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Single-cell chromatin accessibility profiling of acute
myeloid leukemia reveals heterogeneous lineage
composition upon therapy-resistance
Huihui Fan 1,2,12, Feng Wang3,12, Andy Zeng4,5, Alex Murison4,5, Katarzyna Tomczak 3, Dapeng Hao 3,

Fatima Zahra Jelloul 6, Bofei Wang7, Praveen Barrodia3, Shaoheng Liang8,11, Ken Chen 8, Linghua Wang3,

Zhongming Zhao 2,9, Kunal Rai 3, Abhinav K. Jain 10, John Dick4,5, Naval Daver7, Andy Futreal 3 &

Hussein A. Abbas 3,7✉

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of

therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to

understand the lineage composition of AML cells at time of therapy resistance. Here we

leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from

eight patients at time of therapy resistance and following subsequent therapy to characterize

their lineage landscape. Our findings reveal a complex lineage architecture of therapy-

resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent,

activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are

also composed of cells primed for differentiated myeloid, erythroid and even lymphoid

lineages. The heterogeneous lineage composition persists following subsequent therapy, with

early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas

AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by

the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant

AML cells are characterized not only by stem and progenitor states, but also by a continuum

of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their

therapy resistance by harboring different degrees of lineage-specific susceptibilities to

therapy.
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Acute myeloid leukemia (AML) is a heterogeneous disease
characterized by various morphologic, genomic, cytoge-
netic, and functional groups1–3. Morphologic hetero-

geneity of AML emerges from disrupted differentiation and is
characterized by a spectrum of cells from CD34+ precursor cells
to morphologically well-differentiated lineages4,5. With advents of
molecular profiling and the identification of recurrent cytogenetic
and genetic mutations, the morphology-based classification of
putative cell lineages in AML was largely replaced by the defining
recurrent molecular abnormalities5. Gene expression profiling
garnered further insights into the biological and functional het-
erogeneity of AML cells3,6–8. More recently, single-cell RNA
sequencing (scRNA-seq) revealed a more complex lineage hier-
archal system supporting heterogeneity along the myeloid axis in
newly diagnosed AML patients9.

Unfortunately, 40–50% of AML patients have primary refrac-
tory disease or relapse shortly after remission (i.e., therapy-
resistant)10. Since cellular lineages can impact resistance to
therapy11, it is critical to delineate the lineage composition of
AML cells at the time of therapy resistance. Gene expression
signatures revealed that therapy-resistant AML is characterized
by enrichment for primitive hematopoietic stem cell (HSC) and
progenitor characteristics1,12. Whether the AML primitive state at
the time of therapy resistance represents a homogeneous cellular
state or is composed of a continuum of different cellular lineages
that impact resistance to therapy is not clear.

Since epigenetic changes precede the gene expression pro-
grams, it is critical to characterize the genome-wide chromatin
accessibility to identify cellular lineages13–19. In support of this,
hematopoiesis is indeed regulated by dynamic chromatin states
and lineage-specific transcription factors (TFs) that dictate cel-
lular fates20–22. The assay for transposase-accessible chromatin
using sequencing (ATAC-seq) is a robust tool that assesses the
epigenetic landscape via efficiently probing the chromatin
accessibility of cells23. Akin to ATAC, the development of single-
cell ATAC sequencing (scATAC-seq) uncovered new insights
into regulatory chromatin states of individual cells that would
otherwise be masked by bulk sequencing approach20 and can be
even more robust than scRNA-seq profiling19,24. Applying
scATAC-seq in AML at time of therapy resistance can reveal
cellular fates, and thus provides a higher resolution of intratu-
moral lineage compositions, and ultimately enabling a deeper
understanding of AML heterogeneity that contribute to therapy
resistance.

In this study, we applied scATAC-seq profiling on 22 bone
marrow aspirates from eight therapy-resistant AML patients at
time of therapy resistance and subsequent therapy to dissect the
dynamic cellular states that constitute AML malignant cells. Since
the cell of origin can impact responses to therapy, our goal was to
delineate the lineage composition and epigenetic regulatory
landscapes that likely contribute to therapy resistance in AML.

Results
Open-chromatin landscape in AML patients using scATAC-seq
data. We performed scATAC-seq profiling on 22 whole bone
marrow aspirates collected at different treatment timepoints from
8 AML patients who received prior therapies and relapsed or were
primary refractory to PD-1 blockade, hereafter referred to as
therapy-resistant AML. All patients were treated on protocol25 at
the time of therapy resistance (pretreatment= timepoint A) with
azacitidine and nivolumab (following treatment = timepoints B
and C). Briefly, our cohort had a median age of 73 years (range
64–88) prior to receiving PD-1 blockade therapy. While on the
treatment, 3 patients (PT1-3) were responders (R); 3 patients
(PT4-6) were non-responders (NR) and 2 patients (PT7-8)

showed stable disease (SD) (Fig. 1a). Combining our published
scRNA-seq gene expression data using the same cohort7, we aim
to reveal the chromatin landscape in these AML patients with a
focus on malignant cells.

By applying Signac pipeline26, a total of 59,321 mononuclear
bone marrow individual cells passed quality control after
excluding 2 low-quality samples, and were grouped into 2
broader clusters, i.e., AML malignant cells and normal cells in the
tumor microenvironment (TME) cells (Fig. 1b), with granular cell
labels shown in Fig. 1c. Open-chromatin variations measured
using standard deviations in peak signals per sample were shown
for both AML malignant and TME cells (Supplementary Fig. 1a).
Two extra healthy controls were included for this comparison. As
demonstrated, normal samples NL1 and NL2 were very similar in
terms of the distributions for open-chromatin variations.
Similarly, the variation distributions across different timepoints
for TME cells in each patient did not differ much from each
other. However, variation distributions within malignant cells
tended to show larger shift across different timepoints which also
corresponded to their clinical outcomes. For example, open-
chromatin variations shrunk at timepoint C (closer to time of lack
of response to azacitidine/nivolumab therapy) while comparing to
timepoint A (prior to therapy initiation) in treatment-responsive
patients PT2 and PT3.

To yield a robust classification between malignant and TME
cells, we utilized SC3 consensus clustering algorithm27 to assess
the stability of two broader clusters using different subsets of
peaks (Supplementary Fig. 1b–d). Cluster stability continued to
improve from using all peak set, to promoter-marked, and to
enhancer-marked peaks (Supplementary Fig. 1e). In particular,
distal enhancer-marked peak set showed the best performance for
malignant cell classification. Broader cluster labels were thus
inherited from the classifications using peak set derived from
distal enhancers. Annotation of the scATAC-seq clusters through
integration with our previously published scRNA-seq profiles of
the same bone marrow aspirates7 uncovered 12 major bone
marrow cell types of erythroid, lymphoid, and myeloid lineages
(Fig. 1d). The number of peaks present in each cell type varied
significantly, with malignant cells showing the most and plasma
cells showing the least number of peaks (Supplementary Fig. 1f).
Genomic annotations for sample-wise peak sets demonstrated
similar distributions, with promoter-marked peak proportions
differed more than the rest of the genomic locations, such as
distal intergenic regions (Supplementary Fig. 1g).

Marker peak analysis revealed distinct peak accessibility across
diverse TME cell types and malignant cells (Fig. 1e), consistent
with previously observed cell-type-specific chromatin accessibility
profiles15,28–30. To further link marker peaks with marker genes,
we integrated our previously published scRNA-seq profiles and
calculated the top 10 differentially expressed genes (DEGs) within
each putative cell type (Fig. 1e). For instance, CD79B31 was one of
the top marker genes linked to B-cell-specific peak set (K-means
cluster 13), whereas the Tetraspanin CD8232 was ranked as one of
the top markers in late erythroid cell (K-means cluster 12).
However, as shared among various cell types of late erythroid,
CD4, CD8, and NK, cluster 8 marker peak set did not exhibit any
distinct peak-gene annotations.

By re-applying ArchR pipeline, we were able to verify that
more than 90% of the malignant cells called by Signac were
consistent with archR predictions (Supplementary Fig. 2a). Cell
label annotations of the scATAC-seq clusters by archR uncovered
9 bone marrow cell types of erythroid, lymphoid, and myeloid
lineages (Supplementary Fig. 2b). Marker peak analysis revealed
distinct peak accessibility across the healthy and leukemic cellular
subtypes (Supplementary Fig. 2c), consistent with cell-type-
specific chromatin accessibility profiles15,28–30. To further
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validate the cluster annotation, we visually inspected the tracks of
canonical gene markers (Supplementary Fig. 2d) and calculated
the lineage-defining gene scores, which represent the overall
chromatin accessibility at the gene body and promoter
regions29,33–35. For instance, T cells had the highest mapped
gene expression by integrating scRNA-seq data for CD3E and
CD8B, whereas erythroid cells had high gene score for HBB

inferred with their epigenetic accessibility (Supplementary Fig. 2d,
upper panel), that were consistent with their predicted gene
activity scores using scATAC-seq data in the putative cell types
(Supplementary Fig. 2d, lower panel). Next, we analyzed the
differential accessible chromatin regions for enriched DNA-
binding motifs of lineage-specific transcription factors, which
correlate with cell identity22. Our accessibility profile of
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transcription factor enrichment scores confirmed canonical
transcription factor regulators of the identified cell types
(Supplementary Fig. 2e).

Hematopoietic progenitor-like and stem cell-like AML cell
states are dominated in therapy-resistant AML patients. Next,
we focused on AML malignant cells to identify diverse cell states
involved in our study cohort. Using label transfer from scRNA-
seq data, AML malignant cells were predicted using distal
enhancer-based peak set in scATAC-seq data (Fig. 2a). The
number of malignant cells varied greatly across different samples,
ranging from dozens to a couple thousands. This could be par-
tially due to the uniqueness of patients with different responsive
states across different sampling timepoints. We then leveraged
accessibility signatures which was based on sorted well-defined
hematopoietic cells from different lineages36 to refine cell states in

AML cells. By assigning an accessibility Z-score using
chromVAR37 for ten chromatin accessibility signatures spanning
normal hematopoiesis to more differentiated cells, as previously
described36, we assigned each single cell a putative identity based
upon the signature which showed the highest positive enrich-
ment. Samples with less than 50 malignant cells were excluded
from cell state proportion calculations (Fig. 2b and Supplemen-
tary Fig. 3). Our results suggested that populations of AML cells
in each sample showed highest enrichment of early stem cell and
progenitor signatures but was also constituted of signatures of
more differentiated cells which included erythroid, myeloid and
lymphoid lineages. We found different degrees of stemness
including gradients of long-term (LT) (i.e., quiescent) and acti-
vated (ACT) hematopoietic/progenitor stem cell (HSC/HSPC)
priming within each patient, and across different patients (Sup-
plementary Fig. 4a). Of note, a considerable proportion of AML

Fig. 1 Open-chromatin landscape in AML patients profiled using scATAC-seq. a An introduction of the recruited cohort for our study which included
eight patients. Longitudinal bone marrow samples were extracted per patient for sequencing. First batch of samples were profiled using paired scRNA-seq
and TCR-seq, with a highlight of CD8 T cells (published), while second batch of samples were profiled using scATAC-seq and centered on the analyses of
malignant cells by including gene expression as a complement. b UMAP of scATAC-seq clusters colored by tumor microenvironment (TME) and malignant
cells. c UMAP of scATAC-seq clusters colored and labeled by granular cell types. d Barchart showing relative proportions of predicted cell types across
different samples. e Heatmap showing all annotated peaks (n= 155,909) aggregated by cell types. Each column represents a peak region, while each row
represents a cell type. Peaks are split into 13 K-means clusters, with top ten differentially expressed genes (calculated using our published scRNA-seq data)
labeled along each cluster.
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Fig. 2 Diverse cell states in therapy-resistant AML malignant cells. a Barchart showing the number of malignant cells across different samples. b Relative
proportion of malignant cells resembling each normal cell type. Only samples with more than 50 malignant cells are shown. c Venn diagram showing the
number of differentially accessible regions (DARs) while comparing malignant cells with cell states of monocyte, MEP, Act (active) HSPC, LT (long-term)
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functional terms discussed in the main text. e Heatmap showing top 20 enriched TFs per cell state, colored by enrichment significance, with columns
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cells had chromatin accessibility primed for erythroid (erythroid
progenitors) and myeloid-erythroid progenitors (Supplementary
Fig. 4b). Monocyte-like AML malignant cells were more present
in responsive patients (PT2 and PT3) when comparing to non-
responsive patients and patients with stable disease (from PT5 to
PT8) (Supplementary Fig. 4c). On the contrary, megakaryocyte
erythroid progenitors (MEP)-like and stem cell-like (LTHSPC
and ActHSPC) AML cells were significantly dominated in
patients with non-responsive and stable disease (Supplementary
Fig. 4a, b). Compositions of B-cell-like AML cells were not sig-
nificantly altered across different patient groups (Supplementary
Fig. 4d). This actually supported that therapy-resistant AML cells
are enriched for stem-like and progenitor lineages1,38. We next
focused on patient 3 who acquired a cytogenetic deletion in
chromosome 7 at timepoint C; patient 4 who had an evolution of
CD34- CD14+ monocytic cells at the time of disease resistance
(timepoint B) and patient 7 who had stable disease for >1 year
while on therapy (timepoints B and C). Patient 3 and patient
7 showed increasing primitive stem cell signatures/genes along
the timepoints while patient 4 showed increasing monocyte sig-
nature/genes and decreasing primitive stem cell signatures/genes
(Fig. 2b). Importantly, these hierarchal distributions also persisted
following treatment (timepoints B and C), although the propor-
tion of each signature varied across samples. These observations
were consistent with their clinical manifestations.

Single-cell RNA profiling of AML cells validated the enrich-
ment of early progenitor cell states. We next leveraged the
scRNA-seq dataset by Granja et al. that harbored >30,000 cells
highly enriched for all stages of differentiation, including stem
and progenitor cells29. When projecting our previously published
single-cell transcriptional profile of AML malignant cells onto the
above normal hemopoietic reference using Symphony39, we
found most of the AML cells were mapped to HSC or early
progenitors (Supplementary Fig. 5a). However, we also found
cells projected onto differentiated cells, such as monocytes. As
expected, AML malignant cells largely resembled normal hema-
topoietic and early progenitors albeit at slightly different pro-
portions within each patient (Supplementary Fig. 5b) when
comparing to our scATAC-seq-based cell states annotations
(Fig. 2b). Our findings support distinct lineage priming patterns
across cells using both scRNA-seq and scATAC-seq data, with
scATAC-seq profiling showing much higher resolution in linea-
ges (Fig. 2b).

Malignant cell states-specific transcriptional regulatory land-
scape. To characterize the specific molecular underpinnings of
each AML malignant cell state, we then calculated differentially
accessible regions (DARs) by comparing AML malignant cells
assigned with unique cell states to AML cells without any cell
states assigned (Fig. 2c). As indicated, MEP-like and HSPC-like
AML cells share some DARs, while majority of DARs remained
unique to each cell state. Monocyte-like AML cells did not share
any DARs with hybrid-, progenitor-, and HSPC-like AML cells.
To delineate the higher level of regulations within each AML cell
state, transcription factor (TF) enrichment analysis was then
carried out (Fig. 2d). We observed an extensive and almost
exclusive enrichment of AP-1 regulation was observed in
monocyte-like AML cells (Fig. 2d, e). The activator protein-1
(AP-1) is a collection of TFs that included four sub-families: the
Jun (c-Jun, JunB, JunD), Fos (c-Fos, FosB, Fra1, Fra2), Maf (c-
Maf, MafB, MafA. Mafg/f/k, Nrl), and the ATF-activating TFs
(ATF2, LRF1/ATF3, BATF, JDP1, JDP2)40, characterized by
pleiotropic effects and a central role in the immune system such
as T-cell activation, and T-cell anergy and exhaustion41,42. AP-1

proteins regulate immunomodulatory processes, cell prolifera-
tion, apoptosis and growth43, that are also implicated in the
pathogenesis of leukemia and lymphoma where these TFs can act
as oncogenes44,45. Myocyte enhancer factor 2 (MEF2) are a group
of proteins consisting of four distinct members MEF2A, B, C, and
D. Mef2 has a wide variety of functions in different cells including
cardiomyocytes and HSCs. Particularly, Mef2c in comparison to
the other family members is preliminarily expressed and involved
in the mouse hematopoiesis46. It is differentially expressed in the
progenitor cells and regulates hematopoietic development. Pre-
vious research has reported that Mef2c is abundantly expressed in
the HSCs and common lymphoid progenitor cells (CLPs).
Whereas the expression declines when common myeloid pro-
genitor cells (CMPs) differentiate into much committed forms
like granulocyte myeloid progenitors and MEPs. We observed TF
MEF2A and MEF2C were shared across different AML cell states,
while MEF2B and MEF2D were missing from monocyte-like
AML cells (Fig. 2e). We then aimed to explore the cell state-
unique gene signatures and their driven biological functions in
therapy-resistant AML malignant cells.

Unique gene signatures driven by the diverse AML cell states-
associated chromatin accessibility alterations. To further char-
acterize the diverse AML cell states, we integrated scATAC-seq
and scRNA-seq data to link cell states-associated DARs with
DEGs by comparing malignant cell states with their normal
counterparts (Supplementary Fig. 6 and Supplementary Data 1).
As shown, monocyte- and MEP-like AML cell states in scATAC-
seq space resembled the monocyte- and early erythroid-like AML
cell states in scRNA-seq space, respectively. In particular, open
DARs corresponded with upregulated DEGs in the same or
similar AML cell states across both modalities. Compared to
monocyte- and MEP-like AML cell states, HSPC-like AML cells
showed fewer differential events in chromatin accessibility. We
also observed that chromatin accessibility tended to be more open
when comparing malignant lineages with their normal counter-
parts (Supplementary Fig. 6). Differential events were then
binarized to retain information for differential directions
(Fig. 3a). DAR-DEG pairs were kept only if both showing a
significant differential regulation in the same direction, for
instance open DAR and upregulated DEG, or closed DAR and
downregulated DEG. Cell states-associated gene signatures were
thus defined using these DARs-linked DEGs with the same dif-
ferential directions (Fig. 3b). In total, we identified 324, 117, 22,
and 5 unique cell state-related features in monocyte-, MEP-,
LTHSPC-like and ActHSPC-like AML cells.

Using cell states-associated gene signatures, we performed a
functional enrichment analysis using functional gene sets from
the Molecular Signatures Database (MSigDB)47 (Supplementary
Data 2). Hierarchical tree plots were constructed based on the
pairwise similarities of the enriched functional terms using
Jaccard’s similarity index (Fig. 3c–e). As demonstrated, Gene set
(EPPERT HSC R)48 containing genes upregulated in HSC-
enriched populations compared to committed progenitors and
mature cells was significantly enriched in our LTHSPC-associated
gene signature (Fig. 3c). Similar functional terms also included
“HAY BONE MARROW CD34 POS HSC”49. Collectively,
HSPC-like AML cell state was confirmed and characterized by
the significant overlap with previously curated AML signature
gene sets (VALK AML CLUSTER 1 and VALK AML CLUSTER
15)50, the activation of PI3K-Akt signaling pathway (REAC-
TOME PI3K-AKT SIGNALING IN CANCER)51, the enhanced
metastasis and mobility by MET signaling pathway (REACTOME
SIGNALING BY MET)52, the dysregulated cell–cell adhesion
(GOBP REGULATION OF CELL CELL ADHESION and GOBP
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HOMOTYPIC CELL CELL ADHESION), the increased therapy
resistance (CREIGHTON ENDOCRINE THERAPY RESIS-
TANCE 4)53 and a putative poor survival marked by the
enrichment of TF HOXA4 target genes (HOXA4 Q2)54. The
enrichment of the other homeotic TF HOXA9-related gene
features suggested its inhibition could be an interesting strategy
against AML55. As a leukemic driver gene, HOXA9 in AML is
associated with cell proliferation, differentiation blockade,
increased malignancy, and self-renewal maintenance in progeni-
tor cells56. Aside from the enrichment of AML-specific50 and
progenitor-related57 functional terms, MEP-like AML cells were
also enriched in FAB subtype-associated markers from pediatric
AML patients58, as well as AML patients with NPM1
mutations59,60 (Fig. 3d). Interestingly enough, we observed
MEP signatures from different fetal organs, such as heart, lung,
and liver, were significantly enriched in our MEP-like AML gene
set (Fig. 3d, golden and blue branches). Similar observation was
demonstrated with monocyte-like AML cells, that gene signatures
from monocytes regardless of their origin organs highly
resembled the gene features we extracted from monocyte-like
AML cells (Fig. 3e, golden branch). AML-specific functional
terms (Fig. 3e, blue branch) and inflammation-dominated
functional terms (Fig. 3e, green and purple branches) were
excessively observed in monocyte-like AML cells.

Pseudotemporal analysis reveals chromatin accessibility of
canonical transcription factor regulations. We next leveraged
the longitudinal inferred trajectory with supervised pseudotime
ordering to understand the AML longitudinal topology and
identified variability in lineage trajectories following treatment
(Fig. 4a). Starting from HSPC cells, six different lineages were
thus identified (Fig. 4b). We extracted AML cells underlying each
trajectory and overlayed them with the diverse AML cell states
(Fig. 4c and Supplementary Fig. 3). As expected, progenitor-like
HSPC- and MEP-like AML cells were shared mostly across dif-
ferent lineages, while monocyte- and B-cell-like AML cells tended

to aggregate in certain trajectory branches, such as Y_74 and
Y_155. We also performed hematopoietic accessibility signatures
analysis per trajectory and overlayed the trajectory-related peak
set with genomic features (Fig. 4d). As shown, the underlying
peak set from trajectory Y_74 with dominated monocyte-like
AML cells was highly enriched in exons (i.e., 1st exons and other
exons) and 3’ UTR regions. We then calculated TF binding
enrichment using trajectory-related peak sets (Fig. 4e) and ranked
the uniquely enriched TFs per trajectory by combining the top 30
most enriched TFs across all the trajectories (Fig. 4f). As illu-
strated, transcription factor encoded by gene SPI1 is specifically
expressed in myeloid cells and B-lymphocytes61, which was
among the top-ranked TFs and also shared across all six lineages
(Fig. 4e, red arrows). As expected, Spi1 was ranked as the top one
in trajectory Y_155 that was dominated with B-cell-like AML
cells (Fig. 4c). We also extracted top-enriched TFs that were
unique to each trajectory (Fig. 4f). We observed the uniqueness of
the trajectory-based regulatory landscape, with lineage Y_155 and
Y_209 similar to each other in regulating immune responses62.
Noticeably, several GATA family TFs, especially GATA2, were
among the top-unique TFs enriched in trajectory Y_17, indicating
a potential adverse prognosis in AML patients driven by this
lineage63. Based on the annotations of top-enriched unique reg-
ulators, we predicted that trajectory Y_161 was involved in tumor
immunity and drug response64; Y_107 attenuated apoptosis
through induction of autophagy in AML cells65; and Y_74 could
be linked to cancer metabolism, such as enhanced mitochondrial
output and energy production66,67. The diverse and unique
functions driven by different trajectories, further expanded our
understanding of the vast amount of heterogeneity within AML.
These findings also suggest that dynamic changes in the tran-
scriptional regulatory landscape marked by epigenetic accessi-
bility following treatment could modulate cellular states.

We next leveraged the longitudinal inferred trajectory with
supervised pseudotime ordering to understand AML longitudinal
topology and identified variability in lineage trajectories following
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treatment (Supplementary Fig. 7a). Trajectory analysis revealed
dynamic changes of accessibility of genes associated with
stemness (CD34, MLLT3, PROM1, GATA2, FLI1)68 as well as
those of lineage commitment related genes such as CD14, MPO,
ALAS2, MPEG1, and CD19 (Supplementary Fig. 7b). We also
performed hematopoietic accessibility signatures analysis and
overlayed the enrichment score along the trajectory (Supplemen-
tary Fig. 7c). We focused our analysis on patient 3 who acquired a
cytogenetic deletion in chromosome 7 at timepoint C; patient 4
who had an evolution of CD34- CD14+ monocytic cells at time
of disease resistance (timepoint B) and patient 7 who had stable
disease for >1 year while on therapy (timepoints B and C). Patient
3 and patient 7 showed increasing primitive stem cell signatures/
genes along the trajectory while patient 4 showed increasing
monocyte signature/genes and decreasing primitive stem cell
signatures/genes (Supplementary Fig. 7b, c). Motif enrichment
along trajectory also showed consistent results. Specifically,
Patient 3 showed transitions from differentiation-related motifs
(such as CEBP family) to progenitor-related motifs (such as
GATA family) (Supplementary Fig. 7d), while patient 4 showed
an opposite pattern (transitioned from GATA enriched to CEBP
and SPI1 enriched) (Supplementary Fig. 7e). Patient 7 also
showed motif enrichment of LMO2, which is an essential
transcriptional factor for primitive hematopoiesis, at the late
stage along the trajectory (Supplementary Fig. 7f). These findings
suggest dynamic changes in epigenetic accessibility following
treatment that could modulate cellular states.

Chromatin accessibility reveals the continuum of stem, pro-
genitor, and lineage-restricted priming. To further characterize
the cell states in therapy-resistant AML cells, we calculated DARs
by comparing AML cells with cell states assigned to their normal
counterparts. By doing so, we generated 47, 74, 166, and 2101
DARs for monocyte-, HSPC-, MEP- and B-cell-like AML cells
separately (Supplementary Data 3). Each cell state-related DARs
set was treated as a set of meta-module signatures, which was
later applied to score all the AML malignant cells. A cellular
hierarchy was constructed to demonstrate the continuum of the
diverse AML cell states (Fig. 5a). As indicated, stem, progenitor,
and lineage-restricted monocyte-like AML cells were mostly
parsed into three quadrants, while B-cell-like AML cells were less
prevalent comparing to the other three AML cell states. By
excluding feature sets with DARs less than 100, we computed and
ranked their significantly enriched TFs (Fig. 5b). As expected,
GATA family transcriptional factors, such as GATA2 and
GATA3, were uniquely enriched in MEP-like AML cells. GATA2
and GATA3 play essential roles in the development and main-
tenance of hematopoietic systems. In particular, GATA2 is crucial
for the proliferation and survival of early hematopoietic cells and
is also involved in lineage-specific transcriptional regulation69.
The disrupted biological function of GATAs in various hemato-
logic disorders are emerging, especially in AML69. Consistently,
we observed similar regulatory programs in trajectory Y_17 in
which more than 50% of the MEP-like AML cells were mapped
(Fig. 4c, f). Kruppel-like transcription factors (KLFs) were shown
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to be among the top-enriched TFs in B-cell-like AML cells.
Specifically, gene KLF9 can be applied as a prognostic marker in
combination with other three markers ENPP4, TUBA4A, and
CD247 to predict the overall survival of AML patients70.

Lastly, we extracted DARs-lined gene features from HSPC-,
MEP-, B-cell-, and monocyte-like AML cells, respectively. By
linking DARs to genes, we extracted four sets of gene signatures
that represented two broader lineages of early progenitors (HSPC
and MEP) and differentiated cells (monocyte and B cell). Using
The Cancer Genome Atlas (TCGA) AML cohort, each patient
was scored using the above four sets of gene signatures71, before
collapsing into two groups (see “Methods”). We concluded that
early progenitor-marked AML patients exhibited a less favorable
survival prognosis when comparing to differentiated cells (Fig. 5c).
This was also partially in line with our previous observations that
AML malignant cell states that resembled differentiated cell types
were more prevalent in some responsive AML patients (Fig. 2b),
for example, B-cell-like AML cells were dominated in responsive
patient PT2 at timepoint C.

Discussion
AML is a devastating disease characterized by differentiation
arrest72 and is associated with high rate of therapy resistance,
ultimately translating into short survival73. Our knowledge of
AML lineage classification has been largely based on newly
diagnostic samples, while less is known about AML composition
at time of therapy resistance. It is critical to understand the
lineage composition of AML cells at time of therapy resistance as
cell lineages impact responses to therapy. Since lineage priming in
the hematopoietic cells occurs largely at the epigenetic level and
precedes transcriptional changes68,74, we leveraged single-cell
chromatin accessibility to understand the lineage composition of
therapy-resistant AML cells. Additionally, our in-house generated
single-cell chromatin accessibility data can be served as a rich
resource for large-scale data integration and mining to the AML
research community.

Our findings revealed intratumoral lineage heterogeneity
characterized by AML cells harboring chromatin accessibility
programs spanning the hematopoietic lineage continuum. Spe-
cifically, at time of therapy resistance, AML cells were enriched
for hematopoietic stem cells and progenitors, in agreement with
previous gene expression-based studies12,75,76. Among the stem
and progenitor cell states, there was a spectrum between long-
term and activated hematopoietic stem cell states that can con-
tribute to relapse. However, our chromatin accessibility profiling
revealed that AML cells were also primed for erythroid, myeloid,
and lymphoid cells which includes early progenitors and cells at
different stages of the differentiation spectrum. These compo-
nents are similar to those seen in normal hematopoiesis. The
multilineage state at time of therapy resistance likely contributes
to the heightened resistance of AML cells. Importantly, sub-
sequent treatment did not deter the heterogenous lineage com-
position of AML cells. Rather, AML cells maintained their stem
cell-like epigenetic landscape, while propagating the hierarchal
diversity in the lineages, although the relative abundance of some
of those lineages changed with time. Our patient-derived long-
itudinally inferred trajectory with supervised pseudotime order-
ing revealed the transition of cellular states based on the dynamic
changes of chromatin accessibility following treatment. Since the
cell of origin can impact the response to therapy11, we propose
that the acquisition of a differentiation spectrum not only con-
tributes to the generation and maintenance of leukemic stem cells
as previously suggested, but it may also create distinct barriers for
therapeutic responses ultimately leading to resistance and per-
sistence of AML.

Noteworthy, early progenitor-like AML cell states-driven gene
signatures are less favorable in survival prognosis using The
Cancer Genome Atlas AML cohort, when comparing to the more
differentiated AML cell states-driven gene signatures. Using
previously published treatment-naive AML cohort6, we validated
the prognostic values of our cell states-derived features. Specifi-
cally, we have observed a discrepancy in regulatory potential
between open-chromatin-marked signature regions and their
linked genes. Similar phenomena regarding the low correlations
between open-chromatin signals and their linked gene expression
profiles have been studied using rat adipose and muscle tissues,
with the highest correlation nearing 0.4 within promoter regions
in muscle77. ATAC-seq enables the genome-wide identification of
transcription factor binding events to orchestrate gene
expression14. Since gene regulation is a complex process which
involves the interplay of multiple layers of genomic and epige-
nomic regulations78, it is especially difficult to reveal the complete
picture for gene regulation when scRNA-seq and scATAC-seq
data are not profiled using the exact same single cells, with one
layer of epigenetic mark, i.e., chromatin accessibility. In addition,
technical challenges are manifested in cross-referencing malig-
nant AML cell states with normal hematopoiesis references. The
ultimate workaround is to apply multi-omics profiling that out-
puts RNA expression and open-chromatin map simultaneously
for each cell to characterize how open-chromatin states precede
the changes in transcriptomics.

The human hematopoietic system is a hierarchal system which
is tightly regulated by dynamic changes in chromatin
accessibility20,21 and transcription factors that dictate cell
lineages22 Similar to normal hematopoiesis, the rewiring of cel-
lular transitions in therapy-resistant AML malignant cells was
afforded by dynamic dependency on canonical transcriptional
regulators of lineage transitions such as GATA1, RUNX, and
POU2F279, and regulators of cellular transformation such as
transcription factor AP-180. AP-1 is composed of 18 dimeric
complexes, that are critical in a wide range of cellular processes,
including inflammation, proliferation, differentiation, and apop-
tosis, especially during oncogenesis81,82. In line with its functional
profile, a nearly exclusive and unique enrichment of AP-1 was
observed in monocyte-like AML malignant cells. Our data also
revealed significant enrichment for HOXA family-related func-
tions in stem-like AML malignant cells that is consistent with
their role as master transcriptional regulators of lineage devel-
opment and leukemogenesis83–85. Specifically, HOXA clusters
have been implicated in MLL-rearranged and NPM1 mutated
AML inducing a stem cell phenotype83–89. Altogether, our find-
ings suggest that AML cells exploit the normal transcriptional
machinery, which would create an additional barrier in targeting
these programs without incurring damage on normal hemato-
poiesis programs.

Our findings demonstrate that therapy-resistant AML cells are
indeed characterized by primitive and stemness states, but also
composed of other cellular lineages revealing significant intratu-
moral lineage heterogeneity. Further, AML cells exploit epigenetic
regulators that are also shared with normal hematopoiesis, ulti-
mately recapitulating a hematopoietic hierarchy. Therefore, this
multilayered leukemia priming states creates a major barrier in
targeting the complex architecture and provides AML cells with
multiple functional layers of resistance. Not surprisingly, thera-
pies that induced epigenetic-based differentiation of AML into
homogeneous lineage states, such as IDH1, IDH2 and menin
inhibitors90–93 have demonstrated promising therapeutic options
in AML. Since AML cell lineages are tightly regulated by epige-
netic reprogramming, implementing epigenetic remodeling drugs
that may potentially drive AML into a single-layered differ-
entiated state that may overcome resistance.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05120-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:765 | https://doi.org/10.1038/s42003-023-05120-6 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


Methods
Human subjects and treatment regimen. Bone marrows from eight adult (>=18
years of age) patients on NCT02397720 protocol were included in this study. All
patients had histologically proved relapsed or refractory acute myeloid leukemia.
Timepoint A was collected at the time of proven relapse or primary refractoriness.
Timepoints B and C were collected during the treatment with azacitidine 75 mg/m2

(administered intravenously on days 1–7 over 60–90 min or subcutaneously), and
nivolumab 3mg/kg (administered as a 60–90 min intravenous infusion) on days 1
and 14 of each cycle treated on NCT02397720 protocol. Written informed consent
was obtained from all participants. The study was conducted in accordance with
the Declaration of Helsinki and had IRB approval.

Bone marrow cell preparation. All bone marrow samples were stored in liquid
nitrogen and retrieved right before sample processing. To maximize the cellular
viability recovery, samples were processed in batches according to in-house
developed protocol and 10x Genomics “Demonstrated Protocol Cell Preparation
Guide” (Document CG00053). Briefly, cells were gently thawed in water bath at
37 °C until are partially thawed and immediately placed on ice. Next, cells were
gently transferred to a 10 ml media (10 ml alphaMEM + 20%FCS) and centrifuged
(1500 rpm for 5 min). After removal of the supernatant, the cell pellet was carefully
resuspended in 10 ml enriched media (alphaMEM+20%FCS supplemented with
500 μL Heparine, 15 μL DNase and 500 μL MgSO4), followed by incubation in
37 °C for 15 min. After incubation, cells were centrifuged and gently washed twice
in 1.5–3 mL of 0.04% BSA in PBS. Additionally, cells were passed through strainer
(0.35–0.4 μm Flowmi Cell Strainer) to eliminate cell clumps. Next, cells were
stained with 0.4% Trypan blue and quantified and assessed for viability using the
cell automated counting machine Cellometer Mini (Nexcelom, Lawrence, MA,
USA), as well as using standard hemocytometer and light microscopy.

Nuclei isolation for single-cell profiling. The nuclei isolation was performed
according to the 10x Genomics “Demonstrated Protocol Nuclei Isolation ATAC
Sequencing RevD” (CG000169) with some in-house optimized modifications.
Briefly, cells were thawed and prepared as indicated in the previous section counted
and maintained on ice. Cell suspension of ~0.9–1 million cells were centrifuged
(300 rcf for 5 min at 4 °C) followed by gentle removal of the supernatant without
disrupting the cell pellet. Next, cells were lysed in 100 μl of chilled Lysis Buffer
(10 mM Tris-HCl (pH 7.4); 10 mM NaCl; 3 mM MgCl2; 0.1% Tween-20; 0.1%
Nonidet P40 Substitute; 0.01%; Digitonin and 1% BSA) with incubation on ice set
for 8 min (as optimized). Next, cells were immediately washed by adding 1 mL of
chilled Wash buffer (10 mM Tris-HCl (pH 7.4); 10 mM NaCl; 3 MgCl2; 0.1%
Tween-20 and 1% BSA) and centrifugated (500 rcf for 10 min at 4 °C). The
resulting nuclei pellet was resuspended in an appropriate volume of chilled 1×
Nuclei Buffer (2000153; 10x Genomics), assuming targeted nuclei recovery of
10,000. If cell debris and large clumps were observed, nuclei suspension was passed
through a cell strainer. The concentration and quality of nuclei were assessed using
0.4% Trypan blue staining checked on the automated counting machine Cellometer
Mini (Nexcelom, Lawrence, MA, USA), as well as using a standard hemocytometer
and light microscopy. Nuclei were immediately used to prepare scATAC-seq
libraries.

Library preparation for 10x Genomics single-cell ATAC sequencing. The
scATAC-Seq libraries were prepared using the 10x Single Cell ATAC Solution
(https://www.10xgenomics.com/products/single-cell-atac/), according to the man-
ufacturer’s protocol “CG000168 Chromium Single Cell ATAC Reagent Kits Rev B
(v1 Chemistry), (10x Genomics, Pleasanton, CA, USA)”. The main steps of
scATAC-seq library preparation include (1) nuclei transposition, (2) GEM gen-
eration and barcoding, (3) post GEMs incubation cleanup and (4) library con-
struction. Briefly, nuclei suspension targeting recovery of 10,000 nuclei per sample
were mixed and incubated (37 °C for 60 min) with transposition mix, allowing the
transposase to enter the nuclei and fragments the DNA within open-chromatin
regions. Also, during this step, adapter sequences are added to the ends of the DNA
fragments. Next, the transposed nuclei were mixed with master mix containing
barcoding reagents and loaded onto a Chromium Chip E along with Chromium
Single Cell ATAC Gel Beads v1 and Partitioning Oil. The nanoliter-scale Gel
Beads-in-emulsion (GEMs) were generated using 10x Chromium Controller. The
GEMs were captured and incubated (Step 1: 72 °C for 5 min, Step 2: 98 °C for 30 s,
Step 3: 98 °C for 10 s, Step 4: 59 °C for 30 s, Step 5: 72 °C for 1 min, Hold: 15 °C;
Steps 3–5 were performed in total of 12 cycles) forming 10× barcoded single-
stranded DNA. Next, the GEMs were broken, and pooled fractions were recovered,
followed by the post GEM-RT Cleanup. Further on, the generated barcoded
amplification product was mixed with the sample index PCR mix and incubated
(Step 1: 98 °C for 45 s, Step 2: 98 °C for 20 s, Step 3: 67 °C for 30 s, Step 4: 72 °C for
20 s, Step 5: 72 °C for 1 min, Hold: 4 °C; Steps 2–4 were performed in total of 11
cycles) to generate the indexed scATAC libraries. Next, the double-sided size
selection using SPRIselect (Beckman Coulter) was performed along with elution of
final libraries. Next, the libraries were checked for the fragment size distribution
using Agilent 4200 Tape Station HS D1000 Assay (Agilent Technologies) and
quantified with Qubit Fluorometric dsDNA Quantification kit (Thermo Fisher
Scientific, Waltham, MA, USA). Each of scATAC libraries contain the P5 and

P7 sequences used in Illumina® bridge amplification and contain the unique
sample indexes. The libraries were sequenced at the ATGC MDACC core facility,
with each library on a separate lane of HiSeq4000 flow cell (Illumina), with the
sequencing targeting above the minimum of 25,000 read pairs per nucleus
sequencing depth, format of 100nt and parameters (Read 1—50 cycles, Read 2—50
cycles; with exception while sequencing together with scRNA libraries Read 1—100
cycles, Read 2—100 cycles).

scATAC-seq data processing, quality control, and data analysis. Raw
sequencing reads were mapped to the human hg19 reference genome (GRCh37,
10X Genomics), and quantified using cellranger-atac count function with default
parameters (Cell Ranger ATAC, version 1.1.0, 10X Genomics). R package Signac
was used for scATAC-seq data processing and analysis26. Briefly, cells were filtered
based on a combination of metrics: (1) the transcription start site (TSS) enrichment
score no less than 1, (2) the nucleosome signal (NS) score lower than 4, (3) the total
number of fragments in peaks kept between 10th and 90th percentile per sample,
(4) ratio of reads mapped to peaks higher than 15, and (5) fraction of reads mapped
to blacklisted genomic locations lower than 5%. Cells satisfying all of the above five
measures were kept for further analysis.

Peaks were called using MACS2 algorithm94 and merged to yield a reduced set
of regions, which was later used to generate a combined sparse count matrix across
all the samples. In search of integration anchors across all the samples, reciprocal
latent semantic indexing (LSI) projection95 was applied to project our data into a
shared low-dimensional space96. We then integrated the low-dimensional cell
embeddings across samples. Dimensionality reduction was performed using
Iterative Latent Semantic Indexing (LSI) projection95 and single-cell embeddings
were generated using Uniform Manifold Approximation and Projection (UMAP;
nNeighbors= 40; minDist= 0.1). Further downstream analyses, including marker
peak identification, gene activity calculation, peak-linked genes identification and
reference peak set enrichment with ChromVAR deviations, were performed using
Signac default functions. To map peak-related genes, gene with the highest fold
change will be applied to represent the peak, if multiple gene promoters were
mapped next to the same peak.

To confirm the consistency of cell label transfer, we employed a second
scATAC-seq processing pipeline named archR28. Briefly, raw fragments files were
loaded into ArchR to generate Arrow files. Cells were filtered based on minimal
TSS enrichment score of 8 and minimal fragment number of 1000. Doublets were
inferred and removed using standard ArchR parameters. Dimensionality reduction
was performed using Iterative Latent Semantic Indexing (LSI; N= 3), and single-
cell embeddings were generated using Uniform Manifold Approximation and
Projection (UMAP; nNeighbors= 40; minDist= 0.1). Peaks were called using
MACS2 algorithm. Further downstream analysis, including cell label predictions,
gene score calculation, marker peak identification, and motif enrichment analysis
with ChromVAR were performed using ArchR default analytic functions. Further
comparison with Signac pipeline was carried out using the same set of cells called
by both pipelines. Percentage of cells assigned with the same cell types from both
pipelines were calculated.

Defining scATAC-seq cluster identity with scRNA-seq data. Our previously
published scRNA-seq profiles of the same bone marrow aspirates were used as
reference to map scATAC-seq clusters into defined cell types. Briefly, to help
interpret the scATAC-seq data, we aimed to classify cells based on scRNA-seq data
from the same biological system using R package Signac26. We utilize methods for
cross-modality integration (function FindTransferAnchors) and label transfer
(function TransferData) to identify shared correlation patterns in the gene activity
matrix calculated from scATAC-seq data and scRNA-seq dataset to identify
matched biological states across the two modalities. Binary classes of malignant
cells and tumor microenvironment (TME) cells (i.e., normal cells) were first pre-
dicted, followed by detailed cell-type predictions in TME cells. To yield a better
separation between AML malignant cells and TME cells, different subsets of peaks
were utilized to conduct label transfer from reference scRNA-seq data to scATAC-
seq data. Open-chromatin peaks were mapped into three relevant categories, i.e.,
promoter, proximal, and distal enhancer regions. Genomic annotations for the
above three regulatory regions were downloaded from the ENCODE Encyclopedia
(Version 5)97. In combination with SC3 consensus clustering stability27, the peak
set with the highest stability score was applied to generate the final cell labels for
both broader and detailed cell types.

Defining cell states of AML malignant cells in scATAC-seq and scRNA-seq
data. Signature peak sets unique to ten normal hematopoietic cell types were
downloaded from ref. 29, wherein both bulk and CD34+ sorted bone marrow cells
were profiled. Signac function chromVAR was applied to calculate the deviations in
chromatin accessibility across the input set of peak regions. A deviation score cutoff
of 1.96 was used to assign cell states to AML malignant cells in scATAC-seq data.
AML cells were either assigned to one unique cell state, none cell state, or labeled as
a hybrid. To assign cell state labels to AML malignant cells in scRNA-seq data
based on their closest hematopoietic counterpart, a KNN classifier was employed to
label AML cells based on the ten nearest-neighbors using R package Symphony39.
For analysis of cell composition within each AML sample, only projected labels
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assigned with at least 80% probability (agreement between 8 and 10 neighbors) to
at least 5% of cells within any given sample were retained for further analysis.

Commonly shared malignant cell states between scATAC-seq and scRNA-seq
were kept for further differential analysis. Peaks were linked to genes based on the
distance to their promoters using function LinkPeaks in Signac to find peaks that
were significantly correlated with the expression of nearby genes. For each peak-
gene pair, differentially accessible regions (DARs) were calculated by comparing
cells with malignant cell states assigned to their normal counterparts using
scATAC-seq data. Differentially expressed genes (DEGs) were then calculated
similarly using scRNA-seq data. The significance level for both DARs and DEGs
were set as FDR < 0.05. Peak-gene pairs were dropped from further analysis if one
component was not called as a differential event (FDR < 0.05). Cell states unique
DARs were calculated by comparing cells with cell states assigned to cells without
any cell states assigned.

Gene set enrichment analysis was performed using all the available gene sets
from the Molecular Signatures Database (MSigDB)47, by excluding gene set terms
starting with “MODULE_” and “GNF2_” due to minimal meaningful information
from their systematic names.

Trajectory analysis. Trajectory analysis using merged malignant cells was per-
formed using Monocle398. Briefly, malignant cells with stemness state, such as
ActHSPC and LTHSPC were combined as the initial cell populations. Pseudotime
for each trajectory was thus computed for each cell along the trajectories. Peaks
contributing to each cellular trajectory was also extracted for downstream analysis.

To incorporate the longitudinal design, trajectory analysis per sample was
performed using ArchR default function. Briefly, confusion matrix was first created
to list the cluster proportions across samples from different timepoints. The
proportion of each cluster within sample from timepoint A was then used to order
the clusters with the highest proportion being the first while least proportion being
the last. The order was then used by ArchR default trajectory analysis function to
generate the trajectories. Finally, manual inspection was performed to ensure key
markers were following the trajectory correctly.

Survival analysis. The RPKM TCGA-LAML expression profiles (n= 170) were
downloaded (https://gdc.cancer.gov/about-data/publications/#/?groups=TCGA-
LAML&years=&order=desc)71, together with the survival data from Bioconductor
RTCGA.clinical (“patient.vital_status”). Next, we took all genes that were linked to
any of the HSPC-, MEP-, monocyte- and B-cell-like AML cells, and computed row-
wise z scores for each gene. AML patients were scored using each set of gene
signatures with R package GSVA99. Patients were assigned to one of the four cell
states when their scores were more than 0. We then split patients into two groups
by extracting patients assigned to either HSPC- and MEP-like or monocyte- and B-
cell-like AML cells. The significance P value was calculated using the R package
survival. We plotted the Kaplan–Meier curve using the R package survminer. Our
previous treatment-naive AML cohort (n= 90) with prognosis information was
applied as an independent validation set for survival analysis6.

Statistics and reproducibility. Wilcoxon rank-sum test (two-sided) was applied in
scRNA-seq marker gene analysis and scATAC-seq marker peak analysis. Hyper-
geometric test was used for gene set enrichment analysis. Log-rank test was applied
to test the difference between survival groups. False discovery rate (FDR) adjust-
ment was performed using the Benjamini–Hochberg algorithm. Survival analysis
was replicated using an independent dataset to show reproducibility.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data have been uploaded to European Genome-Phenome Archive (EGA)
(Accession # EGAD00001007675; https://ega-archive.org/dacs/EGAC00001002085) and
are publicly available. All processed data, processing, and analysis scripts are available
upon reasonable request.
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