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Atlasing white matter and grey matter joint
contributions to resting-state networks in the
human brain
Victor Nozais 1,2✉, Stephanie J. Forkel2,3,4,5, Laurent Petit 1, Lia Talozzi 2,6, Maurizio Corbetta 7,

Michel Thiebaut de Schotten 1,2 & Marc Joliot 1✉

Over the past two decades, the study of resting-state functional magnetic resonance imaging

has revealed that functional connectivity within and between networks is linked to cognitive

states and pathologies. However, the white matter connections supporting this connectivity

remain only partially described. We developed a method to jointly map the white and grey

matter contributing to each resting-state network (RSN). Using the Human Connectome

Project, we generated an atlas of 30 RSNs. The method also highlighted the overlap between

networks, which revealed that most of the brain’s white matter (89%) is shared between

multiple RSNs, with 16% shared by at least 7 RSNs. These overlaps, especially the existence

of regions shared by numerous networks, suggest that white matter lesions in these areas

might strongly impact the communication within networks. We provide an atlas and an open-

source software to explore the joint contribution of white and grey matter to RSNs and

facilitate the study of the impact of white matter damage to these networks. In a first

application of the software with clinical data, we were able to link stroke patients and

impacted RSNs, showing that their symptoms aligned well with the estimated functions of the

networks.
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S ince the early 1990s, functional magnetic resonance imaging
(fMRI) peers inside the workings of the living human
brain1. Task fMRI unveiled countless aspects of brain

functioning in healthy participants and patients. However,
paradigm-free resting-state fMRI (rs-fMRI) analysis shows a
striking correspondence with tasks-related fMRI2 yet provides the
most comprehensive depiction of the brain’s functional organi-
sation. Rs-fMRI explores the awake brain at rest when no specific
external task is required from the participant. During rest, quasi-
periodic low-frequency oscillations in the fMRI signal — blood-
oxygen-level-dependent signal or BOLD— spontaneously occur3.
Distant brain regions display synchronous BOLD signal oscilla-
tions, testifying to functional connectivity between regions and
forming intrinsic functional networks, so-called resting-state
networks (RSNs)4–6. RSNs are related to cognition2, and their
alteration has been linked to various brain pathologies7–9,
potentially opening up this field to a wide range of applications10.
Hence, a resting-state acquisition is appealing and much less
demanding than the active participant involvement in a task.

The identification of RSNs has been tackled in multiple ways11.
One of the most popular approaches is an independent compo-
nent analysis (ICA)5,12,13, a data-driven method of signal
separation14 able to identify and extract independent components
(ICs) corresponding to RSNs in the resting-state signal across the
brain. From such components, resting-state networks and their
grey matter maps can be identified.

With the progress of the functional connectivity framework,
the question of the underlying structural connectivity became
pressing. Indeed, understanding the anatomical drivers of the
functional connection between multiple regions is necessary to
properly study these networks’ dynamics and biological relevance.
In that regard, the advent of diffusion-weighted imaging (DWI)
tractography enabled the description of white matter circuits in
the living human brain. DWI measures the preferential orienta-
tions of water diffusion in the brain15, which mostly follow axonal
directions. Using orientation information, tractography algo-
rithms piece together local estimates of water diffusion to
reconstruct white matter pathways16. DWI is a potent, non-
invasive in-vivo tool for mapping the white matter anatomy17 and
estimating structural connectivity between brain regions18,19.
Leveraging tractography, the joint study of functional and
structural connectivity has become an active field of research.
However, previous work compared functional connectivity and
structural connectivity between pairs of grey matter brain
parcels20,21. Or when studies provided white matter maps related
to resting-state networks, they either focused on a single
network22–25 or a restricted number of RSNs26–28 with limited
statistical confirmation of structural-functional connectivity
relationships22–25.

Notably, ICA applied to white matter tractography data pro-
duces circuits whose grey matter projections resemble resting-
state networks29,30. These results demonstrate that information
about the organisation of RSNs can also be extracted from white
matter data and might be complementary to the information
provided by resting-state BOLD signal analysis. However, to our
knowledge, a comprehensive description of the white matter
circuits in all identifiable resting-state networks is still lacking. In
principle, such endeavour could be achieved by using the
Functionnectome30,31. This recently developed method combines
fMRI with tractography by projecting the grey matter BOLD
signal onto white matter pathways.

In the present study, we extended our previous approach— the
Functionnectome methodology30 — to RSNs, integrating the grey
matter resting-state signal with white matter connections, and
analysed the resulting data through ICA. We produced the most
comprehensive atlas of 30 RSNs specifying their grey matter maps

together with their white matter circuitry — the WhiteRest atlas.
This atlas unlocks the systematic exploration of white matter
components supporting resting-state networks. The atlas comes
with companion software, the WhiteRest tool, a module of the
Functionnectome that will facilitate this exploration and assist the
investigation of brain lesions’ effects on RSNs and cognition.

Results
Mapping the resting brain: RSNs in white matter and grey
matter. Rs-fMRI scans derived from the Human Connectome
Project32 were converted into functionnectome volumes using the
Functionnectome software30,31 (available at http://www.bcblab.
com). The original rs-fMRI and functionnectome volumes were
simultaneously entered into an Independent Component Analysis
for each participant. The resulting individual independent com-
ponents were then automatically classified using MICCA33,
generating 30 IC groups, each group corresponding to one
resting-state network. These groups were used to create RSN
z-maps with paired white matter and grey matter maps (Fig. 1
and Fig. 2) — the WhiteRest atlas.

The paired white matter and grey matter z-maps generated by
our method were thresholded using an arbitrarily high threshold
of 7 to get a highly conservative estimate of the RSNs’ spatial
extent. Using this threshold, the combined white matter maps
cover 96% of the brain white matter, except for some orbito-
frontal and ventro-temporal pathways, part of the internal
capsule and part of the brain stem. Similarly, the combined grey
matter maps cover 79% of the cortical grey matter, except for
ventral areas in the temporal and frontal lobes.

The WhiteRest atlas reveals both the functional grey matter of
an RSN and this network’s structural white matter circuitry. In
the WhiteRest atlas, 21 of the 30 RSNs display a symmetrical
pattern between the left and the right hemispheres. Nine
networks are strongly lateralised, with four pairs of networks
with contralateral homotopic counterparts, and one network that
was exclusively left lateralised (RSN20, language production
network). To help further explore each RSN, a description of the
maps of all the RSNs can be found in the supplementary material
(Supplementary Figs 1–30; the continuous maps are also
available at https://identifiers.org/neurovault.collection:11895
for the white matter, and https://identifiers.org/neurovault.
collection:11937 for the grey matter). As an illustrative example,
the Default Mode Network (DMN) maps are showcased in Fig. 3.
Although the DMN can be described as a set of sub-networks,
one of them is most representative of what is usually called
“DMN” in the literature24,26,34: the RSN18, which we labelled as
“DMN proper”.

The grey matter map of the DMN proper revealed the bilateral
involvement of the medial frontal cortex (the medial superior
frontal gyrus, the gyrus rectus, and the frontal pole), the superior
frontal gyrus, the middle temporal gyrus, the precuneus, the
angular gyrus and the cerebellum. The white matter maps of the
RSN showed previously described pathways of the DMN, such as
the second branch of the superior longitudinal fasciculus (SLF2)
connecting the superior parietal lobe to the superior frontal gyrus
and the cingulum connecting the precuneus area to the medial
frontal area. Additionally, the middle temporal gyrus and the
angular gyrus are connected by the posterior segment of the
arcuate fasciculus. Interhemispheric connections were also
present within the anterior and posterior corpus callosum
connecting both frontal lobes and both precunei, respectively.

While the description of a known RSN, such as the DMN, can
be used to validate the atlas, WhiteRest can also explore the
uncharted white matter anatomy of RSNs, for instance, the Dorsal
Attention Network (RSN13) presented in Fig. 4.
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The grey matter map revealed the involvement of core regions
of the DAN, with the parietal cortex – supramarginal gyrus
(SMg), intraparietal sulcus (IPs) and superior parietal lobule (IPL)
– and part of the superior frontal gyrus (SMg), in the frontal eye
field region. It also showed other areas associated with the DAN,
namely the precentral gyrus (PrCg), the insula and the posterior
part of the middle temporal gyrus (MTg). The white matter map
unveiled the involvement of the second branch of the superior
longitudinal fasciculus (SLF2), connecting the inferior parietal
cortex (IPs, SMg) with the frontal regions of the network (i.e. SFg,
PrCg and insula). SFg and PrCg were also interconnected via the
frontal aslant tract. The map also showed the involvement of the
posterior segment of the arcuate fasciculus, connecting the MTg

with the parietal cortex. Additionally, the map revealed the
involvement of the corpus callosum, ensuring interhemispheric
connectivity.

White matter RSNs, overlaps, and stroke lesions. The
WhiteRest atlas suggests that most RSNs share white matter
pathways with other RSNs. Indeed, most of the brain’s white
matter (i.e. 89%) is shared amongst multiple RSN, with 16% of
the white matter shared by at least 7 RSNs. By comparison, the
grey matter contribution to RSNs show much less overlap, where
53% of the grey matter uniquely contributes to one RSN, and 45%
to 2 or 3 RSNs. To determine the exact extent of the overlaps in
the white matter, we generated an overlap map displaying the

Fig. 1 WhiteRest resting-state atlas of the visual and sensory/motor/attention domains. This composite figure shows the white matter 3D maps (green)
and grey matter 3D maps (red). Centre of the figure: Functional domains of the corresponding RSNs. The functional domains’ 3D maps are the union of the
associated RSNs. Labelling indicates an arbitrary RSN number (in blue), the primary cortical anatomical landmarks (in black) and putative cognitive
function (in orange). Ant. Sup. Par.: Anterior superior parietal network; Inf. central — SM head: Inferior central network (somatomotor, head portion); Lat.
Occ.: Lateral occipital network; Lat. Post. Occ.: Lateral posterior occipital network; Med. Occ.: Medial occipital network; Med. Post. Occ.: Medial posterior
occipital network; Mid. central (L) — SM hand (R): Middle central network, left hemisphere component (somatomotor, right-hand portion); Mid. central
(R) — SM hand (L): Middle central network, right hemisphere component (somatomotor, left hand portion); Post. Occ.: Posterior occipital network; Post.
Sup. Par.: Posterior superior parietal network; Sup. central — SM body: Superior central network (somatomotor, body portion); Sup. Temp: Superior
temporal network.
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number of RSN per voxel in the brain. Large areas of the deep
white matter showed high RSN overlap count ( > 7 overlapping
RSNs), including in the centrum semiovale and sub-portions of
the medial corpus callosum (Fig. 5). RSNs also overlapped highly
in the cingulum, the second and third branches of the superior
longitudinal fasciculi (SLF2, SLF3), the arcuate fasciculi, and the
inferior fronto-occipital fasciculi (IFOF) in both hemispheres. In
contrast, the superficial white matter demonstrated less RSN
overlap.

The existence of areas with high-density RSN overlap in the
white matter point toward the idea that lesions to the white
matter could severely impact the functioning of multiple RSNs
and hence cause a diverse pattern of clinical symptoms. To
explore this aspect, we developed a new module, the WhiteRest
tool, freely available online through the Functionnectome soft-
ware (available at http://www.bcblab.com). The WhiteRest tool

estimates the white matter disruption of an RSN by a lesion with
a “disconnectome-RSN overlap” score, the DiscROver score. It
can also measure the local involvement of each RSN for any given
region of interest (ROI) in the white matter (measured as
“Presence score”, see the WhiteRest user guide in the supple-
mentary material).

We validated the WhiteRest atlas in a clinical dataset of 131
stroke patients35 and compared their neurobehavioral deficits
with the measured impact of the lesion on the RSNs. More
specifically, we explored the three deficits which could clearly be
associated with RSNs based on their estimated function. The
three deficits and the four RSNs in question were: left upper-limb
motor control (MotorL) deficit associated with the somatomotor
network of the left-hand (RSN 09) (Fig. 6a); right upper-limb
motor control (MotorR) deficit associated with the somatomotor
network of the right-hand (RSN 08) (Fig. 6b); and language

Fig. 2 WhiteRest resting-state atlas of the switching/control, manipulation and maintenance of information (MMI), and default mode network (DMN)
related domains. This composite figure shows the white matter 3D maps (green) and grey matter 3D maps (red). Centre of the figure: Functional domains
of the corresponding RSNs. Labelling indicates an arbitrary RSN number (in blue), the primary cortical anatomical landmarks (in black) and putative
cognitive function (in orange). DMN: Default Mode Network. dlPFC: Dorso-lateral prefrontal cortex network; FPT 1/2/3 (L/R): Fronto-parieto-temporal
network 1/2/3, Left/Right hemisphere component; Med. frontal: Medial frontal network; PC-Precuneal: Posterior cingulate-precuneal network; PH-
Precuneal: Parahippocampal-Precuneal network; PP-Precuneal: Posterior parietal-precuneal network.
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deficit associated with the language comprehension network
(RSN 25) (Fig. 6c) and with the language production network
(RSN 20)(Fig. 6d). Each deficit score (MotorL, MotorR, and
Language deficit) is derived from a principal component analysis
(PCA) of the set of neurobehavioral assessment scores related to
the deficit. The impact of a lesion on RSNs was measured with the
DiscROver score from the WhiteRest tool. We show a strong and
highly significant correlation between the neurobehavioral deficit
scores and the DiscROver scores for the related RSNs. The
Pearson correlation between the scores was: 0.75 (R2= 0.57,
n= 131) for the “Left upper-limb”; 0.60 (R2= 0.36, n= 131) for
the “Right upper-limb”; 0.68 (R2= 0.46, n= 131) for the
“Language (comprehension)”; and 0.61 (R2= 0.37, n= 131) for
the “Language (production)”. All correlations were highly
significant with p < 10−13. For a more qualitative overview, we
showed that the lesion of all patients with strong deficits (deficit
score in the upper decile, Supplementary Fig. 31) overlapped with
the studied RSN (Supplementary Fig. 32–38). For comparison, we
also provided the illustrations of lesions and RSNs for mild deficit
(deficit score between the 60% quantile and the 75% quantile),
showing that the overlaps were then much more limited
(Supplementary Fig. 39–42).

Using this dataset, we also tested the plausibility of our above-
mentioned hypothesis whether lesions impacting multiple RSNs
would “cause a diverse pattern of clinical symptoms”. To do so,
we selected patients for whom at least a third (DiscROver score >

33) of both the right-hand somatomotor RSN and the language
comprehension RSN were impacted. Among these few patients
(n= 11), the majority (n= 9) had clear symptoms (i.e., deficit
score in the upper quartile) for both language and right upper-
limb motor control (Supplementary Fig. 43 & 44). While the
group size of this analysis is too small for definitive conclusions
and limited to two RSNs, we believe these preliminary results are
encouraging and ought to incentivize more research into this
issue. It should however be noted that they are not enough to
validate direct clinical applications of the atlas, but do show
promise for its potential use as a tool in clinical research.

Discussion
We introduce WhiteRest, an atlas derived from integrated func-
tional signal and structural information revealing white matter
and grey matter components for each resting-state network. As
such, the present work showcases two original results. First is the
atlas, which consists of the systematic mapping of white matter
that contributes to the resting-state networks. Second, our results
demonstrate that white matter pathways can contribute to mul-
tiple RSNs. This new atlas offers the prospect of exploring the
impact of white matter lesions on the integrity of resting-state
networks and, thus, their functioning.

The WhiteRest atlas is, to our knowledge, the first compre-
hensive statistical mapping of the white matter contribution to
RSNs. We generated white and grey matter maps concurrently,

Fig. 3 Default Mode Network proper (RSN18) maps, dorsal view. White matter map in green, grey matter map in red. Composite map in the middle. The
cerebellum is visible through the glass-brain effect. AF-P: Arcuate fasciculus (posterior segment); mSFg.: medial superior frontal gyrus; MTg: Middle
temporal gyrus; SFg: Superior frontal gyrus; SLF2: Second branch of the superior longitudinal fasciculus.

Fig. 4 Dorsal Attention Network (RSN13) maps, dorsal view. White matter map in green, grey matter map in red. Union of the two maps in the middle.
The insula and cerebellum are visible through the glass-brain effect. AF-P Arcuate fasciculus (posterior segment), FAT Frontal Aslant Tract, IPs/SPL
Intraparietal sulcus and superior parietal lobule, Middle CC Middle part of the corpus callosum, MTg Middle temporal gyrus, Posterior CC Posterior part of
the corpus callosum, PrCg Precentral gyrus, Precentral s. Precentral sulcus, SFg Superior frontal gyrus, SLF2 Second branch of the Superior Longitudinal
Fasciculus, SMg: Supramarginal gyrus.
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yielding continuous statistical maps of the RSNs in both tissues,
thus, allowing for a thorough exploration of each network. The
combination of functional and structural information can help
the exhaustive detection of RSNs as there is evidence that struc-
tural connectivity holds complementary information regarding
RSNs29. Hence, the multimodality of the signal might help
identify and segregate networks as previously demonstrated by
other groups with different modalities (e.g., Glasser’s multi-modal
parcellation36). Previous studies also combined grey matter
functional and white matter structural information to explore the
white matter contribution to resting-states networks but were
limited to a low number of RSNs25,27, or were focused on the
white matter support of dynamical changes in functional
connectivity37. In contrast, recent works that undertook the
atlasing of the RSN white matter connectivity did not directly
combine functional and structural information. They mapped the
RSN white matter circuits by connecting RSNs cortical regions
from a pre-existing cortical RSNs atlas, using tractography
data28,38. In this approach, the functional-structural mapping is
highly dependent on the original cortical RSN atlas, while in our
method, grey and white matter information are used
concurrently.

Another intriguing approach to the functional study of white
matter has recently been gaining traction and shown auspicious
results: the analysis of the BOLD signal directly in the white
matter (mini-review by Gore et al., 2019). Using the BOLD signal
from white matter allows for its functional exploration and
mapping without resorting to connectivity models, which may
lead to more physiologically accurate descriptions. Multiple stu-
dies have used this framework to unveil RSNs in white matter,
successfully adapting classical RSN investigation methods to the
white matter39–42. These studies revealed a functional parcellation
of the white matter, showing that it was possible to identify
multiple RSNs purely from functional signals while staying con-
sistent with the underlying structural connectivity. However,

these approaches have yet to produce a functional parcellation of
the white matter displaying continuous, long-range connectivity
between different cortical regions. While efforts have been made
to link white matter RSNs with grey matter RSNs, previous stu-
dies were unable to present a consistent 1-to-1 correspondence
between white and grey matter RSNs. As our objective is to
investigate the white matter connectivity underlying traditional
grey matter RSNs, the analyses directly using white matter BOLD
signals do not appear to offer immediately interpretable results on
this matter. In contrast, by combining structural and functional
(grey matter) signals with the Functionnectome, our approach
generated white matter maps that could better represent each
network, and systematically paired them with their well-known
grey matter counterparts. The WhiteRest atlas also demonstrated
overlaps between RSNs, consistent with fibres from distinct net-
works crossing in the white matter. Nevertheless, combining both
approaches in the future (white matter BOLD analysis and
Functionnectome) could be highly beneficial as it could allow for
a finer understanding of the functional involvement of white
matter in resting-state.

Our data-driven method allowed for a global approach by
mapping the whole brain, except for ventral areas in zones
strongly affected by magnetic susceptibility artefacts, where both
the fMRI and diffusion signals are degraded43. The individual-
ICA-based scheme used to produce the statistical group maps
revealed a fine granularity of the RSNs, where brain regions that
are spatially distant but functionally and structurally connected
are attributed to the same RSN. The fine granularity of the default
mode network (DMN) in the WhiteRest atlas is a good example of
the multimodal improvement of the networks’ segregation. Our
analysis replicated four previously described44 DMN-related RSNs
involving the precuneus (RSN 16, 17, 18 & 19), while also dif-
ferentiating a DMN proper (RSN18) from a medial frontal net-
work (RSN15). For the DMN proper, the structural connectivity is
largely known22–28,45, which offers a good opportunity to validate

Fig. 5 RSN overlap in the brain. a Overlay map of RSN white matter maps. Colour bar: Number of RSN per voxel (saturated for n > 14). Anterior CC
Anterior corpus callosum, AF-L Arcuate fasciculus (long segment), Cing. Cingulum, IFOF Inferior fronto-occipital fasciculus, ILF Inferior longitudinal
fasciculus, Posterior CC Posterior corpus callosum, SLF2 Second branch of the superior longitudinal fasciculus, SLF3 Third branch of the superior
longitudinal fasciculus, Unc Uncinate fasciculus. b Violin plots (normalised by plotted area) of the overlap values in the total white matter and along the
studied pathways (left and right hemispheres combined). Each plot also contains a boxplot with the median, the interquartile range (IQR), and “whiskers”
extending within 1.5 IQRs of the lower and upper quartile. WM: average whole white matter.
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our method. For instance, WhiteRest’s DMN proper white matter
map confirmed the involvement of the cingulum, connecting the
precuneus with the frontal cortex22–28,45, and of the superior
longitudinal fasciculus (SLF2) connecting the superior frontal
gyrus with the angular gyrus24,25,27. Similarly, the posterior seg-
ment of the arcuate fasciculus that connects the inferior parietal
lobule with the posterior temporal lobe has also been reported in
previous studies for the DMN22,24. Complementing the DMN-
proper, following previous DMN descriptions24, the medial frontal
network involved the inferior longitudinal fasciculus (ILF, con-
necting the occipital lobe with the temporal lobe), the uncinate
(connecting the temporal pole to the inferior frontal lobe), and the
cingulum (connecting temporal-parietal-frontal areas).

Similarly, the WhiteRest atlas can be used in a prospective and
explorative manner, as shown with the unveiling of the dorsal
attention network (RSN13). While the grey matter architecture of
the DAN is well documented46,47, its white matter support has
only been partially explored48. To our knowledge, WhiteRest
reveals the first comprehensive description of the DAN’s white
matter that includes bilateral association fibres connecting ipsi-
lateral regions, and commissural fibres ensuring interhemispheric
connectivity. However, disentangling the exact functional rele-
vance of each connection remains a challenge that will require,

for example, functionnectome investigation30 or advanced lesions
analyses49–51. Such approaches might shed light on the hier-
archical and functional implications of RSN circuits49,50,52,53.
Recent results have highlighted the importance of white matter
structural disconnections in the disruption of functional
connectivity53, and this disruption has been linked to behavioural
and cognitive dysfunction54,55. Therefore, being able to identify
these RSN white matter “highways” would propel our under-
standing of disconnection symptoms, improve recovery prog-
nostics, and inform preoperative brain surgery planning56. To
facilitate these efforts, we released the WhiteRest tool (as a
module of the Functionnectome) that quantifies the presence of
RSNs in a specific region of the brain’s white matter. The
WhiteRest module was designed to accept regions of interest (e.g.
from parcellations or lesions) in the MNI 152 space
(2 × 2 × 2 mm3) and estimates the RSNs involved or in the case of
lesions, which RSNs would be impacted by a lesion in this region.

As a proof of concept and to validate the atlas, the WhiteRest
tool was applied to the lesions of 131 stroke patients to compare
the DiscROver score of 4 RSNs with the symptoms associated
with their putative functions. We observed a strong correlation
between each neurobehavioral deficit and their corresponding
RSN DiscROver score, namely: Left and right upper-limb motor

Fig. 6 Relationship between neurobehavioral deficit and WhiteRest DiscROver. a, b Left (a) and right (b) upper-limb motor control deficit vs. DiscROver
score for the Somatomotor network of the left (a) and right (b) hand; c, d Language deficit vs. DiscROver score for the language comprehension network
(c) and the language production network (d). In each graph, all the patients are represented (n= 131) and the blue line corresponds to the linear fit
between the scores, and the light blue area corresponds to the confidence interval (set at 95%) for the linear fit. a.u.: arbitrary unit (scores set between 0
and 1); R2: Coefficient of determination. R2-c : Coefficient of determination corrected by controlling for age, sex and chronicity.
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control deficit with the somatomotor networks of left- and right-
hand, respectively; and language deficit with both language pro-
duction and language comprehension networks.

These results serve as the first clinical validation of the
WhiteRest atlas, showing that its structural and functional map-
ping is sound, and that it could be employed in the scope of
patient research, opening up a novel strategy to assert the cog-
nitive functions related to RSNs. Associating functions to RSNs is
usually done by indirect inference, using their spatial maps and
contrasting them with fMRI-derived activation maps of specific
cognitive functions2. As lesion studies have historically been a
major tool in determining functions of grey matter area57, and
more recently of white matter pathways58, WhiteRest provides a
new tool to understand the link between cognition and resting-
state networks. Reversely, the WhiteRest integrated functional
and structural connectivity can shed light on the functional
mechanisms of the brain and the origins of cognitive disorders.
While promising results link stroke symptoms and RSNs in our
study, further investigations will be required to fully disentangle
the relationship between cognition (or cognitive deficits) and
RSNs, using more advanced models than the relatively simple
linear approach from the present study. Recent works have been
undertaking the prediction of symptoms and recovery from
stroke based on functional and structural data58,59, a very
important and interesting goal for which WhiteRest may even-
tually be of use, adding interpretable data to these multimodal
methods.

While the WhiteRest module and atlas represent an advance in
resting state functional neuroimaging, it is not exempt from
limitations. For instance, we excluded the cerebellum-centred
RSN in the present work. This decision was motivated by some
limitations of tractography that are exacerbated in the
cerebellum60, mitigating the quality of the modelled pathways.
For example, the fine structure of the cerebellum and the gath-
ering of fibres in the brainstem are affected by partial volume and
bottleneck effects61. Also, some of the maps displayed white
matter pathways leading to grey matter areas absent on the
related grey matter map. Some of these cases can be explained as
simply threshold-dependent (i.e. z > 7 to facilitate the visualisa-
tion of 3D structures), which hid some of the less significant (but
still involved) areas. However, these pathways might correspond
to the structural link between different RSNs. Thus, when
exploring a network in detail, we strongly advise checking the
non-thresholded maps to better appreciate the entire white
matter network involved in RSNs.

All in all, we introduced a novel combined atlas of resting-state
networks based on functional and structural connectivity to
deliver white matter and grey matter maps for each RSN — the
WhiteRest atlas. This atlas allows for the exploration of the
structural support of individual RSN and facilitates the study of
the impact of white matter lesions on resting-state networks.
Accordingly, we released the WhiteRest module that estimates the
proportion of RSNs impacted by a given white matter lesion.
With this tool, future research can focus on exploring the link
between white matter lesions and their effects on the related
resting-state networks in light of symptom diagnosis. Leveraging
a deep-learning approach recently introduced44 opens the pos-
sibility for individual resting-state functionnectome analyses and
will facilitate a more personalised neuromedicine.

Methods
HCP dataset. The dataset used in the present study is composed of the openly-
available resting-state scans (rsfMRI) from 150 participants (75 females; age range
22-35 years) of the Human Connectome Project (HCP)32, with 45 participants
from the test-rest HCP dataset and 105 randomly sampled participants from the
Young adult dataset (http://www.humanconnectome.org/study/hcp-young-adult/;

WU-Minn Consortium; Principal investigators: David Van Essen and Kamil
Ugurbil; 1U54MH091657).

Full description of the acquisition parameters can be found on the HCP
website (https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging) and
in the original HCP publication62. Briefly, the resting-state scans were acquired
with 3 Tesla Siemens Skyra scanners and consist of whole-brain gradient-echo
EPI acquisitions using a 32-channel head coil with a multiband acceleration
factor of 8. The parameters were set with: TR= 720 ms, TE= 33.1 ms, 72 slices,
2.0 mm isotropic voxels, in-plane FOV= 208 × 180 mm, flip angle= 52°,
BW= 2290 Hz/Px. Each resting-state acquisition consisted of 1200 frames
(14 min and 24 sec), and was repeated twice using a right-to-left and a left-to-
right phase encoding.

The resting-state acquisitions were then preprocessed using the “Minimal
preprocessing pipeline” fMRIVolume63, applying movement and distortion
corrections and registration to the MNI152 (2009) nonlinear asymmetric space.
Note that all the analyses done in the present study were conducted in this space,
and subsequent mention of “MNI152” will refer to that space. Further processing
steps were also applied: despiking; voxelwise detrending of potentially unwanted
signal (6 motion regressors, 18 motion-derived regressors64, and CSF, white matter,
and grey matter mean time-courses); temporal filtering (0.01–0.1 Hz); and spatial
smoothing (5 mm FWHM). While of exceptional quality, we chose to alter the
HCP data to make it clinically relevant. A composite resting-state 4D volume was
generated by discarding the 300 first and 300 last frames of the resting state
acquisitions and concatenating (along the time axis) the resulting volumes. For
each participant, this corresponded to 7.5 min with the left-right and 7.5 min with
the right-left phase of acquisition (=1200 frames total).

Stroke dataset. A dataset of 131 stroke patients (46% female, 54 ± 11 years, range
19-83 years) with diverse cognitive deficits was used to validate the plausibility of
the atlas and demonstrate the feasibility for potential clinically oriented approa-
ches. The cohort of patients (n= 132) was recruited at the School of Medicine of
Washington University in St. Louis (WashU)35. One patient from this cohort was
excluded because of missing data. All participants gave informed consent, as per
the procedure implemented by WashU Institutional Review Board and in
agreement with the Declaration of Helsinki (2013). The data of each patient
consisted of their MRI-derived manually segmented brain lesion as well as the
associated neurobehavioral scores. In the present study, we focused on 3 deficits:
language, left upper-limb motor control, and right upper-limb motor control
deficits. They were established based on the acute (13 ± 4.9 days after stroke)
neurobehavioral assessment scores of the patients, with 7 scores for language
deficit, and 7 scores for each upper-limb motor control (left and right). The
language deficit was tested using the Semantic (animal) verbal fluency test (SVFT,
1 score) and the Boston Diagnostic Aphasia Examinations (BDAE, 6 scores). The
left and right upper-limb motor control deficit was tested using the Action
Research Arm test (ARAT, 3 scores), the Jamar Dynamometer grip strength
assessment (1 score), the 9-Hole Peg test (9HPT, 1 score), and the shoulder
flexion and wrist extension assessment (2 scores). Additional precisions can be
found in the supplementary methods.

Extraction of white matter and grey matter components. To explore the white
matter structures of resting-state networks, we projected the functional signal from
the rs-fMRI scans onto the white matter using the Functionnectome30,31 (https://
github.com/NotaCS/Functionnectome). The Functionnectome is a recently intro-
duced method that unlocks the functional study of white matter. Briefly, the
Functionnectome takes an fMRI scan and a grey matter mask as inputs combines
grey matter BOLD signal with white matter anatomical priors, and outputs a new
functional volume (called a functionnectome) with the same dimensions as the
original fMRI scan (same 3D space, same number of time-points), but with the
functional signal associated to the white matter. The Functionnectome provides
default white matter priors30. The white matter priors were originally derived from
the 7 Tesla diffusion data of a subset of 100 randomly selected HCP participants
from the HCP young adults cohort. Deterministic tractography was run on this
diffusion data using StarTrack (https://www.mr-startrack.com) to estimate the
structural connectivity between each voxel of the brain and build the Function-
nectome white matter priors.

In this functionnectome volume, the signal of a white matter voxel results from
the combination of the BOLD signals from the voxels within the grey matter mask
that are structurally connected to it (weighted by the probability of connection).
The structural connectivity probability is given by the anatomical priors provided
with the software (customisable priors option available). Using the
Functionnectome thus allows the analysis of the functional signal in a connectivity-
oriented framework by integrating the signal from distant but structurally
connected grey matter voxels or clusters of voxels.

For our analysis, each of the 150 rs-fMRI scans from the dataset were processed
with the Functionnectome, along with a grey matter mask (the same mask for all
the subjects). This mask was computed using the brain parcellation data from all
the participants: the mask corresponds to the voxels identified as part of the grey
matter in at least 10% of the participants. This processing produced 150 resting-
state functionnectome (rs-functionnectome) volumes, one per participant.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05107-3

8 COMMUNICATIONS BIOLOGY |           (2023) 6:726 | https://doi.org/10.1038/s42003-023-05107-3 | www.nature.com/commsbio

http://www.humanconnectome.org/study/hcp-young-adult/
https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging
https://github.com/NotaCS/Functionnectome
https://github.com/NotaCS/Functionnectome
https://www.mr-startrack.com
www.nature.com/commsbio


To extract RSN from the data, we used an independent component analysis
(ICA) method. For each participant, the original rs-fMRI scan was spatially
concatenated with the associated rs-functionnectome. It resulted in functional
volumes containing, side by side, the original resting-state signal (on the grey
matter) and the rs-functionnectome signal (on the white matter). These composite
functional volumes were then analysed with MELODIC (multivariate exploratory
linear optimised decomposition into independent components, version 3.15), from
the FMRIB Software Library (FSL)65 to extract independent components (ICs)
from the signal. The number of IC per participant was individually determined by
Laplace approximation66. This resulted in a set of ICs, unlabeled putative RSNs, per
participant. Each IC was composed of a temporal component (the IC’s time-
course) and a spatial map, displaying side by side (due to the above-mentioned
spatial concatenation) the component in rs-fMRI (i.e. grey matter) space and in the
rs-functionnectome (i.e. white matter) space. Each IC was then split into paired
white matter maps and grey matter maps.

Generating RSN maps by clustering ICs. We used MICCA33, an unsupervised
classification algorithm developed to automatically group ICs from multiple indi-
vidual ICAs (from different participants) based on the similarity of their spatial
maps. The resulting groups, composed of ICs reproducible across participants,
were used to produce group maps. Such an individual-based ICA scheme was
preferred to the classical group ICA as some evidence suggests that group ICA can
fail to separate some RSNs if they share functional hubs33.

The atlas was produced by applying MICCA using the procedure described in
the original Naveau et al. paper33, in a 5-repetition scheme (i.e. ICA and MICCA
were repeated 5 times per participant, and the resulting IC groups were paired with
ICASSO67). The procedure generated 36 IC groups and their associated z-map,
reproducible across the repetitions. Among them, 5 groups were identified as
artefacts and were excluded, and 1 was located in the cerebellum and was excluded
too in later analyses. The artefacts were visually identified when the grey matter
z-map was spread along the border of the brain mask (typical of motion artefacts,
n= 3), or was mainly located in ventricles or along blood vessels (n= 2). The
cerebellar RSN was discarded because of known problems with tractography in the
cerebellum60, to avoid providing the atlas with a white matter map poorly
representing the correct connectivity of this region.

We thus obtained a total of 30 RSNs, producing the WhiteRest atlas. Each RSN
was then named by experts (MJ, VN) according to its anatomical localisation and
in reference to AAL68,69 and AICHA68 atlas. Likewise, the classification of RSNs to
a functional domain was done by an expert using the grey matter spatial patterns
and estimated functional role of the RSNs presented here, compared to the one
from Doucet et al.12

Note that we applied MICCA on the grey matter maps of the ICs. We used
these maps for the clustering as MICCA has been developed and validated to
cluster only classical resting-state derived spatial maps (in grey matter space). As
each grey matter map is associated with a white matter map (since they are part of
the same IC), the procedure still produces paired grey and white matter RSN maps,
as presented in the atlas.

Overlap analysis and DiscROver. To measure the extent of overlaps between
RSNs in the white matter, all the maps were thresholded (z > 7), binarized, and
summed, generating a new map with the number of RSN per voxel.

Additionally, we provide a new software, the WhiteRest tool, to explore how the
white matter is shared between RSNs. It offers “Presence” scores measuring local
overlaps of RSNs for a given ROI (see the WhiteRest tool manual in the Sup. Mat.).
It also measures the DiscROver score (for Disconnectome-RSN Overlap score),
specifically designed to estimate the white matter disruption of RSNs by a lesion.
First, the extent of white matter fibres disconnected by the lesion is estimated using
the Disconnectome method49. This method yields a disconnectome map
displaying the probability of structural connectivity between the lesion and each
brain voxel (Fig. 7a). Hence, the higher the value on the disconnectome map, the
more likely the disruption of connectivity in the voxel due to the lesion. Then, the
weighted overlap of the RSN (Fig. 7b) with the disconnectome is computed by
voxel-wise multiplication of the RSN map and the disconnectome map (Fig. 7c).
The DiscROver score is computed as the sum of the values of this weighted overlap
map, normalised by the sum of the values in the RSN, and multiplied by 100. With
this score, 0 means that the lesion does not impact any white matter voxel of the
RSN, and 100 means it impacts the entire RSN.

The complete computation of the DiscROver score is summarised in Eq. 1:

DiscROverðRSN;DiscoÞ ¼ 100 ´
∑v2RSN ZRSN ðvÞ´ PDiscoðvÞ

∑v2RSN ZRSN ðvÞ
ð1Þ

With “RSN” representing the atlas white matter Z-map of a given RSN, with its
voxel values annotated as “ZRSN(v)”, and “Disco” the disconnectome map of a
lesion, with its voxel values annotated as “PDisco(v)”.

Stroke data analysis. To validate our WhiteRest atlas, we used the WhiteRest tool
to link stroke lesions with RSNs. We first selected 4 RSNs for which we were
confident we could identify a specific cognitive function: we chose the somato-
motor networks of the right (RSN 08) and left (RSN 09) hand, the language
production network (RSN 20), and the language network comprehension (RSN
25). The DiscROver score of the 131 lesions was computed for each of these 4
RSNs.

Each RSN was paired according to their putative function with one of the
3 studied cognitive deficits: The somatomotor network of the right-hand with the
right upper-limb motor control deficit; the somatomotor network of the left-hand
with the left upper-limb motor control deficit; and the language production and
language comprehension networks both with the language deficit.

Because each deficit was associated with multiple clinical scores, we ran a
principal component analysis (PCA) on each group of clinical scores and projected
the scores on each corresponding first principal component. The “MotorL deficit”
score was generated using the 7 clinical scores for left upper-limb motor control
deficit. The “MotorR deficit” score was generated using the 7 clinical scores for
right upper-limb motor control deficit. And the “Language deficit” score was
generated using the 7 clinical scores for language deficit. Additional details on those
three sets of scores are available in the supplementary methods. The PCA-derived
scores for each cognitive deficit were normalised between 0 and 1, with 0

Fig. 7 Steps for the computation of the DiscROver score. a Lesion mask (left) and associated disconnectome (right). b RSN map used for the DiscROver
score computation. c Visual representation of the weighted overlap, and computation of the DiscROver score. Disco: Disconnectome map; RSN: Resting-
state network map.
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corresponding to the minimum deficit and 1 to the maximum deficit in the data.
This dimensionality reduction step allowed us to capture most of the variance in
the data (i.e., the difference in clinical symptoms between patients) while limiting
the study of each cognitive deficit to one variable: MotorL, MotorR, and Language
deficit scores respectively, explained 95%, 91%, and 74% of the variance of their
clinical scores.

Finally, for each RSN-deficit pair, the DiscROver scores of all the patients were
plotted against the associated PCA-derived score, with the linear fit and coefficient
of determination, uncorrected (R2) and corrected by controlling for age, sex and
chronicity (R2-c). Note that the DiscROver scores for the language production
network and the language comprehension network were plotted against the same
Language deficit score.

Visualisation. The 3D z-maps presented in Figs. 1–4 were generated using Surf Ice
(https://www.nitrc.org/projects/surfice/), with the default mni152_2009 brain
volume as the background template. The 2D brain slices of Figs. 5 and 7 were
displayed on a standard template in MRIcron (https://www.nitrc.org/projects/
mricron). Each white matter map was masked to remove the grey matter part of
the volume and improve readability. The mask used corresponded to voxels
defined as white matter in at least 10% of the 150 participants, according to the
parcellation provided with the HCP datasets. In Fig. 5, the RSN count was satu-
rated at 14 on the displayed map to improve readability, as only a handful of voxels
presented higher values.

Statistics and reproducibility. In the stroke analysis, the relationship between
neurobehavioral deficits and the RSN DiscROver scores was measured by Pearson’s
correlation and linear fit. The statistical significance of the correlation was mea-
sured using the dedicated function from the Scipy Python library: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

The confidence intervals (CI) of Fig. 6 represent the 95% CI estimated with
1000 bootstrap resamples of the data, using the “regplot” function from the
Seaborn Python library:https://seaborn.pydata.org/generated/seaborn.regplot.html

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WhiteRest atlas (non-thresholded maps) is freely available on Neurovault.org, with
both the grey matter maps (https://identifiers.org/neurovault.collection:11937) and the
white matter maps (https://identifiers.org/neurovault.collection:11895). All fMRI
acquisitions are available on the HCP website (https://db.humanconnectome.org/). The
data of Figs. 5b and 6 are provided as a Supplementary Data 1.

Code availability
The WhiteRest module is open-source and freely available as part of the
Functionnectome software, which can be found at http://www.bcblab.com or directly
downloaded from https://github.com/NotaCS/Functionnectome. The MICCA algorithm
is also open source and can be freely downloaded from https://www.gin.cnrs.fr/fr/outils/
micca/ or directly on the permanent repository https://zenodo.org/record/5837556
(https://doi.org/10.5281/zenodo.5837556).
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