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Parvalbumin neurons enhance temporal coding and
reduce cortical noise in complex auditory scenes
Jian Carlo Nocon 1,2,3,4, Howard J. Gritton5,6, Nicholas M. James1,2,3,4, Rebecca A. Mount1,2,3,4, Zhili Qu5,6,

Xue Han 1,2,3,4 & Kamal Sen 1,2,3,4✉

Cortical representations supporting many cognitive abilities emerge from underlying circuits

comprised of several different cell types. However, cell type-specific contributions to rate and

timing-based cortical coding are not well-understood. Here, we investigated the role of

parvalbumin neurons in cortical complex scene analysis. Many complex scenes contain

sensory stimuli which are highly dynamic in time and compete with stimuli at other spatial

locations. Parvalbumin neurons play a fundamental role in balancing excitation and inhibition

in cortex and sculpting cortical temporal dynamics; yet their specific role in encoding complex

scenes via timing-based coding, and the robustness of temporal representations to spatial

competition, has not been investigated. Here, we address these questions in auditory

cortex of mice using a cocktail party-like paradigm, integrating electrophysiology, optogenetic

manipulations, and a family of spike-distance metrics, to dissect parvalbumin neurons’

contributions towards rate and timing-based coding. We find that suppressing parvalbumin

neurons degrades cortical discrimination of dynamic sounds in a cocktail party-like setting via

changes in rapid temporal modulations in rate and spike timing, and over a wide range of

time-scales. Our findings suggest that parvalbumin neurons play a critical role in enhancing

cortical temporal coding and reducing cortical noise, thereby improving representations of

dynamic stimuli in complex scenes.
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The cerebral cortex is critical for perception, attention,
decision-making, memory, and motor output. Under-
standing the cortical circuit mechanisms that underlie

these functions remains a central problem in systems neu-
roscience. One line of investigation toward addressing this pro-
blem has been to identify the underpinnings of the cortical code;
specifically, to assess whether cortical coding relies on rate or
spike timing1. Previous studies have demonstrated both rate and
spike timing-based coding in cortex2–4. However, a mechanistic
understanding of how cortical circuits implement these codes and
on what timescales is still missing. A second line of questioning
towards addressing this central problem has been to utilize a
combination of anatomy, physiology and optogenetics to inter-
rogate cortical circuits and neuron types5,6. This concerted
approach has allowed systems neuroscientists to identify
key contributions of specific cell types to cortical circuits,
including inhibitory neurons (e.g., parvalbumin-expressing (PV),
somatostatin-expressing (SOM), and vasoactive intestinal
peptide-expressing (VIP) neurons)5. However, the specific con-
tributions of these diverse cell types to the cortical code remain
unclear.

A potentially powerful strategy for unraveling cell-type-specific
contributions to cortical coding is to investigate problems where
cortical processing is likely to play a central role. An important
example of such a problem is complex scene analysis, e.g.,
recognizing objects in a scene cluttered with multiple objects at
different spatial locations. The brain displays an astonishing
ability to navigate such complex scenes in everyday settings, an
impressive feat yet to be matched by state-of-the-art machines.
The relative contribution of specific cell types to this powerful
computational ability remains unclear.

PV neurons are the most prominent group of inhibitory neu-
rons in the cortex7. Previous studies have investigated the role
played by PV neurons in the generation of oscillations8 and spike
synchronization9. PV neurons play a fundamental role in bal-
ancing excitation and inhibition10 and determining receptive field
properties in the cortex11–13. Optogenetic manipulation of PV
neurons has provided insights into cortical responses, network
dynamics, and behavior14–19. Specifically, a study by Moore
et al.19 revealed that optogenetic suppression of PV neurons led
to a rapid rebalancing of excitation and inhibition in the cortex,
with the expected increase in the activity of excitatory neurons,
but a counterintuitive increase in the activity of inhibitory neu-
rons. As elegantly dissected in the study, this occurs because the
suppression of PV neurons leads to an increase in the activity of
excitatory neurons, which then drives both excitatory and inhi-
bitory neurons downstream, rapidly rebalancing cortical activity.
This result illuminates a property of cortical networks consistent
with theoretical models but raises another question: does the
suppression of PV neurons impact cortical temporal coding? The
biophysical properties of PV neurons are well-suited for rapid
temporal processing5 and therefore may be essential in the cor-
tical temporal coding of dynamic stimuli present in complex
scenes. In addition, narrow-spiking units, which are thought to be
putative inhibitory neurons, have exhibited distinct temporal
response patterns to stimulus envelopes compared to those of
regular-spiking units20. This motivates several open questions: do
PV neurons play a critical role in the cortical temporal coding of
dynamic stimuli? Are such temporal codes robust to competing
stimuli at other locations in space? Here, we address these
questions in the auditory cortex using a combination of electro-
physiology, optogenetic suppression of PV neurons, and a family
of spike-distance metrics21,22 to dissect specific contributions of
PV neurons to the cortical code.

The auditory cortex (ACx) is well-suited to investigate these
issues. It is thought to play a key role in solving the cocktail party

problem23,24, one of the most impressive examples of complex
scene analysis. Here, we integrate a cocktail party-like paradigm25

with optogenetic suppression of PV neurons to investigate the
specific contribution of PV neurons to temporal coding in mouse
ACx. We find that suppressing PV neurons degrades dis-
crimination performance, specifically temporal coding, in ACx,
and degrades performance over a wide range of timescales. Our
results reveal that despite the rebalancing of excitation and
inhibition in cortical networks observed previously, suppression
of PV neurons disrupts coding throughout ACx, suggesting an
important influence of PV neurons on cortical temporal coding
and regulating cortical noise.

Results
We recorded single units (SUs) and multiunits (MUs) using a
multielectrode array with 4 shanks and 32 channels throughout
different layers in ACx of unanesthetized PV-Arch transgenic
mice (Fig. 1a–c and Supplementary Figs. 1 and 2). We used a
semi-automated detection and sorting algorithm to identify 124
units from n= 9 animals26,27. Of these 124 units, 82 were iden-
tified as SUs (e.g., Fig. 1d) while the remaining 42 were identified
as MUs. In the results below, we focus on SUs. Out of the SUs, 73
were identified as regular-spiking (RS) while the remaining 9 were
identified as narrow-spiking (NS) based on the trough-peak
interval of their mean waveforms (Supplementary Fig. 3). RS and
NS units have been found to correspond to excitatory and inhi-
bitory neurons, respectively, in ACx12,28.

To confirm specificity of expression, immunohistochemistry
quantification was performed at the conclusion of the study and
revealed that ~93% of PV immunopositive cells in the auditory
cortex were also Arch-GFP expressing neurons. Importantly,
we also found that <1% of Arch-GFP expressing cells were
immuno-negative for PV antibody (Supplementary Fig. 4).
Optogenetic suppression occurred on ~50% of trials, randomly
interleaved, throughout the recording sessions. Suppression was
achieved using light output from a 532 nm laser that began
50 ms prior to the auditory stimulus and consisted of con-
tinuous illuminations that co-terminated with sound offset.
Within a given 800-trial session, optogenetic suppression
strength remained constant (2 mW, 5 mW, or 10 mW), but was
varied across sessions.

Next, we confirmed that the effects of optogenetic suppression
of PV neurons in ACx were consistent with previous studies
(Fig. 1e and Supplementary Figs 5 and 6). Upon laser onset, we
found that NS units in PV-Arch-expressing subjects showed an
immediate suppression of spiking followed by an increase in
activity (Supplementary Fig. 5a), while NS units within non-
Arch-expressing subjects did not show a change in activity during
laser onset (Supplementary Fig. 5b). We found that upon PV
suppression, RS units increased their firing rate during both
spontaneous and auditory evoked periods (Fig. 1e and Supple-
mentary Fig. 6a), as expected18,19. Different intensities enhanced
the firing rate of RS neurons in a level-dependent manner con-
sistent with previous studies (Supplementary Fig. 6a–c). Counter-
intuitively, but consistent with the previous study in ref. 19, NS
units also increased their firing activity (Supplementary
Fig. 6d–f). As demonstrated by Moore et al. optogenetic sup-
pression of PV neurons also produced a compensatory increase in
inhibition and a rapid rebalancing of excitation and inhibition in
the cortex. Thus, the effects of optogenetic suppression of PV
neurons on firing rates in ACx we observed are consistent with
previous studies and the rapid rebalancing of excitation and
inhibition. However, the effects of PV suppression on temporal
coding in ACx remain unknown. Thus, we next inquired: does
PV suppression impact temporal coding in ACx?
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Investigating cortical coding in mouse ACx using a cocktail
party-like paradigm. To better understand cortical coding of
complex scenes in a mouse model amenable to circuit inter-
rogation using genetic tools, we adopted a cocktail party-like
experimental paradigm25 while recording from neurons in ACx.
Specifically, we recorded responses to spatially distributed sound
mixtures to determine how competing sound sources influence
the cortical coding of stimuli. The recording configuration con-
sisted of four speakers arranged around the mouse at four loca-
tions on the azimuthal plane: directly in front (0°), two
contralateral (45° and 90°) and 1 ipsilateral (−90°) to the right
auditory cortex recording area. Target stimuli consisted of white
noise modulated by human speech envelopes extracted from a
speech corpus29. We utilized two target waveforms (target 1 and
target 2) and a competing masker consisting of unmodulated
white noise. Mice were exposed to either target-alone trials
(Clean) or target-masker combinations (Masked) (Fig. 2a–c).

Mouse ACx neurons show spatial configuration sensitivity
between competing auditory stimuli. We assessed cortical
coding using neural discriminability, which refers to the ability to
determine stimulus identity based on neural responses and, thus a
neuron’s ability to encode stimulus features, and a variety of other
quantitative response measures. Neural discriminability between

the two targets (% correct) was computed both without the
masker (Clean) (Fig. 2a); and with the masker (Masked), for all
possible combinations of target and masker locations (Fig. 2b, c).
We refer to the matrix of performance values from all speaker
configurations as spatial grids, which allow for visualization of the
spatial tuning sensitivity of a given unit in the presence of
competing auditory stimuli (Fig. 2d). Values near 100 and 50%,
respectively, represent perfect discriminability and chance dis-
criminability, and positions of high performance (≥70%), which
were also statistically significant (P < 0.05) with a relatively large
effect size (Fig. 2e, d ≥ 1), were deemed as hotspots. These hot-
spots represent locations of enhanced discriminability between
the two targets, either in the absence (Clean) or presence
(Masked) of a competing masking stimulus, using a spike-
distance-based classifier to determine how well target identity can
be predicted given the spike train from that site based on dis-
similarities in spike timing and instantaneous rate25 (see “Neural
discriminability using SPIKE-distance”).

Figure 2a illustrates spike trains from an example SU that
shows high discriminability under both target-only conditions
(Fig. 2a, d, e, black); and for a specific spatial configuration in the
presence of a competing noise masker (Figs. 2b, d, e, red). In
the masked condition, discriminability depends strongly on the
spatial configuration of the target and masker, indicating that the

Fig. 1 Experimental methods. a Recording electrode location and optical fiber placement. Subjects were implanted with a 4-shank, 32-channel electrode
array, and optogenetic fiber in the right hemisphere of ACx. Each shank contained 8 sites per shank with 100 µm spacing between electrode contacts.
Mouse brain illustration from Pixta (https://www.pixtastock.com/illustration/67155575). b Representative local field potential (LFP) activity from one
mouse. LFP was used to estimate current source density and the layer of the recording site within each shank (Supplementary Fig. 2). c Example mean
single-unit waveform and inter-spike interval (ISI) auto-correlogram. Dashed lines in mean waveform represent one standard deviation above and below
the mean, while scale bars are equal to 200 µV and 1 ms. Dashed red lines in the correlogram represent ISIs of ±2ms. d Schematic for control and
optogenetic trial presentation. During approximately 50% of all trials, a 532 nm laser would turn on 50ms before sound stimulus onset and turn off
coincident with sound offset. e Paired comparisons of mean evoked firing rate during control and laser trials. Paired t tests yielded a significant increase in
evoked firing rate during optogenetic suppression for clean (n= 49 configurations; P= 5.19e-08, d=−0.92) and masked trials (n= 20 configurations;
P= 0.0219, d=−0.56).
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Fig. 2 Cortical discrimination in a cocktail party paradigm in mouse ACx. Auditory stimuli were presented from speakers at four locations. Target stimuli
consisted of white noise modulated by human speech envelopes extracted from recordings of speech sentences (see “Auditory stimuli”). a Responses to
both target stimuli (T) for clean trials originating at +90° azimuth. All plotted PSTHs have a bin length of 20ms. During clean trials, responses exhibit
spike timing and rapid firing rate modulation that follow the amplitude envelope of both target stimuli. b Responses during trials where targets (T) played at
+90° and a competing masking stimulus (M) played at −90°. Masking stimuli consisted of unmodulated white noise with the same onset and offset times
as target stimuli. In this configuration, spike timing and firing rate modulation follow both target stimuli, despite the presence of the competing masker.
c Responses during trials where targets played at 0° and maskers played at +45°. For this configuration, spike timing and firing rate modulation do not
follow either target stimulus, resulting in similar responses between target identities. d Neural discriminability performance for all possible target-masker
location configurations, referred to as the spatial grid, for the example cell featured in (a–c). Outlined spots indicate configurations shown in (a–c), matched
by the outline color. Performance is calculated using a template-matching approach based on differences in instantaneous firing rate and spike timing
similarities between spike trains (see “Neural discriminability using SPIKE-distance”). The top grid shows discriminability for clean trials on top, while the
bottom grid shows discriminability for masked trials. All blocks are color-coded according to the color axis shown to the right of the masked grid.
Configurations with high performance (≥70%) and a large effect size (d ≥1), e.g., the configurations outlined in black and red, are referred to as hotspots.
e Effect sizes for each spatial grid configuration in (d), with the same outlines corresponding to (a–c). Positive values represent an increase in performance
relative to a null distribution where spike trains within each target are template-matched to each other, while negative values represent a decrease in
performance relative to null. f The performance of all 23 single units exhibiting at least one hotspot during control trials. The translucent yellow surface
represents the upper envelope of best performance across all single units for each masked spatial configuration, while the translucent blue surface
represents the performance threshold of 70% for hotspots. Solid gray markers represent masked configurations with performances above the threshold,
while unfilled gray markers represent data points with performances below the threshold. Black markers represent the maximal performance used to
represent the upper envelope.
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response of this neuron is spatial configuration-sensitive
(Fig. 2b–e, red versus green).

Previous studies have demonstrated that neurons with the
highest performance are most strongly correlated with behavior
and strongly constrain population performance30–34. Thus, we

were curious to test how the performance of the best neurons in
our population would be affected by optogenetic suppression of
PV neurons. To do so, we focused on the neurons with high
discrimination performance in our population (i.e., SUs with at
least one hotspot in the clean or masked conditions). In total, 23
SUs showed hotspots at one or more spatial configurations, and
there were 49 hotspots in the clean condition and 20 hotspots in
the masked condition giving a total of 69 hotspots.

At each spatial configuration, we observed a broad range of
performance levels, consisting of neurons with significant
hotspots (Fig. 2f, filled circles), as well as neurons with poor
performance (open circles), reflecting that different neurons in
the population had different spatial configuration sensitivities.
The upper envelope of maximal performance was relatively high
for all spatial configurations, except co-located target-masker and
ipsilateral target positions. Thus, as a population, ACx neurons
showed robust performance at all spatial configurations in the
contralateral hemisphere, when the target and masker were
spatially separated. We did not observe any statistically significant
differences in performance between SUs across different layers, or
SUs with different waveform types (RS vs. NS) (Supplementary
Fig. 7).

Suppression of PV neurons reduces discrimination perfor-
mance at hotspots. To investigate the role of PV interneurons in
auditory discrimination performance, we compared discrimina-
tion performance at hotspots, with and without optogenetic
suppression of PV neurons in ACx. Figure 3a–e shows an
example SU with and without suppression. Compared to the
control response (Fig. 3a), the optogenetic response (Fig. 3b)
shows an increase in spiking between the peaks of both target
stimuli. Specifically, the responses exhibited an earlier onset and
decreased spike timing reproducibility across trials during sup-
pression (Fig. 3c). Figure 3d shows the spatial grids for the same
example SU during both conditions, with the example config-
uration in Fig. 3a, b (Clean Target 45°) outlined in black in the
control grid (Fig. 3d) and in red in the optogenetic grid (Fig. 3e).

Fig. 3 Effects of suppressing PV neurons on cortical discrimination.
a Responses during clean stimulus trials originating at 45° from one
example cell during control conditions. b Responses from the same cell and
clean stimulus location in (a) during optogenetic conditions. c Inset
showing zoomed-in portion of the response between 0.1 and 0.4 s after
sound onset, as outlined in (a, b). Responses during optogenetic trials show
earlier onset and reduced spike timing consistency, compared to the
control. d Example spatial grid from the single unit in (a–c) during control
conditions. e Example cell’s spatial grid during optogenetic conditions, with
the performances at Clean Target 45° outlined in black to correspond to
responses shown in (a–c). Performance is color-coded according to the axis
shown to the right of the Laser grid. The reduction in spike timing
reproducibility during optogenetic suppression (seen in c) contributes to
the decrease in performance (80%) compared to control trials at the same
configuration (95%). In addition, performance decreased during
optogenetic suppression for the rest of the clean configurations, while
performance at the masked control hotspots, outlined by dashed boxes in
both (d, e), decreased to below threshold: Target 45°, Masker 90°
(75–55%); Target 45°, Masker −90° (79–64%); and Target 90°, Masker
−90° (74–67%). f Paired comparisons of SPIKE-distance-based
performance from control and PV-suppressed trials at the same spatial grid
location. Paired t tests yielded a significant decrease in performance for
both clean (n= 49 configurations; P= 2.02e-09, d= 1.05) and masked
(n= 20 configurations; P= 1.89e-04, d= 1.03) trials during optogenetic
suppression, indicating that PV suppression significantly reduced
discrimination performance.
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This unit showed a decrease in performance across all clean
configurations, and the hotspots in the control masked condition
(Target 90°, Masker −90°; Target 45°, Masker −90°; Target 45°,
Masker 90°) showed a reduction in performance to below
threshold. Overall, we found that performance decreased sig-
nificantly in both clean (P= 2.02e-09) and masked (P= 1.89e-04)
conditions during suppression (Fig. 3f), a decrease that was not
significant during laser stimulation in mice that did not express
PV-Arch (Supplementary Fig. 8).

Suppression of PV neurons degrades cortical temporal coding.
To determine the extent to which changes in the temporal dynamics
of rapid firing rate modulation, spike timing, and average firing rate
changes that occur during suppression might affect performance, we
calculated different performance metrics across all hotspots. Specifi-
cally, we used inter-spike interval (ISI)-distance, rate-independent
(RI)-SPIKE-distance, and spike count, as the basis for discriminability
between spike trains. ISI distance calculates the distance between two
spike trains based on the dissimilarities in instantaneous firing rate
modulation, while RI-SPIKE-distance measures spike timing dis-
similarity between two trains while accounting for changes in firing
rate differences21. Spike count distance is the absolute difference in
the number of spikes between trains, effectively measuring differences

in total firing rate. We found that performance based on both ISI-
distance (Fig. 4a) and RI-SPIKE-distance (Fig. 4b) performances were
relatively high. Both performances showed highly significant
decreases with optogenetic suppression (ISI-distance-based perfor-
mance: Pclean= 3.10e-09, Pmasked= 0.0034; RI-SPIKE-distance-based
performance: Pclean= 8.75e-09, Pmasked= 0.0011). In contrast, per-
formance based on spike count over the entire stimulus (Fig. 4c) was
close to chance level both for control and laser conditions, indicating
that spike count alone was not sufficient to account for overall per-
formance. The significant decrease in ISI-distance-based performance
indicates a disruption in rate-based coding, including the dynamics of
instantaneous firing rate modulations. The significant decrease in RI-
SPIKE-based distance indicates that spike timing-based coding is also
degraded by optogenetic suppression of PV neurons (Fig. 4d).

Effects on components of discrimination performance with
suppression. Generally, discrimination performance depends
on both the dissimilarity of responses between targets, as well as
the similarity of responses within a target. To assess the rela-
tionship between different components of responses with per-
formance, we calculated three metrics sensitive to firing rate
and/or timing: the average firing rate; the rate-normalized root-
mean-square (RMS) difference in the responses to the targets,

Fig. 4 Effects of suppressing PV neurons on spike timing and rate-based coding measures. a Performance based on ISI-distance, which measures
differences between trains in instantaneous firing rate only (see “ISI-distance”). Paired t tests showed a significant decrease in performance for both clean
(n= 49 configurations; P= 3.10e-09, d= 0.92) and masked (n= 20 configurations; P= 0.0034, d= 0.75) trials. b Performance based on RI-SPIKE-
distance, which measures differences between trains in spike timing only (see “RI-SPIKE-distance”). Paired t tests showed a significant decrease in
performance for both clean (P= 8.75e-09, d= 0.95) and masked (P= 0.0011, d= 0.86) trials. c Performance based on differences in total spike count
between spike trains was near chance level, indicating that total spike count did not account for overall discrimination performance. Paired t tests showed a
significant decrease in performance for clean trials (P= 0.0590, d= 0.28) but not for masked trials (P= 0.020, d= 0.56). d Summary figure showing
contributions from spike-distance measures presented in Fig. 3f and panels (a–c) on the same scale and axis, with circle markers representing performance
during control trials and square markers representing performance during optogenetic trials. Changes in spike timing and instantaneous firing rate-based
measures (RI-SPIKE and ISI, respectively) provide relatively high discrimination performance and show a significant decrease upon optogenetic suppression
of PV neurons.
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which captures the difference in the temporal pattern of
responses to the targets; and the trial similarity35, which cap-
tures the reproducibility of responses across trials within a
target (see “Methods”).

We first calculated the correlation between evoked firing rate
and performance during the control condition by pooling clean
and masked data. Firing rate did not show a significant
correlation with performance (r=−0.0645, P= 0.452), whereas
both RMS difference and trial similarity measures were highly
correlated with performance (rate-normalized RMS difference:
r= 0.4205, P= 2.82e-07; trial similarity: r= 0.6013, P= 6.30e-
15). These results suggest that both the pattern of firing rate
modulations (quantified by RMS difference) as well as the
reproducibility of responses (quantified by trial similarity)
contribute to discrimination performance under control condi-
tions. When comparing these measures between the control and
laser conditions, we found that rate-normalized RMS difference
significantly decreased with optogenetic suppression for both
clean and masked trials (Fig. 5a), and trial similarity significantly
decreased during clean trials (Fig. 5b).

Optogenetic suppression decreases performance across a wide
range of timescales. The previous analyses used spike-distance
measures which do not require a choice of a specific timescale for
analysis. A further interesting question regarding discrimination
performance is the optimal timescale for discrimination. Thus, we
next quantified the timescale for optimal discrimination using the
van Rossum spike-distance measure36 (see “Methods”).

We found that the optimal timescales for discrimination (τ) for
most neurons was around 40 milliseconds, with a significant
proportion of neurons covering even finer timescales down to
~10ms (Fig. 6a). Optimal τ was not significantly different

between control and laser conditions for clean trials (P= 0.4920)
but significant for masked trials (P= 0.0098), and performance
decreased significantly in the laser condition across a wide range
of timescales (Fig. 6b–d and Table 1). These results indicate that
PV suppression did not significantly change the optimal timescale
for discrimination but rather degraded discrimination across a
wide range of timescales.

Discussion
One of the most striking features of the cerebral cortex is the
tremendous diversity of its cell types37. Understanding the
computational role of such diversity in cortical coding is central
to systems neuroscience. Addressing this central question
requires understanding cell type-specific contributions to the
cortical code at both the single neuron and population levels. A
small number of previous studies have demonstrated a role of
specific cell types in cortical population coding, specifically the
generation of oscillations38,39 and synchrony across cortical layers
and areas40,41. However, cell type-specific contributions to the
cortical code at the single-unit level, a fundamental aspect of
cortical encoding, remain poorly understood. In this study, we
addressed this fundamental gap by investigating the role of PV
neurons in cortical coding of a complex scene, i.e., a cocktail
party-like setting, in mouse ACx.

We assessed cortical coding using neural discrimination per-
formance and other quantitative measures. There is a rich history
of quantitative work on cortical discrimination30,32. These studies
have suggested a critical role for neurons with the highest levels of
performance in a population, which correlate strongly with
behavioral performance and determine the overall performance at
the population level. In this study we examined cortical dis-
crimination of dynamic stimuli in a complex scene by the highest
performing neurons in ACx, extending the previous body of work
in several ways: First, we assessed the impact of optogenetic
suppression of PV neurons on discrimination performance.
Optogenetically suppressing PV neurons resulted in increased
firing rate during spontaneous and auditory evoked activity,
which is consistent with the effects of inhibitory blockade on
cortical responses42–44. A recent study by Moore et al.19

employed optogenetic suppression of PV neurons to powerfully
reveal an important property of cortical networks: rapid reba-
lancing of excitation and inhibition upon PV suppression. Our
study reveals that despite such rebalancing, cortical discrimina-
tion performance is degraded across cortical layers in ACx upon
PV suppression. This finding suggests that PV neurons play a role
in improving discrimination of dynamic stimuli in ACx, both
sounds in quiet backgrounds, as well as in the presence of com-
peting sounds from other spatial locations. Second, we quantified
the contributions of instantaneous firing rate modulations, spike
timing, and spike count towards cortical discrimination, using a
family of spike-distance metrics. These metrics provide a pow-
erful set of tools for dissecting different components of cortical
coding. Although these metrics have been employed in previous
theoretical studies, to our knowledge this is the first time they
were applied to analyze cortical responses. This analysis revealed
that high discrimination performance is mediated by the tem-
poral pattern of firing rate modulations and spike timing repro-
ducibility, and that optogenetic suppression of PV neurons
degraded both components.

Previous studies have demonstrated that auditory cortical
neurons can employ both rate and spike timing-based codes3,4;
and provided insight into the roles of inhibitory neurons in
shaping frequency tuning11–13,45, frequency discrimination14,46,
adaptation15, sparseness47, and gap encoding28. An influential
review on neural coding also defined a precise notion of a

Fig. 5 Effects of optogenetic suppression on spiking activity measures.
a Changes in dissimilarity of target responses via rate-normalized RMS
difference between target PSTHs during both conditions. Paired t tests
found significant decreases between conditions during both clean trials
(n= 49 configurations; P= 4.58e-08, d= 0.93) and masked trials (n= 20
configurations; P= 0.0031, d= 0.76). b Changes in response
reproducibility via trial similarity between responses to the same target
during both conditions. Paired t tests found a highly significant decrease
between conditions during clean trials (n= 49 configurations; P= 2.65e-
07, d= 0.85) but not masked trials (n= 20 configurations; P= 0.7333,
d= 0.08).
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temporal code as one that contains information in spike timing
beyond rate modulations48. Temporal codes have been challen-
ging to identify because the contributions of rate vs. spike timing
are often difficult to decouple. Our results based on spike-distance
measures, which quantify both rate-dependent and rate-
independent components of coding, suggest that PV neurons
specifically contribute to temporal coding in cortical dis-
crimination. This computational portrait of PV neurons
validates the importance of their established electrophysiological
specializations–namely, fast, efficient, and temporally precise
responses5.

From a comparative standpoint, we found that the key features
present at the cortical level within ACx of the mammalian mouse
were consistent with previous findings in songbirds. Specifically, a
previous study by Maddox et al. found hotspots at particular
spatial configurations of target and masker on the spatial grids of
cortical level neurons in songbirds25. Songbirds and mice have
different frequency ranges of hearing and therefore the cues used
for spatial processing, e.g., interaural time difference (ITD), and
interaural level difference (ILD) are frequency-dependent, and the
peripheral representations of these cues are likely to be different
across species with different frequency ranges of hearing. This
suggests the emergence of general cortical representations for
solving the cocktail party problem despite different peripheral
representations of acoustic cues across species.

A further interesting question regarding cortical discrimination
is: what is the optimal timescale for maximal discrimination
performance? One characteristic timescale in our stimuli arises
from the slow modulation of speech envelopes on relatively long
timescales ~100–500 ms, or equivalently, in the 2–10 Hz fre-
quency range49. We found that the optimal timescale for most
neurons in our dataset was much finer ~40 ms, with a significant
number at even finer timescales down to ~10ms. These time-
scales are well matched to the duration of short ultrasonic
vocalizations in mice (Fig. 7), and finer grain structures within

these vocalizations, e.g., spectral features and frequency sweeps50.
These timescales are similar to those found in a previous study of
decoding sinusoidally amplitude-modulated (SAM) tones in
mouse auditory cortex35, and consistent with integration time-
scales in cat auditory cortex51. Phonemic structures in speech also
occupy similar timescales, which are in the beta and low gamma
range of frequencies52,53. Thus, the timescales for optimal dis-
crimination in ACx, may be well-suited for analyzing such
vocalizations and the finer spectro-temporal features within.

Our findings are also relevant in the context of cortical noise,
which can have a profound impact on cortical codes54. We found
that suppressing PV neurons did not change the optimal time-
scale for discrimination but rather degraded performance at a
wide range of timescales (Fig. 6). In addition, we observed that
suppression impacted specific components underlying dis-
crimination: Most notably, PV suppression decreased the differ-
ence in the pattern of responses (quantified by RMS difference)
between targets as well as the reproducibility of responses across
trials (quantified by trial similarity). Taken together, these

Fig. 6 Decoding time analysis. a Histogram of optimal τ for hotspots across both conditions (control and laser) and stimulus types (clean and masked).
Dashed line indicates median value of 46.5 ms, and shaded region represents the interquartile range (IQR) between 29ms and 79ms. Paired t tests did not
find a significant change in optimal τ within hotspots between conditions during clean trials (n= 49 configurations; P= 0.492, d=−0.10) but found a
significant decrease during masked trials (n= 20 configurations; P= 0.0098, d= 0.64). b van Rossum-based performance with τ set at 8ms. Performance
was found to significantly decrease during both clean (P= 4.86e-06, d= 0.74) and masked (P= 0.00422, d= 0.73) trials. c van Rossum-based
performance with τ set at 32 ms. Performance was found to significantly decrease during both clean (P= 1.95e-07, d= 0.87) and masked (P= 0.00980,
d= 0.76) trials. d van Rossum-based performance with τ set at 256ms. Performance was found to significantly decrease during both clean (P= 4.79e-05,
d= 0.64) and masked (P= 4.13e-05, d= 1.18) trials.

Table 1 Effect sizes and paired t test results for all τ values
used in van Rossum distance-based performance
calculations.

τ (ms) dclean Pclean dmasked Pmasked

1 −0.02 0.915 0.56 0.0226
2 0.11 0.453 0.67 0.0074
4 0.35 0.0189 0.70 0.00553
8 0.74 4.86e-06 0.73 0.00422
16 0.87 1.68e-09 0.66 0.00786
32 0.87 1.95e-07 0.64 0.00980
64 0.79 1.26e-06 0.74 0.00352
128 0.72 7.87e-06 1.03 1.75e-04
256 0.64 4.79e-05 1.18 4.13e-05
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observations are consistent with an overall enhancement in cor-
tical noise level across multiple timescales upon PV suppression.
A previous study on PV suppression in ACx observed the rapid
rebalancing of excitation and inhibition, suggesting maintenance
of the stability of global cortical representations19. However, our
results suggest that despite this excitatory-inhibitory rebalancing,
PV suppression also leads to an increase in cortical noise, fun-
damentally impacting the fidelity of cortical coding, including
temporal coding.

Cortical inhibitory neurons can mediate feedforward, recurrent
and di-synaptic feedback inhibition in cortical circuits (Supple-
mentary Fig. 9). Previous modeling studies have demonstrated
that feed-forward within-channel inhibition can improve dis-
crimination performance55; whereas inhibition across different
channels can lead to the formation of hotspots and the specific
pattern of spatial configuration sensitivity56. Our results suggest
that PV neurons mediate within-channel inhibition, corre-
sponding to I neurons in the schematic model. This is consistent
with our finding that although suppressing PV neurons reduced
discrimination performance, it did not completely eliminate the
presence of hotspots on the spatial grids, suggesting that PV
neurons alone do not control the emergence of hotspots. Based
on these observations, we hypothesize that a separate cell type (X
neurons in Supplementary Fig. 9) mediates cross-channel inhi-
bition, resulting in the generation of hotspots and the specific
pattern of spatial configuration sensitivity on spatial grids. A
candidate cell type that may correspond to X cells are
somatostatin-positive (SOM) neurons, which have been impli-
cated in di-synaptic feedback inhibition57,58 and surround
suppression59,60. These distinct roles may be functionally well-

suited for solving the cocktail party problem, with one class of
neurons (PV) enhancing the temporal coding of dynamic stimuli
at a target location, and another class of inhibitory neurons (X)
suppressing competing stimuli from other spatial locations.

Several limitations in this study should be further addressed in
the future. Although we used a cocktail party-like paradigm to
probe auditory cortical responses to dynamic stimuli our
experimental paradigm had some limitations. First, the target
stimuli did not have any specific behavioral relevance, unlike the
case of speech recognition at a cocktail party. Second, the masker
stimuli did not contain any temporal modulations, unlike com-
peting speakers at a cocktail party. Despite the anthropomorphic
nature of our stimuli, we have demonstrated that auditory cortical
neurons in mice are able to encode the distinct temporal features
of both targets in the presence of a competing noise masker from
different spatial locations. Future studies should address these
limitations, e.g., by employing mouse communication sounds as
targets and maskers. Although we were able to characterize the
timescale for optimal discrimination in ACx, we did not char-
acterize the integration window, or the encoding window48,51,61.
Future studies that characterize both the timescale for optimal
discrimination as well as the encoding window can address
whether cortical neurons also employ temporal encoding, i.e.,
encode information in the temporal pattern of spikes within the
encoding window48. Within this study, mice were awake but
listening passively, whereas listening in a cocktail party-type
setting is an active sensing process. It will be interesting to probe
cortical coding in awake, behaving mice in experiments where
animals attend to a specific spatial location. A recent theoretical
model of attention in the auditory cortex, the AIM network

Fig. 7 Comparison of optimal τ values and other timescales. Semi-logarithmic plot showing various timescales for spike timing in mouse ACx neurons
compared to mouse vocalizations, human speech, and neural oscillations. a Timescale for human speech sounds, mouse vocalizations, and sniffing
periods79. In the mouse timescales, short and long USV bars represent the mean (black line) ± 2 SD. vocalization length. b Optimal τ plot reproduced from
Fig. 6a (solid black line), with the red dashed line indicating the refractory period for single units, the dashed yellow line indicating the median value of
46.5 ms, and the shaded green region representing the IQR. c Frequency bands for neural oscillations in Hz, decreasing from left to right.
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model62, suggests distinct roles for different interneuron groups
in attentional sharpening of both spatial and frequency tuning
which enables flexible listening in cocktail party-like settings, e.g.,
monitoring the entire scene, selecting a speaker at a spatial
location, and switching to a speaker at a different location. Future
experiments probing distinct interneuron populations (e.g., PV,
SOM, and VIP neurons) in behaving animals, in conjunction with
testing and extending the AIM model, may further unravel cor-
tical circuits for solving the cocktail party problem.

Methods
Subjects. All procedures involving animals were approved by the Boston Uni-
versity Institutional Animal Care and Use Committee and the University of Illinois
at Urbana-Champaign Institutional Animal Care and Use Committee (IACUC). A
total of 14 C57BL6/J transgenic mice were used in this study. Original breeding
pairs of parvalbumin-Cre (PV-Cre: B6;129P2-Pvalbtm1(cre)Arbr/J), and Ai40 mice
(Arch: B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J) mice were obtained from
Jackson Laboratory (Maine), and all breeding was done in house. Subjects consisted
of both male and female PV-Arch (n= 9) offspring and PV-Cre (n= 5) only
offspring (controls) 8–12 weeks old on the day of recording.

Surgery. Mice were surgically implanted with a headplate63,64. Briefly, under
isoflurane anesthesia, stereotaxic surgery was performed to install a headplate,
electrode, and optical fiber. The custom headplate was mounted anterior to the
bregma allowing access to ACx caudally. The headplate was anchored to the skull
with three stainless steel screws and dental cement. A fourth screw was connected
to a metal pin and placed in the skull above the contralateral cerebellum to serve as
the reference. A craniotomy was made above the right auditory cortex (AP −2.3 to
−3.6, ML+ 4.0 to +4.5, DV). Using a stereotaxic arm, a 32-contact linear probe
(Neuronexus, Ann Arbor, MI; model: a 4 × 8–5 mm-100-400-177-CM32) with 100-
μm spacing between electrode contacts and 400-μm spacing between shanks, was
positioned into ACx, perpendicular to the cortical surface. Because of the curvature
of the ACx surface, not all four shanks could be placed at precisely the same depth
during each experiment. Probes were advanced until all electrode contacts were
within the cortical tissue and shanks were positioned along the rostrocaudal axis of
ACx (Fig. 1a–c). An optical fiber, 200 μm in diameter, was placed medially to the
four shanks and positioned between the two innermost shanks terminating at the
cortical surface (Fig. 1a). After implantation, mice were allowed to recover for
4–7 days before undergoing habituation to being head-fixed during recordings.

Habituation. Following surgery and complete recovery, mice were first handled for
several days before being head-fixed to the recording apparatus. Mice were gra-
dually exposed to longer restraint periods at the same time of day as subsequent
recording sessions. Each animal received at least six habituation sessions prior to
the first recording day. Under head-fixed conditions, mice were loosely covered
with a piece of lab tissue taped down on either side (Kimwipes: Kimberly-Clark,
Irving, TX) to encourage reduced movement. At the conclusion of habituation,
mice underwent recording sessions in the presence of spatially distributed auditory
stimuli.

Recording sessions and data acquisition. All recordings were made with a
Tucker Davis Technologies (TDT; Alachua, FL) RZ2 recording system in an
electrically-shielded sound attenuation chamber. Broadband neural signals at
24414.0625 Hz were recorded for each of the 32 channels. Local field potentials
(LFPs) were band-pass filtered between 1 and 300 Hz, notch-filtered at 60 Hz, and
digitized at 3051.8 Hz and used for current source density analysis.

Recording sessions consisted of both non-optogenetic and optogenetic trials in
random order. The intertrial interval was 5 s, with 3 s of stimulus playback followed
by 2 s of silence. Mice were exposed to target-alone (clean) trials and target-masker
(masked) combinations. Ten trials were given per target identity for all possible
combinations of target location, masker location (including clean trials), and
optogenetic suppression of PV neurons. Thus, animals received a total of 800 trials
per ~60 min recording session, with each session having a set laser power.

Auditory stimuli. All auditory stimuli were generated in Matlab and consisted of
either target, masker, or combination of the two stimuli played from four TDT
ES-1 electrostatic speakers. Target stimuli consisted of white noise modulated in
time by human speech envelopes taken from the Harvard IEEE speech corpus29

which has been used in previous psychological studies of the cocktail party effect65.
Masker stimuli consisted of ten unique tokens of unmodulated white noise. Before
speaker calibration, all stimuli were generated with the same RMS value, and
sampling frequency was 195,312 Hz to capture the frequency range of hearing in
mice. Stimuli were loaded onto a custom RPvdsEx circuit on an RZ6 Multi I/O
processor, which was connected to two PM2R multiplexers that controlled the
location of target and masker stimuli during trials.

During recordings, the stimuli were presented 18 cm from the mouse’s head
using four speakers driven by two TDT ED-1 speaker drivers. The four speakers
were arranged around the mouse at four locations on the azimuthal plane: directly
in front (0°), two contralateral (45° and 90°) and 1 ipsilateral (−90°) to the right
auditory cortex recording area. Before recording sessions, stimulus intensity was
calibrated using a conditioning amplifier and microphone (Brüel and Kjær,
Nærum, Denmark; amplifier model: 2690, and microphone model: 4939-A-011).
For 7 of the 9 Arch mice and the 5 PV-only control animals, all stimuli were at a
measured 75 dB intensity at the mouse’s head. For the remaining 2 Arch mice,
stimulus intensity was set to 70 dB. Stimulus playback lasted 3 s with a 1 ms cosine
ramp at onset and offset.

Optogenetic stimulation. Laser light for optogenetic stimulation of the auditory
cortex was delivered through a multimode optically-shielded 200-µm fiber
(Thorlabs, Newton, NJ; model: BFH48-200), coupled to a 532 nm DPSS laser
(Shanghai Laser Ltd., Shanghai, China; model: BL532T3-200FC), with the fiber tip
positioned right above the cortical surface. Laser power was calibrated to 2 mW,
5 mW, or 10 mW at the fiber tip using a light meter calibrated for 532 nm wave-
length (PM100D, Thorlabs, Newton, NJ). The intensity was determined based on
optogenetic cortical PV suppression studies using Archaerhodopsin from the
literature14,66. During optogenetic trials, the laser was turned on 50 ms before
stimulus onset and co-terminated with the end of the auditory stimuli (Fig. 1D).
Square light pulses lasting 3.05 s were delivered via TTL trigger from the RZ2
recording system to the laser diode controller (ADR-1805). Optogenetic trials were
randomized throughout the recording session such that animals received all sti-
mulus/masker pairs from each location with and without laser. Recordings were
done in successive blocks with constant optogenetic suppression strengths of
2 mW, 5 mW, or 10 mW, with each block lasting ~60 min and having their own set
of control trials. These laser strengths are similar to those used in past studies14,18

and did not result in epileptiform activity in the cortex.

Histology. At the end of the experiments, all mice were transcardially perfused,
and tissue was processed to (1) confirm the specificity of ArchT expression to PV-
cell populations within all PV-Arch animals and (2) confirm electrode placement
in A1. Briefly, mice were perfused with 30 mL 0.01 M phosphate-buffered saline
(Fisher Scientific, BP2944-100, Pittsburgh, PA), followed by 30 mL 4% paraf-
ormaldehyde (Sigma-Aldrich, 158127, St. Louis, MO). Brains were carefully
removed and post-fixed 4–12 h in 4% paraformaldehyde before being transferred to
a 30% sucrose solution for at least 24 h before sectioning. Brains were sectioned
coronally at a thickness of 50 µm with a freezing microtome (CM 2000R; Leica) or
cryostat (CM 3050 S; Leica). Tissue sections were collected throughout the auditory
cortex. A subset of sections were stained with antibodies against PV (guinea pig
anti-PV antibody, SWANT GP72 1:1000) followed by Alexa Fluor 568 goat anti-
guinea pig secondary antibody (No: A-11075, Thermo Fisher Scientific, 1:500).
Antibodies and dilution concentrations were previously reported67–69. Briefly,
sections were rinsed with 0.01M PBS followed by a solution of 100 mM glycine
(No: G7126, Sigma-Aldrich) and 0.5% Triton-X in 0.01M PBS. This was followed
by a 2-h blocking buffer incubation with 5% normal goat serum and 0.5% Triton-X
in 0.01 M PBS. Sections were then incubated for 24 h with primary antibody, rinsed
with 100 mM glycine and 0.5% Triton-X in 0.01M PBS, and incubated with sec-
ondary antibody for 2 hours. Slices were lastly incubated for 10 min with Hoechst
33342 (No: 62249, Thermo Fisher Scientific, 1:10,000 in 0.01 M PBS), rinsed with
100 mM glycine and 0.5% Triton-X in 0.01M PBS before being rinsed in 100 mM
glycine in 0.01M PBS before mounting. Slices were mounted on slides (Fish-
erbrand Superfrost Plus, No: 12-5550-15, Fisher Scientific) using anti-fade
mounting medium (ProLong Diamond, No: P36965, Thermo Fisher Scientific). For
sections designated for imaging of electrode locations, tissue sections from the
auditory cortex were mounted on gelatin-coated slides and allowed to dry over-
night. Mounted sections were then rehydrated by being placed in deionized water
for 5 min. Following rehydration, sections were incubated in 0.1% cresyl acetate for
5 min, followed by dehydration in an ascending series of alcohol rinses (50%, 70%,
90%, 95%, 100% (2×) for 3 min each and cleared with xylene (534056; Sigma-
Aldrich, Natick, MA) for 15 min. Slides were then coverslipped using DPX (06522;
Sigma-Aldrich, Natick, MA) mounting medium, allowed to dry, and imaged as
described below.

Imaging and quantification. Images were taken on a VS120 wide-field Olympus
microscope or an OlympusFV3000 scanning confocal microscope using a ×20
objective. All images were comprised of Z-stacks consisting of 5–6 slices taken at
10-μm intervals throughout the 50 µm slices. Stacks were taken from coronal
sections as near as possible to the electrode location in the auditory cortex. Areas
were chosen to include similarly dense Arch-GFP cell counts across animals. To
confirm targeting specificity, each PV+ cell was categorized as co-expressing or not
expressing Arch-GFP across a 300 × 300 µm grid. We also quantified the number of
Arch+ cells from each stack that were not PV+ based on Hoechst labeling to
estimate off-target expression. We analyzed 2–4 non-overlapping stacks from two
slices per animal from the animals that made up the optogenetic Arch+ dataset
(n= 9 PV-Arch). Cell counts were pooled across slices stained for the same marker
for each animal and averaged to produce a single data point for quantification.
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Nissl-stained sections taken from a subset of animals in the study (n= 5 mice)
were taken with a Keyence BZ-X800E microscope using a 10X objective. Sections
from each animal were stitched together, and electrode location was verified by
overlaying images on drawings obtained from a digital stereotaxic atlas70.

Spike extraction and clustering. Kilosort2 was used to detect multiunits within
the recordings27. Before spike detection and sorting, the broadband signal was
band-passed between 300 and 5000 Hz using a 3rd-order Butterworth filter.
Kilosort results were then loaded onto Phy2 (https://github.com/cortex-lab/phy) to
manually determine if spike clusters exhibited neural activity or noise26. Clusters
with either artifact-like waveforms from laser or similar responses across all
channels were deemed as noise, and spikes with artifact-like waveforms were
removed from clusters that clearly exhibited neural activity, whenever possible.
Clusters were merged if the cross-correlograms were similar to the component
clusters’ auto-correlograms and showed overlap in principal component feature
space at the same channel. The spikes toolbox (https://github.com/cortex-lab/
spikes) was then used to import the cluster information from Phy to Matlab and
extract spike waveforms from the high-passed signal27. Clusters were assigned to
recording channels based on which site yielded the largest average spike amplitude.
To remove any remaining artifacts from laser onset and offset, all spikes with
waveforms above an absolute threshold of 1500 µV or a positive value above
750 µV were discarded, and clusters that still showed a high amount of remaining
artifact after removal were excluded from further analysis. To determine which of
the remaining clusters were single units (SU), we utilized the sortingQuality
toolbox (https://github.com/cortex-lab/sortingQuality) to calculate isolation dis-
tances and L-ratios71. SUs must (1) have less than 5% of inter-spike intervals below
2ms (Fig. 1c), (2) an isolation distance above 15, and (3) an L-ratio below 0.25. For
clusters where isolation distance and L-ratio were not defined, the first threshold
was used. These thresholds are consistent with values used in past studies on
single-unit activity72–74, and clusters that did not meet any of these criteria were
deemed multiunits (MUs). Finally, SUs were classified as narrow-spiking if the
trough-peak interval of their mean waveform was below 0.5 ms, a threshold that is
consistent with past findings on excitatory and inhibitory units in mouse auditory
cortex12.

Current source density estimation and layer analysis. Current source density
(CSD) analysis estimates the second spatial derivative of LFP signals to determine
the relative current across the cortical laminar depth. CSDs were calculated using
LFPs, as described previously64. LFPs from control masked trials were used, as the
rise time was more similar between target identities than clean stimuli. LFPs were
low-passed and filtered at 150 Hz before being down-sampled by a factor of 8 to
381 Hz. For each channel, LFPs were averaged across all control masked trials prior
to CSD estimation, and channels that did not show an evoked response were
interpolated using neighboring sites on the same shank. After this, LFPs were
spatially smoothed across the eight channels in each shank:

ϕ zð Þ ¼ ϕ z þ Δzð Þ þ 2ϕ zð Þ þ ϕ z � Δzð Þ
4

ð1Þ

where z is the depth perpendicular to the cortical surface, Δz is the electrode
spacing, and Φ is the potential. CSD was then estimated as:

CSD zð Þ ¼ � ϕ z þ Δzð Þ � 2ϕ zð Þ þ ϕ z � Δzð Þ
Δz2

ð2Þ

To determine the granular layer in each shank, CSD sink onset times were
calculated as the time when the CSD goes below three times the standard deviation
of pre-stimulus activity. If more than one channel was found to have the earliest
sink onset, the channel whose neighbors had the earliest onsets was deemed the
granular layer, or L4. The width of each layer was estimated based on previous
anatomical studies75. L1 consisted of channels at least 500 µm above the input
layer, L2/3 consisted of channels 200 µm to 400 µm above the channel with the
earliest sink onset; L4 consisted of the input channel and the channel 100 µm above
it; L5 consisted of channels 100 to 300 µm below the input layer, and L6 consisted
of all channels at 400 µm below the input layer.

Neural discriminability performance using SPIKE-distance. Neural dis-
crimination performance refers to the ability to determine stimulus identity based
on neural responses, thus measuring a neuron’s ability to encode stimulus features.
Here, performance was calculated using a template-matching approach similar to
our previous studies25. Briefly, spike trains were classified to one of the two target
stimuli based on whose template, one from each stimulus, yielded a smaller spike
distance. For each target-masker configuration, 100 iterations of template matching
were done. In each iteration, one of the 10 spike trains for each target was chosen as
a template, and all remaining trials were matched to each template to determine
target identity. All possible pairs of templates were used across the 100 iterations to
calculate an average value of neural discriminability. SPIKE-distance21 calculates
the dissimilarity between two spike trains based on differences in spike timing and
instantaneous firing rate without additional parameters. For one spike train in a

pair, the instantaneous spike timing difference at time t is:

S1 tð Þ ¼ Δt 1ð Þ
P tð Þx 1ð Þ

F þ Δt 1ð Þ
F tð Þx 1ð Þ

P

x 1ð Þ
ISI tð Þ

; t 1ð Þ
P ≤ t ≤ t 1ð Þ

F ð3Þ

where ΔtP represents the distance between the preceding spike from train 1 (tP(1))
and the nearest spike from train 2, ΔtF represents the distance between the fol-
lowing spike from train 1 (tF(1)) and the nearest spike from train 2, xF is the
absolute difference between t and tF(1), and xP is the absolute difference between t
and tP(1). To calculate S2(t), the spike timing difference from the view of the other
train, all spike times and ISIs are replaced with the relevant values in train 2. The
pairwise instantaneous difference between the two trains is calculated as:

S’’ tð Þ ¼ S1 tð Þ þ S2 tð Þ
2 x1ISI tð Þ; x2ISI tð Þ
� � ð4Þ

Finally, S1(t) and S2(t) are locally weighted by their instantaneous spike rates to
account for differences in firing rate:

S tð Þ ¼ S1 tð Þx2ISI tð Þ þ S2 tð Þx1ISI tð Þ
2 x1ISI tð Þ; x2ISI tð Þ
� �2 ð5Þ

For a train of length T, the distance is the integral of the dissimilarity profile
across the entire response interval, with a minimum value of 0 for identical spike
trains:

DS ¼
1
T

Z T

0
S tð Þdt ð6Þ

cSPIKE, a toolbox used to calculate SPIKE-distance, was used to calculate all spike
train distances between all possible spike train pairs for all spatial grid
configurations21.

To determine how firing rate modulation, spike timing, and average firing rate
contribute to discriminability, we used different distance measures as inputs to the
classifier. For all hotspots, performances using the inter-spike interval (ISI)-
distance, rate-independent (RI)-SPIKE-distance, and spike count distance, the
absolute difference in spike count between trains, were also calculated and
compared to SPIKE-distance-based values.

ISI distance. To determine how optogenetic suppression affects rapid temporal
modulations in firing rate, ISI-distances were calculated. The ISI distance calculates
the dissimilarity between two spike trains based on differences in instantaneous
rate synchrony. For a given time point:

I tð Þ ¼
x 1ð Þ
ISI tð Þ � x 2ð Þ

ISI tð Þ
��� ���

max x 1ð Þ
ISI tð Þ; x 2ð Þ

ISI tð Þ
� � ð7Þ

This profile is then integrated along the spike train length to give a distance
value, with values of 0 obtained for either identical spike trains or pairs with the
same constant firing rate and a global phase shift difference.

RI-SPIKE-distance. To determine how optogenetic suppression affects spike
timing, RI-SPIKE-distances between spike trains were calculated. The RI-SPIKE-
distance is rate-independent, as it does not take differences in local firing rate
between the two spike trains into account. From SPIKE-distance calculations, the
final step of weighing S1(t) and S2(t) by their instantaneous spike rates is skipped,
yielding:

SRI1;2 tð Þ ¼ S1 tð Þ þ S2 tð Þ
2 x1ISI tð Þ; x2ISI tð Þ
� � ð8Þ

Like the other measures, the dissimilarity profile is integrated to give a distance
value, with a value of 0 obtained for two identical spike trains.

Rate-normalized RMS difference and trial similarity. In addition to average
firing rate, we also calculated two other measures to determine their impact on
classification performance: the similarity of responses within the target, and the
dissimilarity of responses across targets. To quantify the intertrial reliability of
responses to target stimuli, we adopted the measure of trial similarity from pre-
vious studies35. Specifically, we randomly divided the ten trials in each config-
uration into two equal groups, binned spike times with a time resolution of 25 ms,
and calculated Pearson’s correlation coefficient between the two resulting PSTHs.
This process was repeated 100 times to obtain a mean correlation coefficient, or
trial similarity.

We also calculated the rate-normalized RMS difference between target
responses to quantify the dissimilarity in the temporal pattern of responses
between the two targets. We first binned each target response using the same time
resolution as trial similarity (25 ms) and normalized each PSTH such that the sum
of all bins over time was 1. The RMS difference between the two rate-normalized
PSTHs was then calculated. This measure quantifies the dissimilarity in the
temporal pattern of responses across the targets, accounting for differences in mean
evoked firing rate between targets.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05126-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:751 | https://doi.org/10.1038/s42003-023-05126-0 | www.nature.com/commsbio 11

https://github.com/cortex-lab/phy
https://github.com/cortex-lab/spikes
https://github.com/cortex-lab/spikes
https://github.com/cortex-lab/sortingQuality
www.nature.com/commsbio
www.nature.com/commsbio


All three response measures (average firing rate, trial similarity, and rate-
normalized RMS difference between targets) were correlated with SPIKE-distance-
based performance using Pearson’s correlation coefficients, with separate
calculations done for control and laser trials.

Decoding time analysis using van Rossum distances. To estimate the decoding
time of the spike trains at each hotspot, we used van Rossum distances36. Briefly,
the van Rossum distance between two spike trains involves convolving each
response with a decaying exponential kernel with time constant τ. The distance
between two smoothed spike trains f1(t) and f2(t) is calculated as:

DVR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
τ

Z 1

0
f 1 tð Þ � f 2 tð Þ� 	2

dt

s
ð9Þ

For each spatial grid configuration, a distance matrix containing the van
Rossum distances between all possible spike train pairs was set as the input for the
template-matching approach. Performance was calculated across a range of τ
values, increasing in powers of 2 from 1ms to 256 ms. Finally, to determine the
optimal τ value at which performance was maximized for each configuration, we
implemented a fine-grain parameter search where τ was varied in steps of 1 ms,
with the optimization separately done for control and laser trials.

Statistics and reproducibility. All single units and spatial grid data were extracted
from n= 14 subjects consisting of 9 PV-Arch-expressing mice and 5 non-Arch-
expressing mice. Spatial grid hotspots of high neural discriminability were deter-
mined using three criteria: (1) mean performance must be above 70% during
control trials; (2) mean control performance distribution must be significantly
different from chance (P < 0.05), calculated using a null distribution obtained by
classifying spike trains within each target, which should result in chance perfor-
mance; and (3) the effect size given by Cohen’s d between the two distributions
(control vs. null) must be greater than 1:

d ¼ �x1 � �x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�1ð Þs21� n0�1ð Þs20

n1þn0�2

r ð10Þ

where values with subscript 0 represent the mean, standard deviation, and number
of template-matching iterations for the null performance distribution. In addition,
configurations where at least three trials for one target showed zero spiking were
excluded from analysis, to avoid inaccurate estimates of performance. This resulted
in n= 49 clean configurations and n= 20 masked configurations, both of which
were used to analyze the effects of suppression on discriminability and spiking
activity. In the manuscript, we focus on SUs with hotspots in the control condition.
We found a small number of emergent hotspots (12 from 10 single units across
both clean and masked trials) where performance and effect size were both below
threshold in the control condition but above threshold in the laser condition, with a
median performance 72.9% and an interquartile range of 2.35%. To analyze the
effects of suppression on performance metrics, we used built-in Matlab functions to
run paired t tests between control and optogenetic values to determine statistical
significance (P < 0.05), with tests done separately for clean and masked trials.

We also analyzed low-performance hotspots—configurations with
performances between chance and our threshold of 70%—in three separate groups:
hotspots with effect sizes (1) between 0.2 and 0.5, (2) between 0.5 and 0.8, and (3)
greater than 0.8. To determine whether low-performance hotspots showed similar
changes in performance to our main set of hotspots, we ran paired t tests and
calculated the effect size of optogenetic suppression on discriminability. For the
first group, we found 68 clean configurations and 352 masked configurations.
Clean performance did not significantly decrease (P= 0.812, d= -0.03) while
masked performance did (P= 1.26e-05, d= 0.24). For the second group, both
clean (n= 56, P= 0.0150, d= 0.34) and masked (n= 166, P= 2.69e-16, d= 0.71)
performance decreased with suppression. For the last group, both clean (n= 35,
P= 0.00427, d= 0.52) and masked (n= 98, P= 6.77e-13, d= 0.84) performance
decreased with suppression.

For performance comparisons between layers and between narrow-spiking and
regular-spiking units, we separately ran repeated-measures ANOVA and effect size
calculations for clean and masked trials, with condition as the within-subjects
factor and cell type (narrow-spiking or regular-spiking) or layer as the between-
subjects factor. Effect sizes were calculated using the Measures of Effect Size
toolbox (https://github.com/hhentschke/measures-of-effect-size-toolbox)76, and
post hoc Tukey–Kramer tests were carried out if the ANOVA returned
significance. To estimate the effect of optogenetic suppression on spiking across
layers, repeated-measures ANOVA was carried out for both spontaneous and onset
firing rate. Spontaneous firing rate was defined as the average firing rate during the
50 ms between laser onset and sound onset, while onset firing rate was defined as
the average rate during the first 0.5 s of sound stimulus playback. For both
measures, ANOVA was done for regular-spiking single units, with layer as the
between-subjects factor and condition as the within-subjects factor. Post hoc
Tukey–Kramer tests were carried out if the ANOVA returned a significant factor or
interaction. Repeated-measures ANOVA was not done for narrow-spiking single
units due to the small sample size per layer77.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for the figures are provided in Supplementary Data 1. The data used in this
study are available upon reasonable request.

Code availability
The custom code used for this study is available at Zenodo (https://doi.org/10.5281/
zenodo.8061497)78. The version of Kilosort used in this study (2.0) is available at https://
doi.org/10.5281/zenodo.414728827.
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