissue was then
grounded to powder and resuspended in nuclei isolation buffer to obtain a
suspension of nuclei. To remove unligated DNA fragments, the purified nuclei
were digested with 100 units of Dpnll and marked by incubating with biotin-14-
dATP. The ligated DNA was sheared into 300–600 bp fragments, and then
followed by a standard library preparation protocol66. Hi-C sequencing was

conducted on the MGISEQ-T7 platform (Genome Center of Grandomics,Wuhan,
China) with the PE 150 bp mode.

Genome assembly and assessment. We used three cells of Nanopore ultra-long
reads for de novo assembly with default parameters in Nextdenovo v2.5.067. To
correct assembly errors, we applied two rounds of polishing with Nextpolish
v1.4.068 based on the long-read alignments. We further polished the assembly twice
with short reads using Pilon v1.2469. Benchmarking Universal Single-Copy
Orthologues (BUSCO V5.2.2)70 with the aves_odb10 lineage (n= 8338) was used
to assess genome assembly completeness.

Chromosome-level assembly with Hi-C data. We mapped the reads from the Hi-
C library sequencing against the contigs with the Juicer (v1.6) pipeline71. The “.hic”
file was generated using the 3D-DNA (v180419) pipeline72 and the Hi-C heatmap
was visualized in the Juicebox Assembly Tools73 for manual curations. We
demarcated chromosome boundaries and reverse or reorder contigs according to
the Hi-C interaction heatmap in Juicebox. The MCscan function from the JCVI
package74 was used to identify synteny blocks among the great bustard, chicken
and zebra finch. Default parameters were used except for ‘minispan = 30’ when
performing jcvi.compara.synteny screen process.

RNA-sequencing and transcriptome assembly. Total RNA from thigh muscle,
brain, heart, lung, and liver tissues were extracted using the Trizol (Invitrogen,
Carlsbad, CA, USA) method. RNA-sequencing libraries were prepared and
sequenced on the MGISEQ-T7 platform with the PE 150 bp mode. After trimming
RNA-seq reads with Trimmomatic (v0.39, default parameters)75, we mapped the
filtered RNA-seq against the genome assembly with HISAT2 (v2.1.0)76. Transcripts
were assembled using StringTie (v2.0)77. TransDecoder (v5.5.0)78 was used to
predict protein-coding regions of the assembled transcripts.

Repeat annotation. Avian homology repetitive elements were acquired from
RepeatMasker (http://www.repeatmasker.org) database (RepeatMaskerLib.h5).
EDTA (v2.0.1)79, TRF (v4.09)80, and RepeatModeler (v2.0.1) were used for de novo
prediction of repetitive elements. Tandem repeats predicted by TRF80 were filtered
by the pyTanFinder pipiline81. CD-hit (v4.8.1)82 was used to construct a non-
redundant repeat library based on all de novo and known libraries. RepeatMasker
(v4.1.2-p1) was used to mask repetitive elements in assembled chromosome-level
genome with default parameters.
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Genome annotation. For homolog-based methods, genome threader (v1.7.1)83

and exonerate (v2.4.0)84 (implemented in maker385) were used to predict gene
models. Chicken and zebra finch protein sequences were used as queries for
homolog search. For ab initio-based methods, AUGUSTUS v3.4.086, GeneID v1.487

and SNAP88 were used to predict gene models. The training models of AUGUS-
TUS were directly acquired based on BUSCO (V5.2.2) gene models. The training
set for GeneID was derived from transcriptome-based evidence. The initial training
set of SNAP (v2006728) was acquired from homolog proteins and genome-guided
transcripts assembled with TRINITY v2.8.589. Three-round training was performed
in SNAP. We then used EVM v1.1.178 to integrate all predicted gene models by the
above three methods. Finally, we used the PASA (v2.5.2)90 pipeline to polish gene
models using TRINITY genome-guided transcript assembly.

DNA methylation. DNA 5mC methylation was called with Nanopolish (v1.4.0)91

by using the Hidden Markov Model. ONT ultra-long fast5 files were used as the
input files. The methylation frequency was calculated as the number of reads on
methylated cytosine (xmCpG) divided by the total number of reads covering each
cytosine site in the reference (xmCpG+xCpG). We further calculated the mean
methylation levels over 50 kb windows, and analyzed the correlations with other
genomic features.

Phylogenetic analyses. Coding sequences of chicken (Gallus gallus,
ASM2420605v1)30, zebra finch (Taeniopygia guttata, GCA_003957565.4)22, kori
bustard (Ardeotis kori, ASM1339637v1)19, Common Cuckoo (Cuculus canorus,
ASM70932v1)18, Rock pigeon (Columba livia, Cliv_2.1)92, grey go-away-bird
(Corythaixoides concolor, ASM1339949v1)19 and the great bustard (this study)
were used to construct phylogenetic tree and to perform comparative genomics
analyses. To do so, we used OrthoFinder293 to identify single-copy orthologous
genes for the sampled bird species. IQTREE294 was used to construct the max-
imum likelihood tree based on single-copy orthologous genes, and the best sub-
stitution model JTT+ F+ I+ I+ R4 automatically selected by ModelFinder95 for
protein alignments. For coding sequence (CDS) alignment, the best substitution
model GTR+ F+ R3 was automatically selected by ModelFinder. We used LAST
(v1066)96 to perform whole-genome pairwise alignment with great bustard as the
reference, and used MULTIZ (v11.2)97 to generate multiple whole-genome align-
ments. Only one-to-one alignments were retained, and the alignments were further
filtered by the TrimAl (v1.2)98 strict model. The best substitution model GTR+
F+ R5 was used.

The approximate likelihood calculation method99 in PAML-MCMCTREE
(PAML v4.9j)100 was used for divergence time estimation. We used PAML-
CodeML100 to acquire an initial branch length with the gradient and Hessian
information for the ultrametric tree. Then, this file was taken as the input for
MCMCTREE100 to run 20 million steps of MCMC chains to estimate divergence
time. The fossil calibration confidence interval of Neognath and Neoaves (60.2–
86.8 MYA) was derived from the Palaeontologia Electronica Fossil Calibration
Database101.

Gene family evolution. The orthogroups identified by OrthoFinder2 was used as
input to Café (v4.2.1)102 to infer gene family expansions and contractions. The
ultrametric tree topology and branch lengths from the MCMCTREE were used to
infer the significance of changes in gene family size in each branch, and significant
levels of expansion and contraction (P value) were determined at 0.05. We con-
ducted GO (Gene Ontology) enrichment analysis for genes in the expanded
families with PANTHER17.0103.

Positive selection. We estimated the nonsynonymous to synonymous substitution
rate ratios (ω= dN/dS) to assess selection on single-copy orthologous genes. The
single-copy orthologous nucleotide sequences were generated by ParaAT 2.0104

which generated back-translated nucleotide alignments guided by protein-coding
sequences alignments to ensure the alignments were reliable and accurate. MAFFT
(v7.505)105 was used as the aligner. All gaps were automatically removed by
ParaAT, and alignment lengths shorter than 99 bp were removed. We estimated ω
by using the branch-site model106,107 implemented in the CodeML program in
PAML100, using unrooted trees to fit the parameter clock = 0. The branch-site
modelA estimated ω values for each site in foreground and background, and then
divided sites into three categories: ω < 1 (ω0), ω = 1 (ω1), and ω > 1 (ω2). The
null model of the branch-site modelA (modelA null) does not allow ω larger than 1
in all branches. The alternative hypothesis allowed ω values to be larger than one in
the foreground branch (great bustard), representing the positively selected sites. P-
values were calculated through the likelihood ratio test and then adjusted by false
discovery rate (FDR) corrections108. Genes with ω2 higher than 1, FDR smaller
than 0.01 and positively selected sites (2a and 2b) more than 5% were considered as
positively selected genes (PSGs). We further performed additional two rounds of
branch-site model analyses. PSGs missing in any verification round were filtered.
Candidate PSGs were taken for GO enrichment analyses in PANTHER17.0103.
Fixed Effects Likelihood (FEL)109 was used to estimate positively selected sites, with
kori bustard, great bustard and tMRCA labeled as test branches. Profile likelihood
confidence intervals for each variable site were computed.

Real-time RT-qPCR. Total RNA used in reverse transcription–qPCR was reverse-
transcribed to cDNA by using Takara® PrimeScript™ RT reagent Kit with gDNA
Eraser (Perfect Real Time) (Takara, Japan). Two μg of total RNA and 1 μl gDNA
Eraser with 2 μl 5 × gDNA Eraser Buffer were incubated at 42 °C for 2 min to
remove genome DNA (gDNA), then 5 μl 5 × PrimeScript Buffer 2, 1 μl PrimeScript
RT Enzyme Mix I and 1 μl RT Primer Mix was added to the 10 μl gDNA removed
reaction mixture and incubated at 37 °C for 15 min and 85 °C for 5 s. The cDNA
was used for real-time PCR detection in Applied Biosystems 7500 Real Time PCR
System (ABI, USA) using TB Green Premix Ex Taq II (Tli RNaseH Plus) (Takara,
Japan). The condition for Quantitative RT-PCR was 95 °C for 5 min, followed by
40 cycles of 95 °C for 10 s and 60 °C for 34 s. All reactions were run in triplicate, we
used 2-ΔΔCt equation (Formula 1) to calculate relative expression fold changes.

ΔΔCt ¼ ðCT target gene� CT target actinβÞ � ðCT control gene� CT control actinβÞ ð1Þ
The primer sequences used to amplify each target gene can be found in

Supplementary Table 11.

Demographic analyses. The PSMC model was used to infer demographic history
of the great bustard. We used interval parameters “4+ 30 * 2+ 4+ 6” sets in
PSMC (v0.6.5), where “4 + 30 * 2 + 4 + 6” has 74 atomic intervals distributed
across 33 free intervals110 which has been used for several bird genomes111–113. We
performed 100 times bootstraps to estimate the variance of the simulated results.
The neutral mutation rate μ (mutations per base per generation) used for PSMC
was calculated by the Formula 2,

μ ¼ D*g=2T ð2Þ
Where D and T were the estimated genome-wide nucleotide divergence and the
estimated divergence time between the great bustard and kori bustard, and g was
the estimated generation time. Females and males of great bustard have different
maturation ages, with males usually starting to mate from 5 to 6 years of age, while
females at 2 to 3 years old26. We assumed a generation time of 3 years. The
genome-wide nucleotide divergence was calculated by nucmer and dnadiff from
the MUMmer program (v4.0.0)114,115.

Genetic diversity. Genetic diversity was assessed by calculating individual het-
erozygosity. Short reads were mapped to genome sequence by using the BWA-
MEM algorithm (v0.7.17)116. Picard package (v2.25.0)117 was used to mark
duplicates. The Genome Analysis Toolkit (GATK v4.2.0.0)118. HaplotypeCaller
module was used for variant calling. SNPs genotypes were generated from GATK
GenotypeGVCFs module. Variant quality information Quality by depth (QD) <
2.0, Fisher Strand (FS) > 60.0, RMS Mapping Quality (MQ) < 40.0, Mapping
Quality Rank sum (MQRankSum) <−12.5, and Position Rank Sum (Read-
PosRankSum) <−8.0 were used to filter low-quality variants by using the Var-
iantFiltration module. Heterozygosity was calculated by dividing the total number
of heterozygous sites by the genome size covered by reads.

Runs of homozygosity. We generated short-reads from an additional female great
bustard individual to perform ROH analysis, together with the male short reads.
Short reads were mapped to OtiTar_swu by Bwa-Mem, and then Picard and
GATK4 was used to mark duplicates, SNP calling and filter low quality SNPs, the
same as described in above “Genetic diversity” section processes. Bcftools (v1.9)119

was used to merge two indivaduls’ VCF files and keep bi-allelic SNPs. Plink
(v1.90b4)120 was used to filter SNPs with minor allele frequency (MAF) less than
1%. The homozyg module in Plink was used measuring runs of homozygosity, and
parameters “--homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 100
--homozyg-density 50 --homozyg-gap 1000 --homozyg-window-missing 5
--homozyg-window-threshold 0.05 --homozyg-window-het 03” was used.

Sex chromosome evolution. We mapped resequencing reads from a female
individual to the reference genome using BWA MEM. We used Samtools (v1.9)121

depth to calculate sequencing coverage with default parameters. We also calculated
sequencing coverage for alignments with a stringent filtering criterion, i.e., only
retaining reads having no more than 2 mismatches, to avoid ZW cross-mapping.
We then used Bedtools (v2.29.1)122 to calculate the mean sequencing converge over
50 kb windows. GATK was used to calculate heterozygosity, variant quality
information Quality by depth (QD) < 5.0, Fisher Strand (FS) > 20.0, RMS Mapping
Quality (MQ) < 50.0, Mapping Quality Rank sum (MQRankSum) <−12.5, Position
Rank Sum (ReadPosRankSum) <−8.0 and “-window 30 -cluster 3” were used to
filter low-quality variants by using the VariantFiltration module.

Statistics and reproducibility. Assumptions of normality of variance were
examined by Kolmogorov–Smirnov tests performed in IBM SPSS v26. Linear
regression analyses were performed by the lm function in R (v4.2.0), for the
approximate p-values derived from lm function, further robustness tests were
performed in JASP (v0.16)123. ANOVA and its post hoc analysis (Tukey HSD)
were performed in the IBM SPSS v26. Mann–Whitney test were performed in the
IBM SPSS v26. P-values derived from ANOVA and Mann-Whitney test were
reported in two-sided tests, and were adjusted by false discovery rate (FDR)
correction108 with a cutoff of 0.05.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome assembly data are available at GenBank under the accession number:
JAPMTP000000000. Genomic sequencing reads and RNA-seq data are deposited in the
BioProject PRJNA903785. Gene annotations and source data for Figs. 3–6 are deposited
in a FigShare repository (https://doi.org/10.6084/m9.figshare.23650419)124.

Code availability
Custom scripts used in this study have been deposited at Github (https://doi.org/10.5281/
zenodo.8127516)125.
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