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Dynamic network properties of the superior
temporal gyrus mediate the impact of brain age gap
on chronic aphasia severity
Janina Wilmskoetter 1✉, Natalie Busby2, Xiaosong He3, Lorenzo Caciagli 4, Rebecca Roth5,

Sigfus Kristinsson2, Kathryn A. Davis6, Chris Rorden7, Dani S. Bassett 4,6,8,9,10,11, Julius Fridriksson2 &

Leonardo Bonilha5

Brain structure deteriorates with aging and predisposes an individual to more severe language

impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation

are not well understood. Here we use an approach to model brain network properties outside

the stroke lesion, network controllability, to investigate relations among individualized

structural brain connections, brain age, and aphasia severity in 93 participants with chronic

post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average

controllability of the posterior superior temporal gyrus (STG) mediates the relation between

advanced brain aging and aphasia severity. Lower controllability of the left posterior STG

signifies that activity in the left posterior STG is less likely to yield a response in other brain

regions due to the topological properties of the structural brain networks. These results

indicate that advanced brain aging among individuals with post-stroke aphasia is associated

with disruption of dynamic properties of a critical language-related area, the STG, which

contributes to worse aphasic symptoms. Because brain aging is variable among individuals

with aphasia, our results provide further insight into the mechanisms underlying the variance

in clinical trajectories in post-stroke aphasia.
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Aphasia is a post-stroke disability defined by impaired
language processing. In many individuals, aphasia persists
with long-lasting language deficits beyond six months

after the stroke (chronic aphasia). However, the interindividual
determinants of the severity of chronic aphasia are not well
understood. Currently, the location and the size of the stroke
lesion are among the most critical predictors of chronic deficits.
However, even when considering lesion anatomy combined with
baseline severity, only up to 50% of the variance in chronic def-
icits can be explained1. This unexplained variance suggests that
other factors play an essential role in chronic language recovery.
More specifically, the integrity of the residual brain tissue beyond
the lesion is a crucial factor that contributes to the severity and
recovery of chronic aphasia2–7. Language recovery likely relies on
the engagement and adaptation of non-lesioned, non-necrotic
residual tissue in language-related or multimodal brain regions.
The degree of recovery may depend on the plasticity of the
residual tissue, which can be understood as a functional measure
of brain health. However, the neurobiological characteristics of
the residual tissue that drive recovery, and thus severity in
chronic stages of aphasia remain unclear.

The integrity of residual neuronal networks beyond the lesion
can be measured using network-based neuroimaging, including
structural connectomes constructed from diffusion tensor
imaging (DTI) and adapted to evaluate residual networks in peri-
lesional and remote areas8. Using DTI-based connectivity
measures, several groups have demonstrated the importance of
link-based integrity (i.e., the preservation of the integrity of the
connections between regions or the integrity of white matter
pathways) in chronic aphasia9–15. Moreover, the topological
properties of the residual network also appear to be relevant in
predicting long-term deficits. Topological properties refer to the
network organization, e.g., which connections are preserved and
how the remaining network provides a relational framework
between brain structures. For instance, the connections between a
pair of regions may be disrupted, but the regions could still be
linked by indirect connections16. Likewise, brain structures may
become segregated (isolated) from the remaining network if hub
regions are lost17–20. Finally, using the topological properties of
networks, it is possible to model information transfer between
regions and the dynamic properties of the network8,21,22.

In this context, controllability is a promising measure in
evaluating the topological integrity of residual brain networks.
Controllability is an analytical measurement of a region’s inter-
action within a dynamic network system and relies on the
assumptions of network control theory23,24. Network control
theory defines different brain states as specific activity levels of
each brain region that correspond to specific cognitive functions/
domains24. Controllability measured at the brain region level
quantifies the region’s capability to steer the remaining brain into
different states, thereby orchestrating neurophysiological activa-
tion patterns at a given time24–26. Controllability is estimated
from the architecture of the structural white matter network,
which determines the region’s structural embedding within the
remaining brain network and its ability to distribute input
throughout the entire network. The biological relevance of
brain network controllability is well document for different
conditions27–32. Further, recent studies have demonstrated the
relation between the controllability of key language-related brain
regions and language processing among healthy individuals
undergoing brain stimulation and individuals with chronic post-
stroke aphasia21,33. Because controllability is based on network
properties, it correlates with graph theory measures at a node
level (e.g., hub status: degree and centrality)23. Notably, in our
recent work, controllability emerged as the topological brain
network feature with the highest explanatory value of post-stroke

aphasic symptoms, and outperformed the predictive value of
traditional demographic, lesion, and graph-theoretical
properties21. This is in line with research of other conditions
(e.g., epilepsy, psychosis, youth development) also indicating that
controllability outperforms graph theory measures27–31.

Nonetheless, the relation between topological network prop-
erties and other pathophysiological or neurodegenerative factors
that influence the severity of aphasia remains poorly understood.
More specifically, chronological age (i.e., the age of the stroke
survivor) is one of the most consistent and essential predictors of
long-term aphasia trajectories34. However, to our knowledge, the
effects of age on the structural brain network architecture of
individuals with aphasia have not yet been established.

Aging effects on brain structure and function are well docu-
mented. Age-related structural brain changes are manifested by
atrophy, an increase in cerebrovascular fluid spaces, and a
decrease in gray matter volume35,36. These volumetric changes
are especially prevalent in late adulthood after the sixth decade of
life, when the slope for cerebrovascular fluid space volume
increase is steepest37. From a topological point of view, older age
is associated with lower connectivity and efficiency within
networks38 and lower rich club organization39 (what refers to a
subset of nodes in the network that are densely connected among
themselves)40. Interestingly, the magnitude of these effects does
not occur homogenously across the brain but instead seems to be
region dependent. In addition to region-specific variances of
aging effects, age-related changes in brain tissue differ across
individuals35,37,41, which may partially explain variations in
individual stroke recovery. A modern concept, brain age, allows
for the estimation of age-related changes specific to brain tissue
volume that are decoupled from chronological age42. The quan-
tification of brain age has been the focus of recent advances in
neuroimaging, which predict age from brain tissue. An indivi-
dual’s biological brain age may be older (or younger) than their
chronological age. While brain age is increasingly recognized as a
meaningful marker related to cognitive performance among
adults43–45, less is known about its importance in aphasia and,
within the context of this study, its relation to the topological
properties of the residual neuronal networks.

Our group recently tested the importance of age-related brain
changes in individuals with chronic post-stroke aphasia. The
severity of chronic aphasia was predicted by the percentage of
preserved long-range white matter fibers, which deteriorate in the
presence of age-related neuroimaging findings such as white
matter hyperintensities, a common sequela of small vessel brain
disease46. Moreover, individuals with advanced brain age (i.e.,
older brain age than chronological age) present more severe
language impairments after stroke than those with typical brain
age47,48. Identifying the underlying neural processes associated
with aging in post-stroke aphasia is of high clinical importance
because stroke survivors are particularly negatively affected by
aging. For example, stroke is more common in older people than
in young people; moreover, older people typically have more
severe impairments following a stroke, and less recovery com-
pared to their younger counterparts.

To date, the association between age-related changes in struc-
tural connectivity and brain function remains largely elusive49.
However, understanding the association is crucial to explain
behavior and performance after brain injury, such as stroke. The
rationale for this study was to provide a comprehensive assessment
of the relation between tissue loss, age-related effects, impact on
networks, and the resulting behavioral effects. A unique opportu-
nity to assess how brain aging impacts brain structure and function
is network controllability which measures the influence of specific
brain regions on whole-brain network dynamics. The theoretical
foundation of network controllability combines the proposed
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primary effects of aging on brain networks by simultaneously
accounting for (1) wide-spread whole-brain network effects,
(2) brain-region-specific differences, and (3) structural networks
being intertwined with functional networks. Therefore, we sought
to test the relation between brain age, regional controllability of
language-related regions, and chronic post-stroke aphasia severity.
We hypothesized that the average controllability of language-
specific regions would explain the relation between advanced brain
age and aphasia severity. Our results revealed a link between
advanced brain aging, dynamic properties of the superior temporal
gyrus (STG), and chronic aphasia severity. These findings suggest
that the STG exerts a crucial global network influence contributing
to chronic aphasia severity.

Results
Brain age. Participants (n= 93) were on average 60.77 years old
(SD= 11.19, median= 62.00), and the predicted brain age was on
average 62.51 years (SD= 11.56, median= 64.39). Pearson’s
correlation between chronological age and predicted brain age
was r= 0.784, (p < 0.001, r2= 0.615) and the mean absolute error
was 6.06 years. The brain age gap was on average +1.95 years
(SD= 7.46, median= 1.43) (Fig. 1a). Chronological age was sig-
nificantly lower than predicted brain age (paired Samples T-Test,
t(92)=−2.51, p= 0.014).

Global controllability. After excluding zero-degree nodes from
each participant’s connectome, all participants had controllable

brain networks (smallest eigenvalues of the controllability Gra-
mians >0). Across participants, on average one region (median: 0,
range: 0–14) was a zero-degree node and thus, excluded from
participants’ connectomes. The number of zero-degree nodes
significantly correlated with the total lesion volume (Pearson’s
r= 0.609, p < 0.001). The left mamillary body was the most
common zero-degree node across all participants (n= 15) fol-
lowed by the right mamillary body (n= 12) and the left IFG pars
triangularis (n= 11). Among all 100 gray matter regions, the
mammillary bodies had the lowest number of connections to
other gray matter regions. The left mammillary body was con-
nected to on average five, and the right mammillary body to
three, other regions across all 93 participants. The left IFG pars
triangularis was one of the most commonly lesioned regions with
an average of 49% of the region being lesioned across participants
(see Supplementary Figure 1 for an overview of the regional lesion
volume for left IFG pars opercularis, STG pole, and posterior
STG). Figure 2a–c shows the average lesion volume, node degree,
and node strength for all 100 gray matter regions. Node degree
and node strength were calculated using the Brain Connectivity
Toolbox50 and provide insight into the direct pairwise con-
nectivity of one node with other nodes. Compared to the left
posterior STG and left pole STG, the IFG pars opercularis had on
average a higher regional lesion volume, lower node degree, lower
and node strength, thus, the IFG had fewer connections to other
regions within the network.

Average controllability of the language regions of interest. For
seven participants, the IFG pars opercularis was a zero-degree
node and excluded from these participants’ connectomes; the
STG pole was a zero-degree node in three participants, and
the posterior STG was a zero-degree node in one participant. The
average controllability for these three nodes ranged from 1 to
19.25 (IFG pars opercularis: 1.00 to 4.96, STG pole: 1 to 1.58,
posterior STG: 1 to 19.25) (Fig. 1b). The regional lesion volume
significantly correlated with the node’s average controllability for
the IFG pars opercularis (Pearson’s r=−0.297, p= 0.005), and
STG pole (Pearson’s r=−0.357, p < 0.001). The correlation
between the regional lesion volume and average controllability of
the posterior STG was not significant (Pearson’s r=−0.180,
p= 0.087).

Relation between brain age and aphasia severity. We performed
two separate multiple linear regression models to test if chron-
ological age or brain age better predicted WAB-AQ while con-
trolling for stroke lesion volume, time since stroke, education, and
sex. Both regression models were significant (p < 0.001). The
regression model with chronological age as the independent
variable explained 29.0% of the variance in WAB-AQ (F(5,85) =
6.93, p < 0.001, r2= 0.290). Chronological age and lesion volume
both significantly predicted WAB-AQ (standardized β=−0.22,
p= 0.019, and standardized β=−0.52, p < 0.001, respectively).
The second regression model with brain age as the independent
variable significantly predicted 33.3% of the variance in WAB-AQ
(p < 0.001) (F(5,84) = 8.39, p < 0.001, r2= 0.333). Brain age and
lesion volume both significantly predicted WAB-AQ (standar-
dized β=−0.30, p= 0.001, and standardized β=−0.53,
p < 0.001, respectively).

We then tested if the brain age gap predicted WAB-AQ while
controlling for chronological age, lesion volume, time since
stroke, education, and sex. The regression model was significant
and explained 33.4% of the variance in WAB-AQ (F(6,83)= 6.94,
p < 0.001, r2= 0.334). The brain age gap significantly predicted
WAB-AQ (standardized β=−0.224, p= 0.021) independently of
chronological age and total lesion volume.

Fig. 1 Age and average controllability measures for all n= 93
participants. a Chronological age, predicted brain age, and brain age gap.
b Average controllability for the inferior frontal gyrus (IFG) pars opercularis,
posterior superior temporal gyrus (posterior STG), and the pole of the
superior temporal gyrus (pole STG). The y-axis in panel (b) was capped at
5 for visualization purposes. Explanation of boxplots: The box represents
the interquartile range (first to third quartile), the horizontal line in the box
represents the median, and the vertical lines outside the box (whiskers)
represent data points outside the interquartile range.
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Relation between brain age gap, controllability, and aphasia
severity. Because the brain age gap significantly predicted
WAB-AQ, a total effect was established (Fig. 3a), which allo-
wed us to test direct and indirect effects through mediation
analysis. We tested the average controllability of the IFG pars
opercularis, STG pole, and posterior STG as potential mediators.
Results indicated a significant direct effect of the brain age gap
on WAB-AQ (effect=−0.71, standard error (SE)= 0.29, 95%

confidence interval (CI)=−1.28 to −0.14, p= 0.013), as well as
significant indirect effects of the brain age gap on WAB-AQ
mediated by the average controllability of the posterior STG
(effect= 0.10, bootstrapping SE= 0.07, 95% CI= 0.001 to 0.27)
(Fig. 3b). The brain age gap was associated with the average
controllability of the posterior STG, and in turn average con-
trollability of the posterior STG was associated with WAB-AQ
scores.

Fig. 2 Average regional lesion volume and connectivity measures for each of the 100 gray matter regions (nodes) across all n= 93 participants. The
inferior frontal gyrus (IFG) pars opercularis, posterior superior temporal gyrus (posterior STG), and the pole of the superior temporal gyrus (pole of STG)
are highlighted in blue, orange, and pink color, respectively. a Average lesion volume of each node in percent. b Average node degree for each node which
is the number of links connected to the node. c Average node strength for each node which is the sum of weighted links connected to the node The y-axis
in panel (b) was capped at 5 for visualization purposes. Explanation of boxplots: The box represents the interquartile range (first to third quartile), the
horizontal line in the box represents the median, and the vertical lines outside the box (whiskers) represent data points outside the interquartile range.

Fig. 3 Explanatory power of average controllability. a A total effect was observed for the brain age gap on WAB-AQ (Western Aphasia Battery - Aphasia
Quotient). b A significant direct (yellow box) and indirect effect (blue box) mediated through the average controllability of the posterior superior temporal gyrus
(avrgC pSTG) were observed (bootstrapping 95% confidence interval (CI) did not include zero). c The independent variables lesion volume, chronological age,
brain age gap, and average controllability of the posterior superior temporal gyrus explained together 35.88% of the variance in WAB-AQ. The graph shows the
relative importance of each variable. Error bars represent the 95% bootstrap confidence intervals. AvrgC pSTG average controllability of the posterior superior
temporal gyrus, chron. age chronological age at time of assessment, LMG Lindemann, Merenda and Gold indices, SE standard error.
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The brain age gap, average controllability of the posterior STG,
chronological age, and lesion volume were all significant
predictors of WAB-AQ and together explained 35.88% of the
variance of WAB-AQ (Fig. 3c). Calculating the relative
importance of each regressor for the WAB-AQ, we found that
the total lesion volume explained the largest portion of the WAB-
AQ variance (24.42%), followed by chronological age (5.49%),
average controllability of the posterior STG (3.05%), and the
brain age gap (2.91%).

Post hoc analyses with graph theory measures and lesion
volume. We conducted post hoc analyses to explore the relation
between the average controllability of the posterior STG and
traditional graph theory measures. Using the Brain Connectivity
Toolbox50, we calculated posterior STG nodal degree, between-
ness centrality, and clustering coefficient (metrics to quantify a
region’s hub status). In partial correlations that controlled for
total lesion volume, we observed significant relations among
higher average controllability of the posterior STG and higher
nodal degree (Pearson’s r= 0.483, p < 0.001), higher betweenness
centrality (Pearson’s r= 0.925, p < 0.001), and higher clustering
coefficient of the posterior STG (Pearson’s r= 0.552, p < 0.001).

Further, we tested the relation between the average controll-
ability of the posterior STG and stroke lesion volume and
location. The average controllability of the posterior STG did not
correlate with the total lesion volume (Pearson’s r=−0.085,
p= 0.421), but showed a trend towards significant correlation
with the regional lesion volume of the posterior STG (Pearson’s
r=−0.180, p= 0.087).

Figure 4 demonstrates the effects of the stroke lesion on brain
connectivity patterns in our study cohort. Due to the stroke
locations, the left hemisphere had fewer pair-wise connections
than the right hemisphere (Fig. 4a, b, e, f). Thus, the influence of
the posterior STG on the remaining brain network depends on
(1) connections that survived despite the stroke lesion (Fig. 4c, d)
and (2) connections that survived despite the aging process.

Discussion
Our study evidences a relation among advanced aging (refined
through brain tissue-specific aging estimates), structural network
architecture, and chronic language deficits in individuals with
aphasia. More specifically, we observed that the relation between
a higher brain age gap and worse aphasia was mediated by lower
controllability of the left posterior STG. Lower controllability of
the left posterior STG signifies that activity in the left posterior
STG is less likely to yield a response in other brain regions due to
the mathematical combination of the properties of the direct and
indirect connections of the left posterior STG to the other regions
of the network.

Effects of aging on brain network topology are documented in
prior research. Aging appears to trigger a reorganization of the
brain network with a decrease in connectivity within cortical
hemispheres and an increase in connectivity between
hemispheres51. Further, aging relates to a decrease in brain net-
work integration mirrored by a decrease in the number of hub
regions51. Hub regions link network communities and allow
efficient information to spread between communities and the
whole-brain network19. Hub regions typically have high average
controllability23. These findings align with our results concerning
the relation between advanced brain aging and reduced average
controllability of the posterior STG. The posterior STG has been
identified as a hub region within the language network and a key
brain area for aphasia recovery in chronic stroke14. Through post
hoc analyses using graph theory measures, we confirmed that the
controllability of the STG is a measure of its hub status.

Our results suggest that aging affects the way a critical language
hub region, the STG, is embedded within the remaining network,
and hence its potential to alter the flow of activity dynamics
within the wider brain system. In turn, the changes of activity
flow through the STG influence the severity of chronic aphasia.

Among the left posterior STG, STG pole, and IFG pars oper-
cularis, the posterior STG was the only region that significantly
mediated the relation between the brain age gap and WAB-AQ.
Compared to the left STG pole, and IFG pars opercularis, the left
posterior STG had on average higher node degree and node
strength. Thus, the posterior STG was connected to more regions
and had more influence on the remaining nodes to distribute
information through the network. The importance of preserved
structural connectivity in the temporal lobe is well documented.
For example, the betweenness centrality of the temporal lobe is a
significant predictor of treatment response for individuals with
anomia7. More specifically, the posterior STG and posterior
superior temporal sulcus (STS) have been commonly indicated as
major brain areas that contribute to aphasia after stroke. Of note,
we segmented the posterior STG based on the JHU brain ana-
tomical atlas, which does not differentiate between gyri and sulci.
The segmented brain area labeled as the posterior STG also
includes the posterior part of the STS. Damage to areas in the
vicinity of the STS has been linked to persistent aphasia52. The
STS/STG are part of the temporoparietal network, the origin of
both major language processing streams—the ventral and dorsal
streams53,54. Our results suggest that the posterior STG may be a
promising treatment target due to its crucial influence on the
remaining brain network in people with stroke.

Beyond brain aging, the stroke lesion also impacts the residual
brain topology, e.g., through diaschisis effects. We documented
significant stroke and aging effects on aphasia severity and thus,
provided insight into the cumulative effects of different sources of
brain degeneration. The average lesion volume for the partici-
pants in our study was 130 ml. Thus, it is unsurprising that the
total lesion volume was a significant predictor of aphasia severity,
explaining 24% of the variability in the WAB-AQ. Even though
we evaluated stroke lesions and brain aging as two independent
phenomena, they have shared pathophysiological bases. For
example, cardiovascular risk factors (e.g., hypertension, diabetes,
smoking) and small vessel brain disease co-occur in people with
stroke lesions and advanced brain aging. Our group has shown in
previous research that cardiovascular risk factors affect brain
network topology independently of a stroke55. Compared to
individuals without cardiovascular risk factors, those with cardi-
ovascular risk factors have less dense connectomes and a loss of
medium and long-range fibers. Cardiovascular risk factors are
also associated with small vessel brain disease, a marker for brain
health decline among persons with and without stroke46,56–58. In
recent work, our group tested the relation between advanced
brain aging and white matter hyperintensities59, commonly
recognized as the hallmark neuroimaging marker of small vessel
brain disease60. A higher load of white matter hyperintensities
were related to more advanced brain age. Because white matter
hyperintensities are linked to cardiovascular risk factors and are
predictors of new or recurrent ischemic strokes61,62, monitoring
cardiovascular risk factors may be beneficial for delaying brain
aging before and after a stroke.

This study has limitations. DTI-derived tractography approx-
imates but does not fully reflect the underlying biology. DTI
cannot discern between intra- and extra-axonal water because it
relies on signals stemming from a mixture of both. DTI is based
on an orientation distribution function, which reflects the pre-
ferred direction of water diffusion63,64. Consequently, DTI may
underestimate the number fibers and may not be able to resolve
fiber crossings65. We used probabilistic tractography to overcome
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limitations in DTI estimation of fiber crossing or complex fiber
anatomy, but it should be recognized that DTI-derived tracto-
graphy may have limited accuracy in quantifying connections.
Further, we limited our analyses to a pre-defined set of regions of
interest to constrain our findings and to conduct hypotheses-
driven analyses. Including a larger set of brain regions may have
revealed additional significant brain-symptom relationships.
Similarly, future studies may use separate language domains as
dependent variables to provide a more fine-grained assessment of
language performance than the WAB-AQ.

Several algorithms exist to estimate an individual’s brain age66.
These algorithms differ in their input (structural, functional brain
scans) and prediction accuracy (predicted chronological age based
on brain data). However, to our knowledge, none of these algorithms
have been applied to stroke, and our group is the first to adapt an
existing algorithm to stroke lesioned brains. The algorithm by Cole
et al. was estimated from a large cohort of healthy individuals and
then applied to various disease populations revealing brain age as a
predictive marker for disease progression (e.g., in Alzheimer’s,
HIV)42,67–69. Moreover, prior research found that traumatic brain

Fig. 4 Structural brain connectomes. The upper panel (above the horizontal gray line) presents data from one participant as an example of individual data.
The lower panel (below the horizontal gray line) presents group average data. The circular figures of panels (a) and (e) contain all 100 gray matter regions
with left regions on the left and right regions on the right side of the circle (please see Supplementary Table 1 for the position of each region within the
circle). The green arrows point to the posterior superior temporal gyrus. The height of the rectangles of the outmost ring shows the average controllability
for each region, with taller rectangles indicating larger average controllability. The second ring’s rectangles represent each region’s percentage lesion
volume. The streamlines in the inner circle represent the most common (90th percentile) pair-wise connections between the 100 gray matter regions. The
heatmaps in panels (b) and (f) represent adjacency matrices for the probabilistic streamlines between pairs of regions (for better visualization color bars
represent log values of the weighted number of streamlines connecting each region pair, from −4 to 4). Panels c and d show white matter fibers
reconstructed from deterministic tractography, for visualization purposes; analyses were performed following probabilistic tractography. The red area in
panel (c) represents the stroke lesion, and the green area in panel (d) represents the posterior superior temporal gyrus.
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injury (TBI) accelerates age-related neurodegenerative changes and
the brain age gap70, relatedly, the brain age gap increases with time
since TBI, indicating that the brain injury has worsening con-
sequences over time and may explain cognitive decline with aging in
this population. This prior evidence on TBI encouraged the appli-
cation of the pipeline by Cole et al. in our study of participants with
brain injury through stroke. Future research may address individual
changes in brain aging caused by stroke-specific and stroke-
unspecific factors through longitudinal studies of individuals with
stroke and studies of healthy individuals. Those studies may also help
to elucidate other factors explaining the relationship between age-
related brain structural changes and aphasia severity. While our
study demonstrated that the lower controllability of the left superior
temporal gyrus is a significant mediator between brain age gap and
WAB-AQ, the effect size was rather small, suggesting that other
factors are contributing to the relationship.

To conclude, in this study, we identified a link between
advanced brain aging, dynamic properties of a critical language
region (STG) based on structural network topology and inferred
activity dynamics, and severity of chronic aphasia. We demon-
strated how the STG exerts a crucial global network influence
contributing to chronic aphasia severity and how age-related
brain changes can affect individualized trajectories in chronic
aphasia. These results corroborate the importance of residual
brain tissue beyond the lesion in chronic aphasia severity and
suggest that the role of STG controllability in recovery and
plasticity is an important direction for future research.

Methods
Study participants. We studied data from participants with a stroke who were part
of a randomized controlled clinical trial entitled POLAR (Predicting Outcome of
Language Rehabilitation in Aphasia, clinicaltrials.gov ID: NCT03416738)71. The
inclusion criteria of the POLAR trial specified that participants must have had a
chronic (≥12 months) unilateral stroke to the left hemisphere, be 21 to 80 years
old, and speak English as their primary language for at least 20 years. Participants
were excluded if they had bilateral or right-hemisphere strokes or other neurolo-
gical brain-related illnesses. Participants with a stroke consisted of 93 individuals
with left-hemisphere strokes primarily in middle cerebral artery territory
(Fig. 5a, b). From 127 participants recruited for POLAR, we excluded 34 partici-
pants who were not diagnosed with aphasia or did not have the required MRI
scans. By only including participants with aphasia following a left-hemisphere
stroke, we assumed that all participants had left-hemisphere language dominance
before their stroke. In the current study, we examined baseline data from the
POLAR trial prior to treatment to test the relations among brain age, brain con-
trollability, and aphasia severity.

Before study enrollment, all participants provided written informed consent.
The POLAR clinical trial was conducted at the University of South Carolina

(Columbia) and the Medical University of South Carolina (Charleston). Local
Institutional Review Boards approved the study.

Of note, the original study48 that assessed the relation between brain age and
aphasia also included the participants from POLAR, thus, there is an overlap
between the study samples.

Language assessment. Aphasia severity was determined using the Aphasia
Quotient of the Western Aphasia Battery (Revised; WAB-AQ)72 before starting
therapy (Table 1). Only participants with WAB-AQ scores of <93.7 were included,
which is the cut-off value for diagnosing aphasia based on WAB-R criteria. Par-
ticipants were excluded from the POLAR trial if they had severely impaired verbal
output (i.e., a score of ≤ 1 on the WAB-R spontaneous speech scale), or severely
impaired auditory comprehension (i.e., a score of ≤ 1 on the WAB-R compre-
hension scale).

Magnetic resonance image acquisition. All participants underwent structural
MRI scanning including T1-weighted, T2-weighted, and diffusion weighted scans
(diffusion tensor images, DTI). T2-weighted images were used to delineate the
chronic stroke lesions. MRIs were acquired on a Siemens 3T Prisma scanner
(Siemens Medical Systems, Erlangen, Germany) with a 20-channel head coil.

For theT1-weighted MR images we used an MPRAGE sequence with a
resolution of 1 mm isotropic voxels, matrix size of 256 ´ 256, 9-degree flip angle,
192 slice sequence with repetition time of 2250 ms, inversion time of 925 ms, echo
time of 4.11 ms, parallel imaging (GRAPPA= 2, 80 reference lines). For the T2-
weighted MRI images we used a 3D turbo spin echo sequence with a matrix size of
256 × 256, variable flip angle, 176 1-mm-thick slices, repetition time of 3200 ms,
echo time of 567 ms, parallel imaging (GRAPPA= 80 reference lines). For the DTI
we used a monopolar echo planar imaging sequence with a matrix size of
140 ´ 140, 90-degree flip angle, sampling of 43 diffusion direction encodings

Fig. 5 Lesion maps and pre-selected regions of interests. a Lesion overlay of participants with a stroke (n= 93) where different colors denote the number
of participants having a lesion in that area, with warmer colors representing more participants having a lesion. b Peak of lesion overlay. The region with the
highest number of participants (n= 70) presenting with a lesion was the rolandic operculum (−40.4 ´ −13.4 ´ 18.2; crosshair position). The scale for (a)
is to be used for (b). c Visual schematic representation of pre-selected language-related regions of interests (MFG middle frontal gyrus, tri inferior frontal
gyrus pars triangularis, oper inferior frontal gyrus pars opercularis, poleSTG pole of the superior temporal gyrus, STG superior temporal gyrus, pSTG
posterior superior temporal gyrus, AG angular gyrus, MTG middle temporal
gyrus, pMTG posterior middle temporal gyrus).

Table 1 Demographic and diagnostic information of all
participants (n= 93).

Demographic information
Age (in years), mean (SD; range) 60.77 (11.19; 29–80)
Sex, n (%) Female 37 (39.78)

Male 56 (60.22)
Race, n (%) Black or African American 22 (23.66)

Asian 2 (2.15)
Caucasian 69 (74.19)

Education (in years), mean (SD; range) 15.52 (2.33, 12–20)
Diagnostic information

Months since stroke, mean (SD; range) 49.60 (52.51; 10–241)
Stroke lesion volume (in ml), mean (SD;
range)

129.66 (96.60;
2.38–467.46)

WAB-AQ (max. 100), mean (SD; range) 58.77 (22.86; 14.50–93.10)

n number, SD standard deviation, WAB-AQ Aphasia Quotient of the Western Aphasia Battery
(Revised) (Kertesz, 2007).
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(36 volumes with b= 1000 s/mm2, 7 volumes with b= 0 s/mm2), repetition time of
5250 ms, echo time of 80 ms, 210 ´ 210 mm2 field of view, parallel imaging
GRAPPA= 2, 80 contiguous 1.5 mm thick slices. Phase encoding polarity was
reversed for second acquisition of the same sequence.

All MR DICOM images were converted to NifTI format with the software
dcm2niix73. MRI processing steps are shown in Fig. 6 and included lesion
delineation and structural connectome processing.

Lesion delineation. Lesions were manually drawn on T2-weighted images by a
trained research specialist with supervision from LB, CR, or JF, using the software
MRIcron (https://www.nitrc.org/projects/mricron) or MRIcroGL (https://www.
nitrc.org/projects/mricrogl). The lesion maps in T2 space were co-registered to the
participant’s T1 using in-house developed, open-source MATLAB scripts (https://
github.com/neurolabusc/nii_preprocess)74 and SPM12 (Functional Imaging
Laboratory, Wellcome Trust Center for Neuroimaging Institute of Neurology,
University College London; http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
Lesion maps in native T1 space were normalized into the Montreal Neurological
Institute (MNI) 152 non-linear asymmetric standard brain template75. Normal-
ization of the lesion maps was completed through the following steps: (1)
smoothing of lesion maps by removing uneven edges with a 3-mm full-width at
half-maximum Gaussian kernel, (2) binarizing of the smoothed lesion maps
(lesioned vs. not lesioned tissue) with a threshold of 0; (3) enantiomorphic
transformation of the participant’s T1-weighted image onto standard space76. In
step 3, using the nii_preprocess pipeline (https://github.com/neurolabusc/nii_
preprocess) and SPM12’s unified segmentation-normalization, a chimeric T1-
weighted image was created with a voxel size = 1 mm3, where the stroke area was
replaced by the mirrored equivalent of the intact, right hemisphere, to create
chimeric images (i.e., ‘healed’ brains) to avoid tissue deformation74.

Total lesion volume was calculated as the sum of lesioned voxel (voxel size = 1
mm3) divided by 1000 to achieve units in ml. Total lesion volume served as a
control variable in the statistical analyses explained below.

Structural connectome processing. For every participant, we computed whole-
brain probabilistic tractography structural connectomes using stroke-adapted
connectome methods14,46. In brief, we segmented the normalized T1-weighted
images into 100 gray matter regions of interest using the Johns Hopkins University
(JHU) anatomic atlas77. We removed DTI distortions using eddy current
corrections78 and registered the gray matter JHU maps to the DTI space. Next, we
computed probabilistic tractography between every possible pair of gray matter
regions using the probabilistic method of FSL’s FMRIB’s Diffusion Toolbox79 with
the toolbox’s accelerated BEDPOST80 and probtrackX with 5000 individual
pathways, drawn through probability distributions on principal fiber direction,
curvature threshold = 0.2, maximum steps = 200, step length = 0.5 mm, and
distance correction. We averaged the number of probabilistic streamlines B to A to

obtain the weighted connectivity link for the pair of regions A and B. We corrected
the connectivity links for the size of region A and the size of region B as well as the
distance of the streamlines81,82. Each connectome consisted of a 100 ´ 100 matrix
with nodes representing the 100 JHU gray matter regions and edges representing
the weighted, undirected connectivity links. From this matrix, we excluded (i.e., set
to zero) spurious links, which we defined as links whose weights were below the
20% percentile of the links in the right hemisphere83. We excluded brain regions
from each participant’s connectome that were disconnected from the remaining
network (e.g., due to the stroke), representing zero-degree nodes. The zero-degree
nodes were excluded from the connectomes on a one-by-one basis resulting in a
smaller adjacency matrix for participants with zero-degree nodes21. Regions that
were damaged by the stroke lesion were included in the participants’ connectomes,
if the region was at least partially connected to the remaining network (was not a
zero-degree node).

Brain age estimation. We adopted the brain age estimation pipeline brainageR
(v2.1) from Cole and colleagues (github.com/james-cole/brainageR)42,67–70,84,
which is a freely available software implemented in R using the kernlab package (R
Core Team (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/). Brain-predicted age, henceforth referred to as brain age, is a voxel-
wise estimate of regional volume covariance that has been established based on
large cohorts for robustness for training and extrapolation purposes. Brain age is
estimated based on raw structural T1-weighted images, which were segmented into
gray matter, white matter, and cerebrospinal fluid using SPM12 (Fig. 6). Because
our goal was to quantify brain health of the residual brain tissue, we used the
chimeric T1 described above (where the stroke area was replaced by the mirrored
homolog region in the right hemisphere) to exclude the stroke lesion from the
brain age estimation for minimization of tissue distortion and measurement of
brain age volume covariance based on non-lesioned tissue. Our recent work has
demonstrated the feasibility, utility, and accuracy of the brain age estimation in a
local population of individuals with strokes47.

Segmentation accuracy was verified through visual quality control. For
normalization, the segmented images were registered to a custom template of the
brain age pipeline and then affine registered into MNI152 space using non-linear
spatial registration and SPM12’s DARTEL toolbox. The cerebrospinal fluid was
removed, and the gray and white matter probabilistic tissues were vectorized,
concatenated, and subjected to a principal component analysis to reduce
dimensionality. The components that explained the top 80% of the variance were
used for brain age prediction. A machine-learning algorithm using a pretrained
Gaussian regression model implemented in R package Kernlab was used to
estimate brain age for each participant using the coefficients from a full training
model which has been validated previously. This model was trained to predict the
chronological age of 3377 healthy individuals (comorbidities were excluded based

Fig. 6 Image processing steps. a All participants underwent a structural brain MRI scan including T1, T2, and diffusion weighted images (DTI = diffusion
tensor imaging) with 43 volumes. b Lesions were manually drawn on each participant’s T2-weighted image. c A chimeric T1 image was created for each
participant where the stroke area was replaced by the mirrored equivalent of the intact, right hemisphere (healed T1, lower panel)74. The healed T1 was
transformed into the Montreal Neurological Institute 152 (MNI152) standard space75. The stroke lesion was co-registered to the healed T1 standard space.
Each participant’s T1-weighted image was segmented into gray matter regions of interest with the Johns Hopkins University anatomic atlas; the
segmentation maps were registered into DTI space. d Probabilistic tractography was performed, and tracts were estimated between all pairs of gray matter
regions. The procedure resulted in a 100 ´ 100 adjacency matrix where values represented the (corrected) number of probabilistic streamlines between
two regions (heatmap in lower panel). Of note, the connectomes did not include the healed tissue. For better visualization, the color bars of the heatmaps
represent log values, and the white matter connections in brain space (upper panel) are based on deterministic instead of probabilistic tractography.
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on screenings) aged 18 to 92 years and tested on 857 healthy individuals. This
model predicted chronological age with a mean absolute error of 3.93 years and
explained 94.6% of the variance in chronological age. The model was tested on an
entirely independent dataset including N= 611 healthy individuals aged 18–90
years. For this dataset, the model predicted chronological age with a mean absolute
error of 4.90 years and explained 89.7% of the variance in chronological age. The
model performance differed for younger compared to older individuals. On
average, higher brain predicted than chronological ages were estimated for
younger, and lower brain predicted than chronological ages were estimated for
older individuals. Thus, controlling for chronological age in analyses using the
brain age gap is recommended.

For each participant, we calculated brain age and the brain age gap, which
refers to the difference between chronological and brain age (Fig. 7). Higher values
of the brain age gap reflected older brain age than chronological age (i.e., advanced
brain aging).

Global network controllability. The application of network control theory to
neural systems is based on the assumptions that (1) brain function derives from
brain structure, and (2) the brain is a dynamic system with regional activation
patterns that change over time. Conceptually, different activation patterns repre-
sent different network states, which ultimately give rise to different functions and
behaviors. Network controllability refers to the possibility of changing the net-
work’s activation pattern and reaching a target state through the influence of a
region within the network24. Brain networks are classified as controllable if brain
states can be reached by the influence of each and all brain regions, which we term
global controllability (Fig. 8).

Global controllability for a given network is computed from the smallest
eigenvalue of the network’s controllability Gramian. If the smallest eigenvalue is >0,
then the network is considered controllable23,24. Global network controllability is
computed based on the network’s structural properties, captured in a connectome
adjacency matrix A, where values represent the structural connectivity between two
regions i and j (Fig. 6d). Previous studies with healthy individuals demonstrated
that brain networks are controllable from any region23,85. However, a stroke may
alter the brain network architecture so that a previously controllable network is not
controllable after the stroke. Because zero-degree (disconnected) regions cannot
control the remaining network’s activation patterns, we excluded all zero-degree
nodes from the participants’ connectomes on a one-by-one basis resulting in a
smaller adjacency matrix for these participants. While excluding zero-degree nodes
resulted in controllable networks for most participants, some participants still did
not have a controllable network. For example, if a region is connected to other
regions (is not a zero-degree node), but these other regions are not connected to
the remaining network, then this region cannot influence the activation state of the
brain network and thus, the network is not globally controllable. Global
controllability is a requirement for the valid application of average controllability.

Average controllability. For each non-zero-degree gray matter region, we com-
puted the ability to drive the network into a target state. Our previous research
revealed that average controllability has the strongest relation with chronic post-
stroke aphasia21. Thus, in the current study, we focused on average controllability
and hypothesized that average controllability of language-specific regions mediates
the relation between advanced brain age and aphasia severity.

Average controllability was calculated as Trace(WK). Here W denotes the
controllability Gramian of a connectome, and K denotes the set of nodes in the
connectome. Average controllability is a measure of a node’s ability to spread and
amplify energy through the entire network. The larger a node’s average
controllability the better it can distribute energy to the other nodes in the system.
In other words, average controllability is an approximation for the influence of a
region over the activity of the remaining network23,24.

Selection of language-related regions. We calculated the average controllability
for a pre-selected set of 9 core brain regions in the left hemisphere that are involved
in language processing. This set of regions spanned the left frontal to temporal and
parietal areas and included the left middle frontal gyrus (posterior segment),
inferior frontal gyrus (IFG) pars opercularis and pars triangularis, angular gyrus,
superior temporal gyrus (STG), pole of STG, middle temporal gyrus, posterior
STG, and posterior middle temporal gyrus (Fig. 5c). These regions are commonly
referred to as language specific processing areas and are robustly linked to linguistic
but not to non-linguistic tasks86–88. While many other brain areas are engaged in
language processing, we focused on regions that are critical for language, as we
hypothesized that these areas would have the strongest influence on the network
dynamics of the language system, modeled as the regions’ average controllability.

Because of anatomical proximity, we assumed some degree of inter-correlation
among the 9 regions’ average controllability values. Hence, we performed an
explorative factor analysis (principal component analysis—PCA) to determine key
dimensions of variability in the controllability of these 9 regions. Kaiser-Meyer-
Olkin (KMO) and Bartlett’s test confirmed the suitability of our data for a PCA
with values of >0.6 (0.765) for the KMO, and a significance level of <0.001

Fig. 7 Brain age variability. Brain age was estimated from raw structural
T1-weighted images, which were segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid. a–c Three participants who had the
same chronological age (70–71 years) but differed in their brain age. The
brain age gap for participant A was 1 (=71–70), for participant B −14
(=56–70), and for participant C 13 (84–71). Of note, brain age was
calculated from the healed T1 tissue to control for any impact of the stroke
lesion on brain age estimates.

Fig. 8 Schematic representation of network controllability. Input from a region in the network (blue circle) is distributed through the structural
connections between nodes (red circles) and ultimately reaches all other nodes in the network. A network is controllable if any brain region can be
influenced by input from all other regions.
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(p < 0.001 with 36 degrees of freedom) for the Bartlett’s test indicating the existence
of a correlation across the variables and a data distribution that met the
assumptions of multivariate analyses. A rotated component matrix (rotation
converged in six iterations) was computed using PCA as the extraction (factors
with an eigenvalue ≥1.0 were extracted) and varimax rotation with Kaiser
Normalization as the rotation method. The PCA confirmed a three-factor solution,
which accounted for 86.79% of variance in the patients’ performance (factor
1= 56.24%; factor 2= 22.73%; factor 3= 7.82%). Figure 9 shows the factor
loadings of each of the controllability components. The PCA revealed three main
underlying brain areas: (1) a component associated with the controllability of
frontal regions, (2) a component associated with temporo-parietal regions, and (3)
a component associated with temporal regions. Among all 9 regions, the IFG pars
opercularis had the strongest loading on factor 1 frontal (0.961), the posterior
superior temporal gyrus on factor 2 temporo-parietal (0.899), and the pole of the
superior temporal gyrus on factor 3 temporal (0.951). From here on, we will only
report results for the IFG pars opercularis, posterior superior temporal gyrus, and
pole of the superior temporal gyrus, because they best represented the three key
dimensions, and because these ROIs are well established language regions.

Statistics and reproducibility. We performed multiple linear regression modeling
to assess the relation between the brain age gap (independent variable) andWAB-AQ
(dependent variable) while controlling for chronological age, lesion volume, number
of months since stroke, number of years of education, and sex. P-values < 0.05 were
considered statistically significant. The WAB-AQ was chosen as the dependent
variable based on its extensive use in aphasia research and clinical practice89,90 and its
correlation with communication-related quality of life91. Further, our goal was to use
a language measure that reflects the involvement of the broad neural network as
estimated with the controllability measures employed in our study. We believe that
the WAB-AQ is an appropriate tool for assessing this construct.

Mediation analysis was applied to assess the interplay among the brain age gap,
average controllability, and WAB-AQ. Mediation analysis includes a combination
of multiple linear regression models to draw conclusions for total, direct, and
indirect effects among the independent, dependent, and mediating variables. In our
study, the brain age gap was the independent variable, WAB-AQ the dependent
variable, and average controllability the mediating variable. First, we tested for a
significant total effect of the brain age gap on WAB-AQ using a regression model
with brain age gap as the independent variable and with WAB-AQ as the
dependent variable. After the total effect was established, we examined whether the
brain age gap was directly or indirectly predictive of WAB-AQ. The direct effect
was tested using multiple linear regression modeling with brain age gap as the
independent variable and WAB-AQ as the dependent variable, while controlling
for the mediating variable of average controllability. The indirect (mediating) effect
was tested as the effect of brain age gap on WAB-AQ through average
controllability. Here, we performed two regression models: (1) brain age gap as the
independent variable, average controllability as the dependent variable, and (2)
average controllability as the independent variable, WAB-AQ as the dependent
variable. In all models, we controlled for lesion volume, chronological age, number
of months since stroke, number of years of education, and sex.

We used model 4 of the PROCESS macro92 for SPSS (IBM SPSS Statistics for
Windows (version 28, released 2021, IBM Corp., Armonk, N.Y., USA)) to compute
the mediation models. We applied bias corrected bootstrapping with 5000 samples
and 95% confidence intervals. The null hypothesis (no indirect effect present) was
rejected if the confidence interval did not include zero. For the final model
predicting WAB-AQ, we calculated the relative importance of each regressor for
the WAB-AQ by using the Lindemann, Merenda and Gold (LMG) indices for
R-squared decomposition implemented in the R package relaimpo, version 2.2-693.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for Figs. 1, 2, 3 and 9 are provided in Supplementary Data 1. The conditions
of our ethics approval do not permit public archiving of anonymized raw data. Data will
be made available upon request to the corresponding author and in accordance with
ethical procedures governing the reuse of sensitive data, which includes completion of a
data sharing agreement and approval by the local ethics committee.

Code availability
The code used for the MRI processing is available at http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/ and https://github.com/neurolabusc/nii_preprocess. The code used for
calculating the brain age is available at http://www.github.com/james-cole/brainageR.
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