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Lifespan-extending interventions induce consistent
patterns of fatty acid oxidation in mouse livers
Kengo Watanabe 1, Tomasz Wilmanski1, Priyanka Baloni2, Max Robinson1, Gonzalo G. Garcia3,

Michael R. Hoopmann1, Mukul K. Midha 1, David H. Baxter1, Michal Maes1, Seamus R. Morrone1,

Kelly M. Crebs1, Charu Kapil 1, Ulrike Kusebauch1, Jack Wiedrick4, Jodi Lapidus4, Lance Pflieger1,5,

Christopher Lausted 1, Jared C. Roach1, Gwênlyn Glusman 1, Steven R. Cummings 6,7,

Nicholas J. Schork8,9, Nathan D. Price1,10,11,12, Leroy Hood1,5,11,12,13✉, Richard A. Miller 3,14,

Robert L. Moritz 1 & Noa Rappaport 1✉

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level per-

spectives to investigate the gradual molecular dysregulation of underlying biological processes.

Here, we report systemic changes in the molecular regulation of biological processes under

multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of

mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-

extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally

tighten the regulation of biological modules. These tightening patterns are similar across the

interventions, particularly in processes such as fatty acid oxidation, immune response, and stress

response. Differences in DIRAC patterns between proteins and transcripts highlight specific

modules which may be tightened via augmented cap-independent translation. Moreover, the

systemic shifts in fatty acid metabolism are supported through integrated analysis of liver

transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the

power of systems-level approaches for identifying and characterizing the biological processes

involved in aging and longevity.
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Aging manifests as progressive impairments in main-
tenance of both cellular and systemic steady states. In
humans, it is accompanied by increased risks for chronic

conditions such as diabetes, heart disease, neurodegeneration, and
cancer1,2. Interventions targeting aging mechanisms could
delay or moderate chronic diseases and improve health and
lifespan3. However, aging involves diverse and interconnected
molecular and physiological components, posing a challenge
for comprehensive understanding4,5. For instance, many studies
have demonstrated key roles for nutrient-sensing pathways in
aging and longevity across species, including growth hormone
(GH) and insulin/insulin growth factor 1 (IGF-1), AMP-activated
protein kinase (AMPK), sirtuins, and mammalian (or mechan-
istic) target of rapamycin (mTOR) signaling pathways6–10, but
these nutrient-sensing pathways are intricately interconnected
with each other. In addition, the roles of these pathways are not
necessarily consistent among tissues, as shown by tissue-specific
knockout mice11,12. Given the complex and multifaceted nature
of aging, systems-level approaches may provide complementary
perspectives to single molecule-level approaches and deepen our
understanding of the aging processes.

Some nutritional and pharmacological interventions consistently
extend lifespan and healthspan (i.e., the period free from age-
associated diseases and disabilities)13 in mouse and other animal
models3,14–16. Nutritional interventions include calorie restriction
(CR)17, methionine restriction18, and ketogenic diet19,20. While the
number of possible geroprotectors (i.e., drugs aiming to prevent,
slow, or reverse aging process)21 has been growing, pharmacolo-
gical interventions whose effects on lifespan extension have been
documented by the National Institute on Aging (NIA) Interven-
tions Testing Program (ITP)22 include acarbose (ACA)23–25,
canagliflozin26, 17α-estradiol (17aE2)23,24,27, glycine28, nordihy-
droguaiaretic acid23,24,29, Protandim® (a Nrf2 inducer)24, and
rapamycin (Rapa)30–32. Rapa is a macrolide compound found to
prolong lifespan in every organism studied, including yeast, worms,
flies, and mammals33,34. Rapa modulates nutrient-sensing path-
ways by inhibiting the activity of mTOR through complex for-
mation with FK506-binding protein 12, which globally attenuates
protein translation via mTOR complex 1 (mTORC1) and ulti-
mately reduces inflammation, increases autophagy, and improves
stem cell maintenance35,36. ACA could share some aspects of CR23;
it is an oral antidiabetic drug which competitively inhibits the
activity of α-glucosidase enzymes to digest polysaccharides,
resulting in the delay of sugar uptake in the gastrointestinal tract37.
ACA treatment has been shown to extend lifespan in male mice
more than in female mice23–25, possibly related to sex-dependent
differences observed in heart, liver, and gut metabolite profiles38,39.
17aE2 is a stereoisomer of the dominant female sex hormone 17β-
estradiol, having much weaker binding affinity to the classical
estrogen receptors, stronger affinity to the brain estrogen receptor,
and neuroprotective properties40,41. 17aE2 treatment extends life-
span in male but not in female mice23,24,27, potentially related to
male-specific reduction of age-associated neuroinflammation42 and
sex-specific metabolomic responses observed in liver and plasma
metabolite profiles43. Because these lifespan-extending drugs were
tested with standardized protocols in the NIA ITP and because they
have differences in primary mode of action, comparisons of their
effects on molecular regulation are valuable for our understanding
of common, fundamental, or core aging and longevity mechanisms.

A module of a biological system can be represented as a mole-
cular network where nodes and edges correspond to biomolecules
(e.g., gene transcripts, proteins, and metabolites) and relationships
(e.g., physical interactions, chemical reactions), respectively. For
each sample, ranks of biomolecules can be obtained from experi-
mental data by ordering the values of interest (e.g., abundances,
levels of specific post-translational modification) between the

biomolecules within a module (Fig. 1a). When these ranks are
highly conserved among the samples within a population of a
specific phenotype, the module is considered tightly regulated in
the population, because biological regulatory mechanisms or
pressures must act consistently across the samples to produce this
high conservation pattern. In contrast, low rank conservation
among the samples within a phenotype indicates loose module
regulation in the population. The Differential Rank Conservation
(DIRAC) method44 can quantify this population-level variability
for a given biological module (i.e., a biomolecule set, typically
defined with an a priori gene network or pathway) by utilizing
differential ranks of the pairwise rank comparisons, instead of
absolute ranks, within the module (Fig. 1b). A previous study
applied DIRAC analysis to gene expression data of multiple cancer
types, and revealed general loosening of BioCarta-defined modules
in more malignant phenotypes and later stages of disease
progression44, indicating that a loss of tight regulation characterizes
the dysregulation of biological processes in cancer. Hence, the
DIRAC method can be used for identifying biological modules
whose regulatory patterns are changed by lifespan-extending
interventions.

In this study, we report systemic changes in the molecular reg-
ulation of biological processes under multiple lifespan-extending
interventions, by jointly leveraging systems-level analyses on two
mouse liver proteomic datasets, which were generated in the NIA
Longevity Consortium, and a previously published mouse liver
transcriptomic dataset45. We apply DIRAC analysis to the protein
abundance profile, first with a set of predefined modules derived
from Gene Ontology Biological Process (GOBP) annotations and
then with a set of unbiased modules derived from Weighted Gene
Co-expression Network Analysis (WGCNA)46,47, and demonstrate
that three lifespan-extending drugs (ACA, 17aE2, and Rapa)
promoted tighter regulation of biological modules, such as fatty
acid oxidation, immune response, and stress response processes.
Moreover, DIRAC pattern comparisons between proteomics and
transcriptomics data suggest that the lifespan-extending interven-
tions tightly regulated biological modules at different levels,
including post-transcriptional alterations through cap-independent
translation (CIT) of specific mRNAs48. As a complementary
approach, mouse genome-scale metabolic model (GEM)49,50

reconstruction with the transcript abundance profile supports
that multiple lifespan-extending interventions shifted fatty acid
metabolism.

Results
Lifespan-extending interventions increased proteomic profile
conservation in a priori modules. To compare the systems-level
changes induced by different lifespan-extending interventions, we
first applied DIRAC analysis to a liver proteomic dataset which
was generated through a mouse lifespan-extending intervention
experiment in the NIA Longevity Consortium (denoted LC-
M001 proteomics). In this LC-M001 experiment, 48 mice were
either untreated (Control) or subjected to one of three lifespan-
extending drug treatments (ACA, 17aE2, or Rapa), and eutha-
nized at 12 months (n= 12 (6 female and 6 male) mice per
group). The design of evaluating drug effects on healthy young
adult mice was motivated by the desire to reduce confounding
effects of aging and of late-life diseases. Acknowledging
the limited sample size for statistical power and robustness of
downstream analyses, we regressed out the potential effects
of sex in advance (see Methods) and pooled female and male
samples per intervention throughout the current study (see
Discussion). As biological modules, we defined 164 a priori
modules by mapping the measured proteins onto GOBP anno-
tations (see Methods; Supplementary Data 1).
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The DIRAC metric, rank conservation index (RCI; see
Methods)44, measures population-level consistency in the relative
abundance of biomolecules within a module (Fig. 1b); high RCI
indicates a strongly shared pattern of behavior (i.e., tight regulation),
while low RCI indicates relatively unpatterned behavior (i.e., loose
regulation). ACA, 17aE2, and Rapa showed significantly higher RCI
median in the examined modules compared to Control (Fig. 2a,
Supplementary Fig. 1a), suggesting general tightening of module
profiles by each of these lifespan-extending interventions. To
identify the modules that were changed (i.e., tightened or loosened)
by one or more of the interventions, we assessed the intervention
effect on RCI using Analysis of Variance (ANOVA) for each of the
164modules. Therewere 23 significantly changedmodules (Table 1),
based on the false discovery rate (FDR)-adjusted P < 0.05 under the
conservative assumption that the assessed modules were indepen-
dent of each other (see Methods; cf. 51 modules exhibited nominal
P < 0.05). Among these 23 changed modules, the post hoc RCI
comparisons between Control and each intervention group revealed
that 18, 21, and 22 modules were significantly tightened by
ACA, 17aE2, and Rapa, respectively (Fig. 2b, c; Supplementary
Fig. 1b), while no module was loosened significantly. 15 modules
were significantly tightened under all the three interventions
(Fig. 2c), which were functionally related to fatty acid β-oxidation
(GO:0006635, GO:0006637, GO:0031998), protein transport to
peroxisomes (GO:0006625, GO:0016558), tricarboxylic acid (TCA)
cycle (GO:0006102, GO:0006103, GO:0042866), immune response
(GO:0098761, GO:0140374), stress response (GO:0006749,
GO:0017144, GO:0034063), and translation (GO:0002181,
GO:1902416) (Fig. 2d; Supplementary Fig. 2a, c, e, g; Table 1).

Given that the primary modes of action are different among the
studied drugs, this result suggests that systems-level regulation
for these biological processes may be a general mechanism for
lifespan extension.

However, while high RCI reflects a shared pattern of relative
abundances within a phenotype population, a tightly regulated
module may still exhibit different relative abundance patterns under
different phenotypes. The sample-level DIRAC metric, rank
matching score (RMS; see Methods)44, measures the similarity of
each sample to the consensus pattern of a certain phenotype
(Fig. 1b), and allows us to compare relative abundance patterns
between phenotypes by fixing the consensus phenotype (instead of
using the sample’s own phenotype as the consensus phenotype). For
instance, in pyruvate biosynthetic process (GO:0042866) where
significantly higher RCI against Control was observed in all the
three interventions (Supplementary Fig. 2a), 17aE2 and ACA
showed higher and lower mean of RMSs, respectively, than Control
under the Rapa rank consensus (Supplementary Fig. 2b), suggesting
that 17aE2 changed this module similarly to Rapa while ACA did
dissimilarly. Moreover, the RMS mean of 17aE2 was comparable to
the RMS mean of Rapa under the Rapa rank consensus (i.e., Rapa’s
RCI) (Supplementary Fig. 2b). These DIRAC patterns suggest two
modes of tightening for this module: one under ACA and the other
under 17aE2 and Rapa. Thus, using RMS under each group’s rank
consensus, we explored the similarity in module tightening
across the interventions. Among the 18, 21, and 22 significantly
tightened modules by ACA, 17aE2, and Rapa, five, five, and six
modules were similarly changed by the other two interventions,
respectively (Fig. 2c). In particular, five modules (GO:0006625,

Fig. 1 Schematic representation of Differential Rank Conservation. a The concept of rank conservation. A module of a biological system can be
represented as a molecular network where nodes and edges indicate biomolecules (e.g., gene transcripts, proteins, and metabolites) and relationships (e.g.,
physical interactions, chemical reactions), respectively. For each sample, ranks of biomolecules can be obtained from experimental data by ordering the
values of interest (e.g., abundances, levels of specific post-translational modification) between the biomolecules within a module. Low and high rank
conservation among the samples within a phenotype population suggest loose and tight regulation of the module in the population, respectively.
b Overview of Differential Rank Conservation (DIRAC) algorithm. DIRAC algorithm utilizes differential ranks of the pairwise rank comparisons within a
biological module, and summarizes the rank patterns into sample-level rank matching score (RMS) and population-level rank conservation index (RCI).
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GO:0016558, GO:0031998, GO:0034063, GO:0140374) that were
consistently tightened across all the three interventions (Fig. 2c, d;
Supplementary Fig. 2c, e, g) exhibited significantly higher mean of
RMSs in the intervention groups compared to Control under all the
other intervention group’s rank consensus (e.g., 17aE2 and Rapa
showed significantly higher RMS mean than Control under the
ACA rank consensus; Fig. 2e; Supplementary Fig. 2d, f, h; Table 1),
suggesting that these biological processes were similarly tightened

by the mechanistically distinct lifespan-extending interventions,
and thus can be a general mechanism contributing to longevity.

Taken together, these results suggest that lifespan-extending
interventions generally tightened the proteomic profiles of the
examined modules and that the tightened protein expression
profiles were similar among the different drugs especially in the
modules related to fatty acid β-oxidation, peroxisome transport,
innate immune response, and stress granule assembly.

Fig. 2 Lifespan-extending interventions increased proteomic profile conservation in a priori modules. a–e Differential Rank Conservation (DIRAC)
analysis of the LC-M001 proteomics data using Gene Ontology Biological Process (GOBP)-defined modules (see Supplementary Data 1 for complete
results). a, b Overall distribution of module rank conservation index (RCI). Data in a: median (center line), 95% confidence interval (CI) around median
(notch), [Q1, Q3] (box limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are the minimum and
maximum values in [Q1− 1.5 × IQR, Q3+ 1.5 × IQR] (IQR: the interquartile range, Q3−Q1), respectively; n= 164 modules. ***P < 0.001 by two-sided
Mann–Whitney U-tests after the Benjamini–Hochberg adjustment across three comparisons. The top color columns in b highlight the modules that
exhibited (1) the significant intervention effect on module RCI (Analysis of Variance (ANOVA) after the Benjamini–Hochberg adjustment across 164
modules) and (2) significantly higher RCI in intervention group than control group (i.e., tightened module; the post hoc two-sided Welch’s t-tests after the
Benjamini–Hochberg adjustment across three comparisons). c Venn diagram of the significantly tightened modules by each intervention. For each set of
the tightened modules, contingency table indicates the number of modules for which the other intervention groups exhibited significantly higher or lower
mean of rank matching scores (RMSs) under the rank consensus than control group (i.e., similarly or dissimilarly changed module to the consensus group,
respectively; two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across six (two comparisons × three rank consensus) comparisons).
d, e Sample RMS distributions for an example of the tightened modules (GO:0031998, regulation of fatty acid β-oxidation). Dashed line in e indicates the
mean of RMSs for the rank consensus group (i.e., RCI). Data: the mean (dot) with 95% CI (bar); n= 12 mice. *P < 0.05, **P < 0.01, ***P < 0.001 by two-
sided Welch’s t-tests after the Benjamini–Hochberg adjustment across three (d) or six (two comparisons × three rank consensus; e) comparisons.
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Lifespan-extending interventions increased proteomic profile
conservation in data-driven modules. Considering the potential
biases in module definitions within GOBP terms, we inferred data-
driven modules using an unsupervised clustering approach,
WGCNA46,47. WGCNA identifies modules of highly inter-
connected biomolecules, relying on the overall correlation network
computed from high-dimensional data. We applied WGCNA to
the LC-M001 proteomics data and identified 10 modules, ranging
in size from 68 to 835 proteins (Fig. 3a, Supplementary Data 2).
Each WGCNA module can be characterized by the module
eigengene (i.e., the first principal component of the protein abun-
dance matrix for the module)47. To identify the modules that were
associated with one or more of the interventions, we assessed the
intervention effect on the module eigengene for each of the 10 data-
driven modules using ANOVA. Two modules, denoted Blue and
Pink, exhibited a significant intervention effect (FDR-adjusted
P= 0.0028 for each). The post-hoc comparison in the Blue module
revealed that 17aE2 and Rapa, but not ACA, showed a significantly
higher value of the module eigengene than Control (Fig. 3b),
suggesting that the expression profile of the Blue module was
changed specifically by 17aE2 and Rapa. Likewise, the post-hoc
comparison suggested that only 17aE2 changed the expression
profile of the Pink module (Supplementary Fig. 3a).

WGCNA transforms the correlation matrix to fit a scale-free
network topology, where the majority of nodes share relatively few
edges with other nodes, while the central nodes that have high
intramodular connectivity (called hub nodes) frequently take
essential functions in the system51. To investigate how 17aE2 and
Rapa changed the structure of the Blue and Pink modules, we
assessed the relationship between the intervention effect on each
module protein and their respective intramodular connectivity
(see Methods). The intervention effect on each protein showed
significant positive correlation with intramodular connectivity

(Blue: Spearman’s ρ= 0.58, P= 3.9 × 10−73, Fig. 3c; Pink: Spear-
man’s ρ= 0.59, P= 6.5 × 10−18, Supplementary Fig. 3b), suggesting
that intramodular hub proteins were more strongly affected by the
interventions than less connected proteins. Hence, we further
performed enrichment analysis on the hub proteins using GOBP
terms (Supplementary Data 3), and found that metabolic processes
related to TCA cycle were significantly enriched in the top 10% hub
proteins of the Blue module (FDR-adjusted P= 0.002–0.009;
Fig. 3d). Actually, 23 of the top 30 hub proteins in the Blue module
were mitochondrial proteins, involved in TCA cycle, oxidative
phosphorylation, and fatty acid β-oxidation (Fig. 3e). Interestingly,
prohibitin 1 (PHB1) and PHB2, two of the top five hub proteins,
form the mitochondrial PHB complex, which is known to regulate
fatty acid oxidation and assembly of mitochondrial respiratory
complexes52,53, as well as to affect lifespan in C. elegans54. Likewise,
the enrichment analysis revealed that translation processes were
significantly enriched in the top 10% hub proteins of the Pink
module (FDR-adjusted P ≤ 10−7; Supplementary Fig. 3c), and 21 of
the top 30 hub proteins in the Pink module were actually ribosomal
proteins (Supplementary Fig. 3d). Collectively, our results from
WGCNA revealed coordinated changes in the expression profiles of
mitochondrial and ribosomal proteins that were limited to 17aE2 or
Rapa among the three studied drugs.

Next, we re-analyzed the LC-M001 proteomics data using the
DIRAC method with six of the 10 WGCNA-identified modules
(see Methods; Fig. 3a, Supplementary Data 4). ACA, 17aE2, and
Rapa showed significantly higher RCI median in the examined
modules than Control (Fig. 3f), suggesting general tightening
of module profiles by each of these lifespan-extending interven-
tions, consistent with the initial DIRAC result based on GOBP
terms (Fig. 2a). Additionally, all six WGCNA modules exhibited
significant intervention effects on RCI in ANOVA (FDR-adjusted
P < 10−5) and significantly higher RCIs for intervention groups

Table 1 Tightened proteomic modules by lifespan-extending interventions.

Functional category Module ID Module name ANOVA Acarbose 17α-estradiol Rapamycin Similarity

Fatty acid β-oxidation GO:0031998 regulation of fatty acid beta-oxidation 0.0042 *** *** * ◎
GO:0006635 fatty acid beta-oxidation 0.0061 *** *** ** ○
GO:0006637 acyl-CoA metabolic process 0.0245 ** *** **
GO:0033539 fatty acid beta-oxidation using acyl-CoA

dehydrogenase
0.0296 ** **

GO:0000038 very long-chain fatty acid metabolic process 0.0296 * ** ○
Protein transport to
peroxisome

GO:0006625 protein targeting to peroxisome 0.0042 * ** *** ◎
GO:0016558 protein import into peroxisome matrix 0.0042 * ** *** ◎

Tricarboxylic acid
(TCA) cycle

GO:0006102 isocitrate metabolic process 0.0042 *** ** *
GO:0006103 2-oxoglutarate metabolic process 0.0123 *** ** ***
GO:0042866 pyruvate biosynthetic process 0.0123 *** * * ○

Immune response GO:0075522 IRES-dependent viral translational initiation 0.0123 *** ***
GO:0098761 cellular response to interleukin-7 0.0180 ** ** **
GO:0140374 antiviral innate immune response 0.0292 * ** * ◎
GO:0044794 positive regulation by host of viral process 0.0370 ** **

Stress response GO:0017144 drug metabolic process 0.0008 *** *** **
GO:0043653 mitochondrial fragmentation involved in

apoptotic process
0.0042 *** *** ○

GO:0006749 glutathione metabolic process 0.0042 *** *** **
GO:0034063 stress granule assembly 0.0123 ** *** ** ◎

Translation GO:0002181 cytoplasmic translation 0.0168 * ** *** ○
GO:0000028 ribosomal small subunit assembly 0.0308 ** *
GO:1902416 positive regulation of mRNA binding 0.0324 * ** **

Miscellaneous GO:0008210 estrogen metabolic process 0.0099 ** *** ○
GO:0030042 actin filament depolymerization 0.0481 * **

Listed are the 23 Gene Ontology Biological Process (GOBP)-defined proteomic modules that were significantly tightened by one or more of the interventions. ANOVA: P-value of the intervention effect
on module rank conservation index (RCI), by Analysis of Variance (ANOVA) after the Benjamini–Hochberg adjustment across 164 modules; Acarbose/17α-estradiol/Rapamycin: significance of the RCI
comparison between control and each intervention (*P < 0.05, **P < 0.01, ***P < 0.001), by the post hoc two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across three comparisons;
Similarity: significant similarity of the tightening patterns across the interventions (◎: similar to all the other two interventions, ○: similar to other one intervention). Note that the functional categories
are just for reference purpose and not completely exclusive with each other. See Supplementary Data 1 for complete results.
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against Control in the post hoc RCI comparisons (Fig. 3g, h;
Supplementary Fig. 3e), suggesting that all the WGCNA
modules were tightened by ACA, 17aE2, or Rapa. Moreover,
the mitochondrial Blue module exhibited higher mean of
RMSs in intervention groups compared to Control under all the
other intervention group’s rank consensus (e.g., ACA and
17aE2 showed significantly higher RMS mean than Control
under the Rapa rank consensus; Fig. 3i), suggesting that the
tightening patterns were similar among the three drugs. At the

same time, the Rapa’s RMS mean was more similar to the
17aE2’s RMS mean than to the ACA’s RMS mean (e.g.,
17aE2 showed higher RMS mean than ACA under the Rapa
rank consensus) in the Blue module (Fig. 3i), implying a
difference in the tightening pattern between ACA vs. 17aE2 and
Rapa, in line with their effects on module expression profiles
(Fig. 3b). Note that, if the tightening pattern of ACA was
completely dissimilar to those of 17aE2 and Rapa, ACA would
have shown lower RMS mean than Control under the 17aE2 or

Fig. 3 Lifespan-extending interventions increased proteomic profile conservation in data-driven modules. a–e Weighted Gene Co-expression Network
Analysis (WGCNA) of the LC-M001 proteomics data (see Supplementary Data 2 and 3 for complete results). a The number of proteins in each WGCNA-
identified module. WGCNA: proteins used in WGCNA, DIRAC: proteins retained after the processing for Differential Rank Conservation (DIRAC) analysis
f–i. b Distributions of sample’s module eigengene values for the Blue module. Data: the mean (dot) with 95% confidence interval (CI) (bar); n= 12 mice.
**P < 0.01 by two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across three comparisons. c Relationship between the intervention effect
on each protein and their respective intramodular connectivity in the Blue module. The P-value of y-axis corresponds to the main effect of intervention on
each protein level by Analysis of Variance (ANOVA). The line is the ordinary least squares (OLS) linear regression line with 95% CI, and the orange-
colored background reflects the range of top 10% hub proteins (79 proteins). n= 787 proteins. d Enriched Gene Ontology Biological Process (GOBP) terms
in the top 10% hub proteins of the Blue module. Significance was assessed using overrepresentation tests after the Benjamini–Hochberg adjustment across
81 terms. Only the GOBP terms that exhibited nominal P < 0.05 are presented. AdjPval: adjusted P-value from the overrepresentation test. e Top 30 hub
proteins of the Blue module. GOCC: GO Cellular Component. f–i DIRAC analysis of the LC-M001 proteomics data using WGCNA-identified modules (see
Supplementary Data 4 for complete results). f, g Overall distribution of module rank conservation index (RCI). Data in f: median (center line), [Q1, Q3] (box
limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are the minimum and maximum values in [Q1− 1.5 ×
IQR, Q3+ 1.5 × IQR] (IQR: the interquartile range, Q3−Q1), respectively; n= 6 modules. **P < 0.01 by two-sided Mann–Whitney U-tests after the
Benjamini–Hochberg adjustment across three comparisons. The top color columns in g highlight the modules that exhibited (1) the significant intervention
effect on module RCI (ANOVA after with the Benjamini–Hochberg adjustment across six modules) and (2) significantly higher RCI in intervention group
than control group (i.e., tightened module; the post hoc two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across three comparisons).
h, i Sample rank matching score (RMS) distributions for the Blue module. Dashed line in i indicates the mean of RMSs for the rank consensus group (i.e.,
RCI). Data: the mean (dot) with 95% CI (bar); n= 12 mice. *P < 0.05, ***P < 0.001 by two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment
across three (h) or six (two comparisons × three rank consensus; i) comparisons.
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Rapa rank consensus (cf. compare the patterns between Fig. 3i
and Supplementary Fig. 2b). Likewise, the ribosomal Pink
module exhibited similar tightening patterns among the three
drugs (Supplementary Fig. 3f).

These findings suggest that the Blue and Pink modules were
tightened across all the three interventions, while also exhibiting
intervention-specific effects on protein expression profiles related
to mitochondrial energy metabolism and ribosomal translation.
Taken together, our results indicate that the tightening of module
profiles was a general signature of the lifespan-extending
interventions within the measured proteomic space.

Lifespan-extending interventions increased the conservation of
proteomic modules through transcriptional or post-
transcriptional alteration. To further investigate the tightening
effects of lifespan-extending interventions on proteomic modules,
we applied DIRAC analysis to a mouse liver transcriptomic dataset
from a previous study of lifespan-extending interventions45

(referred as M001-related transcriptomics), whose experimental
design resembled the LC-M001 experiment (e.g., the same animal
colony, the same genetically heterogeneous mouse stock for
pharmacological intervention groups, and similar protocol to the
NIA ITP protocol) and contained ACA, 17aE2, and Rapa treat-
ments as lifespan-extending interventions. In this M001-related
experiment, 78 mice were prepared for either control or one of
lifespan-extending interventions (two genetically modified models,
two nutritional interventions, and four pharmacological interven-
tions) and euthanized at young adult ages depending on the
intervention type (n= 3–12 mice per intervention group). Follow-
ing the similar considerations to those in the proteomics analyses,
we regressed out the potential effects of sex and age (see Methods),
pooled samples for each intervention (see Discussion), and analyzed
the three lifespan-extending interventions (ACA, Rapa, and CR)
and their corresponding control (Control) throughout the current
study (n= 12 (6 female and 6 male) mice per group).

Using 3912 a priori modules that were defined by mapping the
measured transcripts to GOBP annotations (see Methods; Supple-
mentary Data 5), we found that ACA, Rapa, and CR showed
significantly higher RCI median in the examined modules than
Control (Fig. 4a). This result suggests the general tightening of
module profiles within the measured transcriptomic space, as well
as within the measured proteomic space (Figs. 2a and 3f). We next
assessed the intervention effect on RCI using ANOVA for each of
the 3912 modules, and identified 2516 modules that were
significantly changed by one or more of the interventions (FDR-
adjusted P < 0.05; see Methods; cf. 2691 modules exhibited nominal
P < 0.05). Among these 2516 changed modules, the post hoc RCI
comparisons between Control and each intervention group revealed
that 1662, 1424, and 2454 modules were significantly tightened by
ACA, Rapa, and CR, respectively (Supplementary Fig. 4a, b), while
no module was loosened significantly. Subsequently, using RMS
under each group’s rank consensus, we explored the similarity of
module tightening across the interventions. Among the 1662, 1424,
and 2454 significantly tightened modules by ACA, Rapa, and CR,
139, 81, and 54 modules were similarly changed by the other two
interventions, respectively (Supplementary Fig. 4b). For instance,
ubiquitin-dependent protein catabolic process (GO:0006511), a
consistently tightened module across the interventions (Supple-
mentary Fig. 4c), exhibited significantly higher mean of RMSs in
intervention groups compared to Control under all the other
intervention group’s rank consensus (e.g., Rapa and CR showed
significantly higher RMS mean than Control under the ACA rank
consensus; Supplementary Fig. 4d), suggesting that this module was
similarly tightened in transcripts by the mechanistically distinct
lifespan-extending interventions.

To directly compare the DIRAC results between the LC-M001
proteomics and M001-related transcriptomics datasets, we focused
on the two interventions (ACA and Rapa) and the 156 GOBP
modules that were used in both omics results (Supplementary
Data 6), and re-assessed the intervention effect on RCI using
ANOVA for each of the 156modules and each omics. There were 33
modules (22 in proteins and 16 in transcripts) that were significantly
changed by one or more of the interventions (FDR-adjusted
P < 0.05; see Methods). Among these 33 changed modules, the post
hoc RCI comparisons between Control and each intervention group
revealed that 25, 22, 27, and 18 modules were significantly tightened
by ACA in proteins, ACA in transcripts, Rapa in proteins, and Rapa
in transcripts, respectively (Fig. 4b). In particular, the modules that
were significantly tightened by ACA and Rapa in both proteins and
transcripts were nine modules, including processes related to fatty
acid β-oxidation (GO:0006635, GO:0006734, GO:0015909), peroxi-
some transport (GO:0016558), immune response (GO:0098761), or
stress response (GO:0006749) (Fig. 4b, c). This result suggests that
these modules were tightened by the lifespan-extending interven-
tions via transcriptional regulation with concordant changes of
proteomic profiles. At the same time, we also observed seven
modules which were tightened specifically in proteins (Fig. 4b). For
instance, pyruvate biosynthetic process (GO:0042866) exhibited
significantly higher RCI across interventions compared to Control
specifically in proteins (Fig. 4d), suggesting that this module was
tightened by ACA and Rapa in the proteomic profile but not in the
transcriptomic profile. This inconsistency between proteins and
transcripts may reflect post-transcriptional regulatory mechanisms
that can affect protein profiles beyond transcriptional changes.
For instance, since the abundance of a protein is determined by both
its synthesis and degradation rates, a difference in proteostasis,
whose loss is proposed as a characteristic of aging1,55,56, can lead
to the change in protein abundance without a change in transcript
abundance.

Altogether, these findings suggest that the tightening of module
profiles was a general signature of the lifespan-extending
interventions also at the transcript level, while some modules
were tightened uniquely at the protein level potentially through
post-transcriptional alteration.

Lifespan-extending interventions increased proteomic profile
conservation of specific modules potentially through cap-
independent translation. CIT of specific mRNAs48 can be a
possible post-transcriptional mechanism to explain the incon-
sistency in module tightness between proteins and transcripts. In
contrast to standard cap-dependent translation, CIT does not
require the interaction of the eukaryotic initiation factor 4E
(eIF4E) complex with the 5′ cap of mRNA; N6-methyladenosine
(m6A) modification in the 5′ untranslated regions of mRNA can
trigger the recruitment of specific initiation and elongation fac-
tors, followed by the selective translation of m6A-tagged mRNAs.
Previous studies have shown the upregulated translation of a
subset of mRNAs via CIT in long-lived endocrine mutant mice57

and similar increases of CIT in mice treated with ACA, 17aE2, or
Rapa58. We therefore assessed if CIT could explain the difference
in the module tightness between proteins and transcripts, by
utilizing DIRAC analysis on another liver proteomic dataset
which was generated through a mouse CIT experiment (denoted
LC-M004 proteomics). In this LC-M004 experiment, 16 young
adult mice were treated with either solvent (Control-2) or 4EGI-1,
a synthetic small compound which inhibits the eIF4E–eIF4G
interaction and thereby blocks cap-dependent translation and
enhances CIT59 (n= 8 (4 female and 4 male) mice per group). To
directly compare the DIRAC results across the LC-M001 and LC-
M004 proteomics datasets, we focused on 153 GOBP modules for
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this analysis, which were mapped to the measured proteins in
both datasets (see Methods; Supplementary Data 7). In addition
to the elevated module tightness in ACA, 17aE2, and Rapa against
their corresponding control (Control-1), 4EGI-1 showed sig-
nificantly higher RCI median in the examined modules compared
to Control-2 (Fig. 5a), implying general tightening of module
profiles by the CIT enhancement (in line with the expectation
from 4EGI-1’s mode of action).

To reveal the similarity of module profiles between lifespan-
extending interventions and 4EGI-1, we calculated RMSs under
the rank consensus of Control-2 and 4EGI-1 for the LC-M001
groups (Control-1, ACA, 17aE2, and Rapa), and assessed the
intervention effect on the RMS mean using ANOVA for each of
the 153 modules and each rank consensus. There were five and
nine modules that were significantly changed by one or more of
the interventions under the Control-2 and 4EGI-1 rank
consensus, respectively (FDR-adjusted P < 0.05; see Methods; cf.
40 and 34 modules exhibited nominal P < 0.05, respectively).
Among these nine changed modules under the 4EGI-1 rank
consensus, the post hoc comparisons for the RMS mean between
Control-1 and each intervention group revealed that one, zero,
and one module were changed dissimilarly to the 4EGI-1
consensus by ACA, 17aE2, and Rapa, respectively (Fig. 5b). For
instance, in positive regulation by host of viral process
(GO:0044794), Rapa showed significantly lower mean of RMSs
than Control-1 under the 4EGI-1 consensus (Fig. 5c). Given that
this module was significantly tightened by Rapa in proteins but
not in transcripts (Fig. 5d), it suggests that this virus-related
process may be tightened in proteins via post-transcriptional
regulation other than CIT. In contrast, the post hoc RMS mean
comparisons for the nine changed modules also revealed that one,
three, and two modules were changed similarly to the 4EGI-1
consensus by ACA, 17aE2, and Rapa, respectively (Fig. 5e).
Remarkably, in isocitrate metabolic process (GO:0006102), ACA
and 17aE2 showed significantly higher mean of RMSs than
Control-1 under the 4EGI-1 rank consensus (Fig. 5f), while ACA

showed significantly higher RCI than control in proteins but not
in transcripts (Fig. 5g), suggesting that ACA may tighten
proteomic profiles of this TCA cycle-related process via CIT.
Collectively, these findings suggest that not all but some specific
modules may be tightened by lifespan-extending interventions
through augmented CIT.

Lifespan-extending interventions shifted reaction fluxes in
fatty acid metabolism. Finally, as a complementary approach to
the findings from DIRAC analysis and WGCNA, we performed
in silico analysis using the mouse GEM49 to investigate metabolic
shifts associated with lifespan-extending interventions. GEM is a
mathematical framework that leverages a curated catalog of bio-
chemical reactions within a system (e.g., single cell, tissue, organ),
including metabolites, catalytic enzyme-encoding genes, and their
stoichiometry50. Using optimization techniques with large-scale
experimental data (e.g., transcriptomics), the solved stoichio-
metric coefficients of each reaction allow flux prediction for
metabolic reactions in the system at equilibrium60. Hence, GEM
has been used to investigate metabolic changes in various systems
and specific contexts (e.g., human cancers)61. Since the detected
proteins in the LC-M001 proteomics did not sufficiently cover the
metabolic proteins included in the mouse GEM, we utilized the
aforementioned M001-related transcriptomics data45 where the
potential effects of sex and age were regressed out (Control, ACA,
Rapa, and CR; n= 12 (6 female and 6 male) mice per group). By
integrating it with the mouse generic GEM49 for each of the
48 samples, we generated 48 context-specific metabolic networks
(i.e., GEMs constrained by each sample condition), and subse-
quently predicted flux values of the metabolic reactions for each
context-specific GEM (see Methods). As a result, the flux values
were successfully predicted for 7834 reactions among the 10,612
reactions of the generic GEM, and only the 3736 functional
reactions were assessed (see Methods; Supplementary Data 8).

In the GEM system, the reactions exhibit a high degree of
interconnectivity, making it overly conservative to account for

Fig. 4 Lifespan-extending interventions increased the conservation of proteomic modules through transcriptional or post-transcriptional alteration.
a Differential Rank Conservation (DIRAC) analysis of the M001-related transcriptomics data using Gene Ontology Biological Process (GOBP)-defined
modules (see Supplementary Data 5 for complete results). Presented is the overall distribution of module rank conservation index (RCI). CR: calorie
restriction. Data: median (center line), 95% confidence interval (CI) around median (notch), [Q1, Q3] (box limits), [xmin, xmax] (whiskers), where Q1 and Q3

are the 1st and 3rd quartile values, and xmin and xmax are the minimum and maximum values in [Q1− 1.5 × IQR, Q3+ 1.5 × IQR] (IQR: the interquartile range,
Q3−Q1), respectively; n= 3912 modules. ***P < 0.001 by two-sided Mann–Whitney U-tests after the Benjamini–Hochberg adjustment across three
comparisons. b–d DIRAC comparison analysis between the LC-M001 proteomics and M001-related transcriptomics data using GOBP-defined modules
(see Supplementary Data 6 for complete results). b Venn diagram of the modules that exhibited (1) the significant intervention effect on module RCI
(Analysis of Variance (ANOVA) after the Benjamini–Hochberg adjustment across 312 (156 modules × two omics datasets) tests) and (2) significantly
higher RCI in intervention group than control group (i.e., tightened module; the post hoc two-sided Welch’s t-tests after the Benjamini–Hochberg
adjustment across four (two comparisons × two omics datasets) comparisons). P: proteomics, T: transcriptomics. c, d Sample rank matching score (RMS)
distributions for an example of the tightened modules in both proteins and transcripts (c; GO:0006635, fatty acid β-oxidation) or specifically in proteins (d;
GO:0042866, pyruvate biosynthetic process). Data: the mean (dot) with 95% CI (bar); n= 12 mice. *P < 0.05, **P < 0.01, ***P < 0.001 by two-sided
Welch’s t-tests after the Benjamini–Hochberg adjustment across four (two comparisons × two omics datasets) comparisons.
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multiple testing by assuming independence among the reactions.
In addition, the number of mapped reactions to a subsystem
(i.e., analogous to functional pathways within the GEM system) is
different between subsystems49. Hence, we assessed which
subsystems in GEM were shifted by each intervention as follows.
First, we screened for the reactions that were potentially changed
by an intervention, using Mann–Whitney U-test with nominal
P < 0.05 (Fig. 6a). Subsequently, we performed enrichment
analysis on the potentially changed reactions using GEM
subsystem annotations. As a result, six and five subsystems were
significantly enriched in the 170 and 38 potentially changed
reactions by ACA and CR, respectively (FDR-adjusted P < 0.05;
Fig. 6b, c), while no potentially changed reaction (and thus no
enriched subsystem) was identified for Rapa. In particular,
consistently enriched between ACA and CR was the fatty acid
oxidation subsystem (Fig. 6b, c). Moreover, when focusing on the
central energy metabolism, the reaction chains around pyruvate,
acetyl-CoA, and acylcarnitine were significantly changed by ACA
with tendency of concordant changes by CR (Fig. 6d). In
summary, our in silico analysis identified the metabolic effects of
different lifespan-extending interventions (i.e., ACA and CR at

least), and implied that multiple lifespan-extending interventions
concordantly shifted fatty acid metabolism at the systems level.

Discussion
Studies in model organisms, both invertebrate and vertebrates,
have shown multiple ways to extend lifespan and delay age-related
diseases3,14–16. Aging can be slowed, and healthspan can be
extended, by mutation of individual genes, dietary restrictions, or
oral administration of compounds. Data are becoming available to
determine which of the many cellular and molecular traits modified
by each of these interventions are shared across slow-aging models
and which are specific. Elucidation of the physiological and cellular
mechanisms of effective interventions will provide clues for pos-
sible measures to improve human health and may also give useful
prognostic information. In this study, we demonstrated the fol-
lowing key findings: (1) mechanistically distinct lifespan-extending
interventions generally tightened the systems-level profiles of bio-
logical processes; (2) fatty acid metabolism emerged as a common
process shifted by multiple lifespan-extending interventions; (3)
lifespan-extending interventions achieved the tight proteomic

Fig. 5 Lifespan-extending interventions increased proteomic profile conservation of specific modules potentially through cap-independent translation.
a–g Differential Rank Conservation (DIRAC) analysis of the LC-M001 and LC-M004 proteomics data (a–c, e, f) or DIRAC comparison analysis between the
LC-M001 proteomics and M001-related transcriptomics data (d, g) using Gene Ontology Biological Process (GOBP)-defined modules (see Supplementary
Data 7 (a–c, e, f) or 6 (d, g) for complete results, respectively). Control-1: control for Acarbose, 17α-Estradiol, and Rapamycin; Control-2: control for 4EGI-1.
a Overall distribution of module rank conservation index (RCI). Data: median (center line), 95% confidence interval (CI) around median (notch), [Q1, Q3]
(box limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are the minimum and maximum values in
[Q1− 1.5 × IQR, Q3+ 1.5 × IQR] (IQR: the interquartile range, Q3−Q1), respectively; n= 153 modules. ***P < 0.001 by two-sided Mann–Whitney U-tests
after the Benjamini–Hochberg adjustment across four comparisons. b, e Venn diagram of the modules that exhibited (1) the significant intervention effect
on module mean of RMSs under 4EGI-1 rank consensus (Analysis of Variance (ANOVA) after the Benjamini–Hochberg adjustment across 306 (153
modules × two rank consensus) tests) and (2) significantly lower (b) or higher (e) mean of RMSs in intervention group than control group (i.e., dissimilarly
(b) or similarly (e) changed module to the 4EGI-1 group; the post hoc two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across six (three
comparisons × two rank consensus) comparisons). c, d, f, g Sample rank matching score (RMS) distributions for an example of the dissimilarly tightened
modules (c, d; GO:0044794, positive regulation by host of viral process) or the similarly tightened modules (f, g; GO:0006102, isocitrate metabolic
process). Dashed line in c and f indicates the mean of RMSs for the rank consensus group (i.e., RCI). Data: the mean (dot) with 95% CI (bar); n= 8
(Control-2, 4EGI-1), 12 (the others) mice. *P < 0.05, **P < 0.01, ***P < 0.001 by two-sided Welch’s t-tests after the Benjamini–Hochberg adjustment across
six (three comparisons × two rank consensus; c, f) or four (two comparisons × two omics datasets; d, g) comparisons.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05128-y ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:768 | https://doi.org/10.1038/s42003-023-05128-y | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


profiles of biological processes through transcriptional or post-
transcriptional regulation, potentially including CIT.

By leveraging omic datasets and systems-level approaches jointly,
we demonstrated that lifespan-extending interventions modified
biological processes and metabolic reactions at the systems level
(Figs. 2–6). In particular, DIRAC analyses revealed that the tigh-
tening of module profiles was a general signature of the lifespan-

extending interventions within the measured proteomic and tran-
scriptomic spaces (Figs. 2a, 3f and 4a). Interestingly, a previous
study using DIRAC revealed the general loosening of module
profiles in more malignant phenotypes and later stages of cancer
progression among various cancer types44. Given that there are
some similarities between cancer resistance and anti-aging in
mechanisms (e.g., DNA repair, telomere maintenance)55,56,62, aging
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may be promoted, in part, by loss of tight regulation for pertinent
modules, and maintenance of the module tightness may be a key
anti-aging strategy. Furthermore, we identified the 23 proteomic
modules (Fig. 2c, Table 1, Supplementary Data 1), 2500 tran-
scriptomic modules (Supplementary Fig. 4b, Supplementary
Data 5), and 10 GEM subsystems (Fig. 6b, c; Supplementary Data 8)
that were affected by one or more of the lifespan-extending inter-
ventions. These modules and subsystems included biological pro-
cesses related to fatty acid β-oxidation, TCA cycle, immune
response, stress response, and proteostasis, consistent with well
investigated roles in aging7–10,55,56. It should be noted that these
processes have already been regarded as components of the aging
hallmarks55,56 and the pillars of aging1. However, while these
hallmarks and pillars were compiled from independent (and, in
many cases, hypothesis-driven) studies and are often criticized5, our
findings were deduced in a data-driven manner with an untargeted
approach. Therefore, our current study showed the power of
systems-level approaches to explore and test hypotheses about the
control of aging and longevity in mammals, and provided a trans-
lational implication that potential lifespan-extending interventions
may be identified and evaluated based on their regulatory effects on
these systems.

Fatty acid β-oxidation is the catabolic process of fatty acid
breakdown for energy production, with mitochondria and per-
oxisomes being the major involved organelles63. We demon-
strated that fatty acid β-oxidation was consistently tightened in
both proteins and transcripts across mechanistically distinct
lifespan-extending interventions (Figs. 2d and 4c). We also
observed that the system transporting proteins into peroxisomes
was tightened in proteins consistently across the interventions
(Supplementary Fig. 2c), and implied that mitochondrial energy
metabolism was affected by 17aE2 and Rapa (Fig. 3b–e). More-
over, we showed that reactions involved in fatty acid metabolism
were concordantly shifted in ACA and CR (Fig. 6b–d). All these
findings support the conclusion that fatty acid β-oxidation was
directed towards tight control in a whole cellular system for
longevity. At the same time, this systems-level control of fatty
acid β-oxidation may be achieved through different mechanisms
by each intervention. For example, although fatty acid
β-oxidation (GO:0031998) was similarly tightened by ACA,
17aE2, and Rapa (Fig. 2e), the tightening patterns in a broader
fatty acid β-oxidation module (GO:0006635) and essentially
connected modules such as pyruvate synthesis (GO:0042866) and
fatty acid metabolism (GO:0000038) were similar between 17aE2
and Rapa, but different from ACA (Supplementary Fig. 2b,
Table 1). 17aE2 and Rapa, but not ACA, similarly modulated
expression patterns of mitochondrial proteins (Fig. 3b). Rapa
showed no (significant) flux changes in fatty acid β-oxidation
(Fig. 6d). Hence, we hypothesize that different lifespan-extending
interventions lead to a similar rerouting of energy metabolism

through fatty acid metabolism, albeit through different mechan-
isms. Although the findings from DIRAC, WGCNA, and GEM
do not indicate the functional consequence for cells (e.g., tight
regulation can be either augmentation or attenuation of the
pathway), there are multiple reports highlighting the role of fatty
acid oxidation in aging and longevity. For instance, AMPK, an
essential kinase of the nutrient-sensing signaling pathways in
longevity, inhibits fatty acid synthesis and promotes fatty acid
oxidation via inhibition of acetyl-CoA carboxylase 1 (ACC1) and
ACC27,64. CR increases fatty acid synthesis in adipose tissue but
results in enhancing whole-body oxidation65. Ketogenic diet
specifically upregulates the genes involved in fatty acid oxidation
in liver19. Overexpression of fatty acid-binding protein (FABP) or
dodecenoyl-CoA delta-isomerase (DCI), corresponding to the
acceleration of fatty acid β-oxidation, increased lifespan in D.
melanogaster66. Therefore, tight regulation promoting fatty acid
β-oxidation could be a common signature among lifespan-
extending strategies. The prominence of the nutrient-sensing or
energy-producing process from liver-derived datasets might be
unsurprising, given that the liver is a major metabolic organ.
However, we also observed that lifespan-extending interventions
tightened the modules less often associated with liver and meta-
bolism, such as antiviral innate immune response (GO:0140374;
Supplementary Fig. 2e), positive regulation by host of viral pro-
cess (GO:0044794; Fig. 5d), and cellular response to interleukin-7
(GO:0098761; Table 1). In the mid-life human female brain,
metabolic and immune systems are shifted by chronological age:
glucose metabolism and fatty acid β-oxidation are attenuated and
enhanced, respectively, and chronic low-grade innate and adap-
tive immune responses are enhanced67. Hence, the inter-
relationship between fatty acid metabolism and innate/adaptive
inflammation is an interesting area for future investigations.

There are some limitations to this study. We pooled female and
male samples due to the sample size limitation. Hence, it is highly
possible that we failed to identify sex-dependent changes, espe-
cially related to the known sex-dependent effects of ACA and
17aE2 on lifespan extension23–25. Additionally, our findings relied
on liver datasets, and the systemic regulation of modules across
organs and tissues was not addressed. Because this study suc-
cessfully validated the utility of systems-level approaches and
because sex dimorphism and cross-systems regulation remain not
fully elucidated in aging and longevity68,69, we plan to address
this point in future studies as datasets containing larger sample
sizes and multiple tissues become available.

In summary, this study consolidates the previously frag-
mented interrelationships among various lifespan-extending
interventions into a more coherent framework. It emphasizes
the effectiveness of systems-level approaches in identifying and
characterizing the biological processes involved in aging and
longevity.

Fig. 6 Lifespan-extending interventions shifted reaction fluxes in fatty acid metabolism. a–d Integrated analysis of the M001-related transcriptomics
data with mouse genome-scale metabolic model (GEM; see Supplementary Data 8 for complete results). CR: calorie restriction. a Change in the group
mean of flux values for each reaction. The presented group mean value was centered and scaled per reaction (see Methods); i.e., its positive value
corresponds to an increase in the mean of flux values compared to the corresponding control group, and vice versa. The top color columns highlight the
reactions that exhibited difference in flux value distribution between control and intervention (i.e., potentially changed reaction; nominal P < 0.05 by two-
sided Mann–Whitney U-test). n= 3736 reactions. b, c Shifted GEM subsystems by acarbose (b) or CR diet (c). Significance was assessed as the
enrichment of GEM subsystem in the potentially changed reactions, using overrepresentation tests with the Benjamini–Hochberg adjustment across 21
(b) or 11 (c) subsystems. Only the subsystems that exhibited nominal P < 0.05 are presented. AdjPval: adjusted P-value from the overrepresentation test.
d Changed reactions within the central energy metabolism. The 102 highlighted reaction IDs are the reactions assessed in this study. Flux value
distributions are presented only for the potentially changed reactions within this diagram. Data: mean (cross sign), median (center line), [Q1, Q3] (box
limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are the minimum and maximum values in
[Q1− 1.5 × IQR, Q3+ 1.5 × IQR] (IQR: the interquartile range, Q3−Q1), respectively; n= 12 mice. *P < 0.05 by two-sided Mann–Whitney U-test after the
Benjamini–Hochberg adjustment across three comparisons.
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Methods
Mouse liver proteomic datasets. Liver samples from mice fed with lifespan-
extending drugs were collected as previously described58. Briefly, 12 (6 female and
6 male) genetically heterogeneous UM-HET3 mice were prepared for each sample
group: control, acarbose (ACA), 17α-estradiol (17aE2), and rapamycin (Rapa). The
drugs were treated via daily feeding of the Purina 5LG6 diet with ACA
(1000 mg kg−1), 17aE2 (14.4 mg kg−1), or Rapa (14 mg kg−1) starting at 4 months.
At 12 months, the mice fasted for 18 h and were euthanized for liver sampling.
Excised livers were washed in phosphate-buffered saline (PBS) and snap-frozen for
proteomic analysis. All procedures followed the methods recommended by the
National Institute on Aging (NIA) Interventions Testing Program (ITP)22. Here-
inafter, this experiment is called LC-M001. Liver samples from 4EGI-1-treated
mice were collected as previously described57. Each group, control and 4EGI-1,
consisted of 4 female and 4 male UM-HET3 mice aged 6 to 8 months old. Controls
received an intraperitoneal injection of 15 µL dimethyl sulfoxide (DMSO) daily for
5 days, and treated mice received DMSO containing 4EGI-1 at 75 mg per kg body
weight. After the last injection, the mice were fasted for 18 h prior to euthanasia.
Excised livers were washed in PBS and snap-frozen for proteomic analysis.
Hereinafter, this experiment is called LC-M004. All the animal protocols in the LC-
M001 and LC-M004 experiments were approved by the University of Michigan’s
Institutional Animal Care and Use Committee (IACUC).

The frozen livers were dissected, processed with lysis and trypsin digestion, and
analyzed by mass spectrometry (MS) for quantitative protein abundance. Liver
sections were placed in lysis buffer (50 mM tris(hydroxymethyl)aminomethane
(Tris)-HCl pH 8.0 and 5% sodium dodecyl sulfate (SDS)) and homogenized using a
Precellys® 24 tissue homogenizer (Bertin Technologies SAS, Montigny-le-
Bretonneux, France). For each sample, protein concentrations were determined by
a bicinchoninic acid (BCA) assay. A total of 300 µg of solubilized protein extract in
5% SDS was purified to remove SDS using Midi-S-Trap™ sample processing
technology (ProtiFi, New York, USA), and digested with trypsin at 37 °C for 4 h.
The extracted tryptic peptides were subjected to reverse phase liquid
chromatography tandem mass spectrometry (LC-MS/MS), using an Easy-nLC
1000 (Thermo Fisher Scientific, Massachusetts, USA) with a 50 cm fused silica
capillary (75 µm inner diameter) packed with C18 (ReproSil-Pur 1.9 µm; Dr.
Maisch GMBH, Ammerbuch, Germany) heated to 45 °C. The mobile phase
gradient consisted of 5–35% acetonitrile and 0.1% formic acid over 3 h for the LC-
M001 samples or over 2 h for the LC-M004 samples. The LC-M001 samples were
analyzed on a Q Exactive-HF mass spectrometer (Thermo Fisher Scientific) in
data-dependent acquisition (DDA) mode with an MS scan mass range of
375–1375m/z and a resolution of 60,000. MS/MS scans were acquired with TopN
= 15 using 15,000 resolution, with an isolation width of 1.8m/z, AGC set to
100,000, and 100 ms injection time. NCE was set to 27, and dynamic exclusion was
set to 20 s. The LC-M004 samples were analyzed on an Orbitrap Fusion Lumos
(Thermo Fisher Scientific) in DDA mode with an MS scan mass range of
375–1375m/z and a resolution of 60,000. MS/MS scans were acquired with TopN
= 12 using 15,000 resolution with an isolation width of 1.8m/z, AGC set to 40,000,
and 30 ms injection time. NCE was set to 30, and a dynamic exclusion was set
to 30 s.

MS data analysis was conducted using the Trans-Proteomic Pipeline70. Peptide
identification was performed by database searching with Comet71 using the mouse
reference proteome UP000000589 (UniProt, downloaded on June 11, 2019) filtered to
one protein sequence per gene. Peptide sequences were validated with PeptideProphet72

and iProphet73. Protein inference was performed with ProteinProphet74. Protein
quantification was performed using the top-3 method75,76 on quantities obtained from
the extracted ion chromatograms of the precursor signals of the identified proteotypic
peptides.

Mouse liver transcriptomic dataset. The processed dataset of mouse liver tran-
scriptomics was kindly provided by Vadim N. Gladyshev (Harvard Medical School).
Complete descriptions are found in the original paper45. Briefly, the original
experiment (referred as M001-related in the current study) was designed to investigate
eight lifespan-extending interventions: two genetically modified models (the growth
hormone receptor knockout mouse (GHRKO) and the hypopituitary Snell dwarf
mouse (SnellDW)), two nutritional interventions (calorie restriction (CR) and
methionine restriction (MR)), and four pharmacological interventions (ACA, 17aE2,
Protandim®, and Rapa). Among 78 mice in total, three mice were prepared for each of
the sex- and age-distinguished sample groups, but these groups were not necessarily
balanced among interventions (i.e., only the male group was prepared for GHRKO,
SnellDW, and MR, and only the 6 months-old group was prepared for 17aE2 and
Protandim). Based on the sample size for systems analyses, we chose to pool samples
per intervention and investigate only the four sample groups (control, ACA, Rapa,
and CR) throughout the current study, while acknowledging that this strategy is a
study limitation (see Discussion). Each of these four groups consisted of three 6
months-old female, three 12 months-old female, three 6 months-old male, and three
12 months-old male UM-HET3 mice (n= 12 mice per group). The interventions
were treated via daily feeding of the Purina 5LG6 diet with ACA (1000mg kg−1),
Rapa (42 or 14mg kg−1 for 6 or 12 months-old, respectively), or CR (40% less than
control) starting at 4 months. The animal protocols were approved by the IACUC at
the University of Michigan. The liver samples were processed for paired-end RNA
sequencing using NovaSeq 6000 sequencing system (Illumina, California, USA). The

processed reads after the quality filtering and adapter removal were mapped to gene
and counted. After filtering out genes with low number of reads, the count data of the
filtered genes was passed to the relative log expression (RLE) normalization.

Data preprocessing. Considering the small sample size and prioritizing robust-
ness of downstream systems analyses, we chose to pool samples per intervention
throughout the current study, while acknowledging the limitation of this approach
(see Discussion). Hence, as the first preprocessing step, the potential effects of sex
and age were regressed out from each omics dataset. Log-transformed and stan-
dardized analyte abundance values were regressed against sex and age with
ordinary least squares (OLS) linear regression for each analyte using the Python
statsmodels (version 0.13.0) library. Age was included as a categorical variable at
the month level, and thus a dummy variable in cases of the LC-M001 and LC-
M004 datasets. The residuals were scaled and shifted back to log-scale, and used as
the covariate-adjusted analyte abundance values in all further analyses.

Weighted gene co-expression network analysis. Weighted Gene Co-expression
Network Analysis (WGCNA) was performed for the LC-M001 proteomics, using R
WGCNA package (version 1.71) according to the WGCNA methodlogy47. Ana-
lytes were initially filtered based on missing values with the default threshold
setting (50%), and the remaining analytes (3468 proteins) were used to generate the
co-expression network. Network generation was performed using Spearman’s
correlation and the signed-hybrid approach within the WGCNA package. The β
parameter to approximate a scale-free topology was defined with 8, using the
pickSoftThreshold function. Module identification was subsequently performed
using the topological overlap matrix and the default hierarchical clustering
approach with dynamic tree cut. Consequently, 10 modules were identified from
the LC-M001 proteomics (Fig. 3a, Supplementary Data 2). The identified modules
were summarized with module eigengene: the q-module eigengene E(q) corre-
sponds to the first principal component of the expression matrix of proteins in that
module. In addition, intramodular connectivity (i.e., the sum of the adjacency to
the other nodes within the module) was calculated for each protein of the modules.

Differential Rank Conservation analysis — data processing. To apply Differ-
ential Rank Conservation (DIRAC) analysis, missingness in the mouse datasets was
conservatively resolved by filtering out the analytes that were not detected in one or
more samples; the final number of analytes was 2231 proteins for DIRAC analysis
of the LC-M001 proteomics, 2112 proteins for DIRAC analysis of the LC-M001
and LC-M004 proteomics, and 11,326 transcripts for DIRAC analysis of the M001-
related transcriptomics. The analyte abundance values were normalized using
robust Z-score (i.e., Z-score using median and median absolute deviation (MAD)
instead of mean and s.d., respectively) for each sample, and further normalized
using robust Z-score for each analyte based on the median and MAD of the
control group.

Differential Rank Conservation analysis — module set preparation. For each
protein in the preprocessed proteomic datasets, the Gene Ontology Biological
Process (GOBP) annotations were retrieved using the QuickGO77 application
programming interface (API) with a query of UniProt ID (January 26, 2021). For
each gene in the preprocessed transcriptomic dataset, the GOBP annotations were
retrieved using R org.Mm.eg.db package (version 3.14.0) with a query of the
Ensembl ID. Each GOBP term defines a priori module consisting of all annotated
proteins/genes in the corresponding species (i.e., backgrounds). To maintain the
biological meaning of annotation, the modules were further selected if at least half
of the members in the module, with a minimum of four members, were quantified
in the processed datasets; the final a priori module set was 164 modules for DIRAC
analysis of the LC-M001 proteomics (Supplementary Data 1), 153 modules for
DIRAC analysis of the LC-M001 and LC-M004 proteomics (Supplementary
Data 7), and 3912 modules for DIRAC analysis of the M001-related tran-
scriptomics (Supplementary Data 5). Note that, although there are multiple
annotation databases, we representatively used GOBP annotations throughout the
current study simply based on its largest coverage.

Data-driven modules were prepared by applying WGCNA to the LC-M001
proteomics, as described above. Because missingness was differently handled
between DIRAC analysis and WGCNA, each WGCNA-identified module could
have the analytes that were not retained in the processed dataset for DIRAC
analysis (Fig. 3a). Hence, the WGCNA modules were further selected if at least half
of the members in the module, with a minimum of four members, were retained in
the preprocessed dataset; the final data-driven module set was six modules for
DIRAC analysis of the LC-M001 proteomics (Supplementary Data 4).

Differential Rank Conservation analysis — DIRAC calculation. The DIRAC
algorithm44 (Fig. 1b) was reimplemented in Python (version 3.7.6 or 3.9.7). Briefly,
pairwise comparisons of analyte values within a module are initially performed for
each sample, generating a ranking/ordering dataframe which contains binary
values about whether analytei value is larger than analytej value (i.e., differential
ranks). Next, consensus of the binary values is calculated per analytei–analytej pair
for each sample group (called phenotype in the original paper) by majority vote,
generating a binary ranking/ordering template dataframe which corresponds to the
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rank consensus in the DIRAC algorithm. Then, each analytei–analytej pair in the
ranking/ordering dataframe is judged whether it matches or mismatches with a
consensus in the ranking/ordering template dataframe. Rank matching score
(RMS) for each module against each consensus is obtained per sample by calcu-
lating a rate of the number of matched pairs. Finally, RMSs for each module against
each consensus is summarized with the arithmetic mean per sample group. When
this module mean of RMSs in a sample group is based on the consensus of the
sample group itself, it corresponds to rank conservation index (RCI); that is, RCI is
a special case of the module RMS mean.

Genome-scale metabolic model reconstruction. For each of the samples in the
M001-related transcriptomics, a context-specific (i.e., sample-specific) metabolic
network model was reconstructed from a mouse genome-scale metabolic model
(GEM), iMM186549, which is a knowledge-based multi-compartment model
consisting of 1865 metabolic genes, 10,612 reactions, and 5839 metabolites.
According to the gene–protein–reaction (GPR) associations, the analyte abundance
values were integrated with the generic iMM1865 for each sample using the
integrative metabolic analysis tool (iMAT) algorithm78. Subsequently, to predict
the flux values of reactions at steady state, flux variability analysis (FVA) was
performed for each context-specific GEM using the COBRA toolbox (version
3.0)79. FVA evaluates the flux range for each reaction by optimizing all the
potential flux distributions to minimize or maximize a pre-defined objective
function under the solution space (i.e., under the context-specific constraints),
which is known as the LP (Linear Programming) and MILP (Mixed Integer Linear
Programming) problems. The biomass reaction (BIOMASS_reaction) defined in
the generic iMM1865 was used as the objective function to be maximized, and FVA
was performed for 90% of the optimal solution using the fastFVA function.
COBRA toolbox was implemented in MATLAB (R2019a), and academic licenses
of Gurobi optimizer (version 7.5) and IBM CPLEX (version 12.7.1) were used to
solve LP and MILP. As a result, the flux ranges were successfully predicted for
7834 reactions among the 10,612 reactions of the generic GEM. Then, reactions
without subsystem annotation (e.g., BIOMASS_reaction) and reactions in the
exchange/demand, miscellaneous, or transport subsystems were removed
(because they are pseudo-reactions of the GEM system or their functional
meaning is difficult to be interpreted as a single subsystem), and only the
remaining 3736 functional reactions were assessed (Supplementary Data 8). The
average of the minimum and maximum values in FVA was representatively used
as the predicted flux value.

Statistics and reproducibility. All processing and null hypothesis testing were
performed using Python (version 3.9.7) with Python NumPy (version 1.21.3),
pandas (version 1.3.4), SciPy (version 1.7.1) and statsmodels (version 0.13.0)
libraries, except for overrepresentation analysis using R (version 4.1.1) with R
tidyverse (version 1.3.1) and clusterProfiler (version 4.2.2)80 packages. All statistical
tests were performed using a two-sided hypothesis. In all cases of multiple testing,
P-values were adjusted with the Benjamini–Hochberg method. Statistical sig-
nificance was based on P < 0.05 for single testing and FDR < 0.05 for multiple
testing. All data were derived from independent mice (i.e., biological replicates).
Group statistics (e.g., sample size, mean, s.e.m.) and test summary (e.g., degrees of
freedom, test statistic, P-value) are found in Supplementary Data 1–9.

Differences in overall RCI distribution between control and each intervention
were assessed using Mann–Whitney U-tests while adjusting multiple testing across
three (Figs. 2a, 3f, 4a) or four (Fig. 5a) comparisons. For identifying the module
changed by one or more of the interventions, the intervention effect on RCI (i.e.,
the mean of RMSs under the rank consensus of own sample group) was assessed
using Analysis of Variance (ANOVA; RMS ~ intervention) for each module or for
each module and each omics dataset, while adjusting multiple testing across 164
(Fig. 2b, c), six (Fig. 3g), or 3912 (Supplementary Fig. 4a, b) modules or across 312
(156 modules × two omics datasets; Fig. 4b) tests. Note that GOBP modules are
partly dependent on each other because the same gene/protein can be shared
between GOBP terms; hence, this simple adjustment approach could inflate false
negatives, and thus be regarded as a conservative approach. For subsequently
clarifying which intervention changed (i.e., tightened or loosened) the module, the
post hoc comparisons for RCI between control and each intervention were assessed
using Welch’s t-tests while adjusting multiple testing across three (Figs. 2b–d,
3g, 3h; Supplementary Figs. 2a, 2c, 2e, 2g, 3e, 4a–c) or four (two comparisons × two
omics datasets; Figs. 4b–d, 5d, 5g) comparisons. For examining the similarity of
module regulation among interventions, differences in the mean of RMSs between
control and each intervention were assessed for each rank consensus using Welch’s
t-tests while adjusting multiple testing across six (two comparisons × three rank
consensus; Figs. 2c, 2e, 3i; Supplementary Figs. 2b, 2d, 2f, 2h, 3f, 4b, 4d)
comparisons. Note that the sample group corresponding to the rank consensus
group was excluded in these tests, because its mean of RMSs (i.e., RCI) is expected
to follow a different distribution from the other sample groups’ one. Also note that,
because false negatives were inflated due to double tests (e.g., Control vs. ACA
under the Rapa rank consensus was complementary to Control vs. Rapa under the
ACA rank consensus), this simple adjustment approach was regarded as a
conservative approach. For identifying the module whose regulation similarity to
the LC-M004 sample groups (Control-2, 4EGI-1) was different among the LC-

M001 sample groups (Control-1, ACA, 17aE2, Rapa), the intervention effect on the
RMS mean was assessed using ANOVA (RMS ~ intervention) for each module and
each rank consensus, while adjusting multiple testing across 306 (153 modules ×
two rank consensus; Fig. 5b, e) tests (i.e., a conservative approach, as described
above). For subsequently clarifying which intervention (similarly or dissimilarly)
changed the module, the post hoc comparisons for the RMS mean between
Control-1 and each intervention (ACA, 17aE2, Rapa) were assessed using Welch’s
t-tests while adjusting multiple testing across six (three comparisons × two rank
consensus; Fig. 5b, c, e, f) comparisons.

For identifying the WGCNA module changed by one or more of the
interventions, the intervention effect on the module eigengene was assessed
using ANOVA (E(q) ~ intervention) for each module, while adjusting multiple
testing across 10 modules. For subsequently clarifying which intervention
changed the module eigengene, the post hoc comparisons for the E(q) mean
between control and each intervention were assessed using Welch’s t-tests while
adjusting multiple testing across three (Fig. 3b, Supplementary Fig. 3a)
comparisons. For examining the relationship between the intervention
effect on each protein and their respective intramodular connectivity in the
Blue (Fig. 3c) or Pink (Supplementary Fig. 3b) module, the main effect of
intervention on each protein k was calculated using ANOVA (Proteink(q) ~
intervention), and then Spearman’s correlation between the calculated main
effect of intervention and intramodular connectivity was assessed. For
investigating characteristics of the Blue or Pink module, enrichment in the top
10% hub proteins (Blue: 79 proteins, Pink: 18 proteins) was assessed using
overrepresentation tests for each of the GOBP terms that were mapped to any of
the hub proteins, while adjusting multiple testing across 81 (Fig. 3d) or seven
(Supplementary Fig. 3c) terms.

For examining the GEM subsystems that were shifted by each intervention, the
reactions that were potentially changed by the intervention were first screened for,
and then the GEM subsystems that were enriched in them were identified. To
screen for the potentially changed reactions, differences in flux value distribution
between control and each intervention were assessed using Mann–Whitney U-tests
for each reaction, and the reactions having nominal P < 0.05 were selected.
Enrichment in the potentially changed reactions (ACA: 170 reactions, Rapa: 0
reaction, CR: 38 reactions) was assessed using overrepresentation tests for each of
the GEM subsystems that were annotated to any of the potentially changed
reactions, while adjusting multiple testing across 21 (Fig. 6b) or 11 (Fig. 6c)
subsystems. Note that reactions in GEM are partly dependent on each other
because the same gene/protein/metabolite can be shared between the reactions;
hence, this simple adjustment approach could inflate false negatives, and thus be
regarded as a conservative approach.

Data visualization. Most results were visualized using Python (version 3.9.7) with
Python matplotlib (version 3.4.3), seaborn (version 0.11.2), venn (version 0.1.3)
libraries, while the results of enrichment analyses were visualized using R (version
4.1.1) with R ggplot2 (version 3.3.6) and enrichplot (version 1.14.2) packages. The
results were summarized as the mean with 95% confidence interval (CI) or the
standard boxplot (median: center line; 95% CI around median: notch; [Q1, Q3]: box
limits; [xmin, xmax]: whiskers, where Q1 and Q3 are the 1st and 3rd quartile values,
and xmin and xmax are the minimum and maximum values in [Q1− 1.5 × IQR,
Q3+ 1.5 × IQR] (IQR, interquartile range, Q3−Q1), respectively), as indicated in
each figure legend. Note that this 95% CI of mean or median was simultaneously
calculated during visualization using the seaborn barplot or boxplot API, respec-
tively; hence, this CI is not exactly the same as that used in statistical analysis but
for presentation purposes only. Hierarchical clustering was simultaneously per-
formed during visualization using seaborn clustermap API with the Ward’s linkage
method for Euclidean distance. For the values used in Fig. 6a, the group mean of
flux values for each reaction was centered by subtracting the group mean of the
corresponding control, and then scaled by the maximum absolute value across
intervention groups using MaxAbsScaler of Python scikit-learn library (version
1.0.1).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MS data of the LC-M001 and LC-M004 proteomics have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository (PXD035255)81,82. The
processed data of the M001-related transcriptomics was kindly provided by Vadim N.
Gladyshev (Harvard Medical School), and raw data is available on the NCBI’s Gene
Expression Omnibus (GEO) repository (GSE131901)83. Source Data are provided with
this paper (Supplementary Data 9).

Code availability
Code used in this study is freely available on GitHub (https://github.com/longevity-
consortium/SysBioM001Paper)84.
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