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Integrated analysis of copy number variation-
associated lncRNAs identifies candidates
contributing to the etiologies of congenital kidney
anomalies
Yibo Lu1,3, Yiyang Zhou1,3, Jing Guo1,3, Ming Qi1, Yuwan Lin1, Xingyu Zhang1, Ying Xiang 1,2✉,

Qihua Fu 1,2✉ & Bo Wang 1,2✉

Congenital anomalies of the kidney and urinary tract (CAKUT) are disorders resulting from

defects in the development of the kidneys and their outflow tract. Copy number variations

(CNVs) have been identified as important genetic variations leading to CAKUT, whereas

most CAKUT-associated CNVs cannot be attributed to a specific pathogenic gene. Here we

construct coexpression networks involving long noncoding RNAs (lncRNAs) within these

CNVs (CNV-lncRNAs) using human kidney developmental transcriptomic data. The results

show that CNV-lncRNAs encompassed in recurrent CAKUT associated CNVs have highly

correlated expression with CAKUT genes in the developing kidneys. The regulatory effects of

two hub CNV-lncRNAs (HSALNG0134318 in 22q11.2 and HSALNG0115943 in 17q12) in the

module most significantly enriched in known CAKUT genes (CAKUT_sig1, P= 1.150 × 10−6)

are validated experimentally. Our results indicate that the reduction of CNV-lncRNAs can

downregulate CAKUT genes as predicted by our computational analyses. Furthermore,

knockdown of HSALNG0134318 would downregulate HSALNG0115943 and affect kidney

development related pathways. The results also indicate that the CAKUT_sig1 module has

function significance involving multi-organ development. Overall, our findings suggest that

CNV-lncRNAs play roles in regulating CAKUT genes, and the etiologies of CAKUT-

associated CNVs should take account of effects on the noncoding genome.
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Congenital anomalies of the kidney and urinary tract
(CAKUT) refer to a collection of structural renal
anomalies originated from defects in embryonic kidney

development. CAKUT occur with an incidence of 1 in 500
newborns, accounting for 20 ~ 30% of congenital anomalies in the
prenatal period1. CAKUT has been identified as the leading cause
of childhood end-stage renal disease, and predispose to the
development of cardiovascular disease and hypertension in
adulthood. The malformations associated with CAKUT consist of
ureteropelvic junction obstruction, kidney agenesis, multicystic
dysplastic kidneys, kidney dysplasia, kidney hypoplasia, vesi-
coureteral reflux, megaureter, ectopic ureter, horseshoe kidney,
duplex collecting system and posterior urethral valves2. Kidney
development is a multi-stage process that include the induction of
the ureteric bud from the nephric duct, mesenchymal-epithelial
transition, branching morphogenesis, and the completion of
nephron patterning1,2. During the kidney development period,
genetic defects, environmental disturbance and their interplay
contribute to the etiologies of CAKUT2. Copy number variations
(CNVs) have been suggested as a common cause of CAKUT2,3.
Verbitsky et al. characterized the CNV landscape of CAKUT in a
large cohort and discovered that six loci including 1q21, 4p16.1-
p16.3, 16q11.2, 16p13.11, 17q12, and 22q11.2 accounted for 65%
of patients with CNVs enriched in known genomic disorder4.

The pathogenicity of CNVs that encompass coding sequences
is commonly interpreted based on their effect on protein coding
gene dosage. While this strategy may be successful for gene dis-
covery in Mendelian disease, the pathologies of a large proportion
of CNVs associated with birth defects remain undetermined. In
comparison to the small proportion of coding genes, more than
70% of the human genome can generate primary transcripts.
Since most CNVs also affect noncoding genome, it is necessary to
consider the pathogenic mechanism involving noncoding
transcripts5. Long noncoding RNAs (lncRNAs), defined as non-
coding transcripts longer than 200 nucleotides, have been sug-
gested as key components controlling cell fates during
development6,7. Recent evidence have revealed the potential
contribution of lncRNAs to the etiologies of CNVs associated
with birth defects. Meng et al. investigated lncRNAs within 10
CNVs associated with schizophrenia risk and identified DGCR5
as a potential regulator of genes associated with schizophrenia8.
Alinejad-Rokny et al. identified 47 recurrent CNVs for autism
spectrum disorder and discovered that constituent coding genes
and lncRNAs exhibit brain-enriched patterns of expression9. Our
team systematically analyzed the regulatory roles of lncRNAs
within CNVs (CNV-lncRNAs) associated with congenital heart
disease (CHD) and revealed that HSALNG0104472 may be
responsible for cardiac defects of patients with 15q11.2 deletion10.

CAKUT is one of the leading birth defects. However, the
contribution of CNV-lncRNAs to the pathogenicity of CAKUT-
associated CNVs remains elusive. We hypothesize that CNV-
lncRNAs might also have regulatory effects on CAKUT genes,
thus their dosage effect would affect kidney development and
contribute to the etiologies of CAKUT. To test our hypothesis, we
summarized recurrent CAKUT-associated CNVs and retrieved
the CNV-lncRNAs. Coexpression networks involving mRNAs
and lncRNAs were constructed using human kidney develop-
mental transcriptome data from LncExpDB11. Based on the
developmental expression pattern, we identified gene modules
enriched in known CAKUT genes. Since CNVs 22q11.2 and
17q12 have been suggested occur most frequently in kidney
anomalies4, we selected the hub CNV-lncRNAs HSALNG0134318
and HSALNG0115943 residing in the two loci for further inves-
tigation and experimental validation. Furthermore, we also dis-
cussed the comorbidity mechanisms underlying CNV-lncRNAs
in kidney, heart, and brain as CAKUT cases are often

accompanied by extrarenal malformations in these organs (Fig. 1,
Supplementary Data 1)3,4,12,13.

Results
Retrieval of CAKUT associated CNV-lncRNAs. We summar-
ized 19 recurrent (identified in 2 CAKUT cases or more)
CAKUT-associated CNVs identified from 2824 cases, including 3
deletions, 3 duplications and 13 deletion/duplications3,4,12,13.
57.89% (11/19) of these CNVs have been reported as related to
extrarenal malformations such as cardiovascular defects and
neurodevelopmental defects (Table 1 and Supplementary Fig. 1).
A total of 8997 CNV-lncRNAs encompassed by these CNVs were
retrieved according to the comprehensive annotation of human
lncRNAs in LncBook14,15 (Supplementary Data 2)16–21.

Construction of coexpression modules with CAKUT associated
CNV-lncRNAs. Coexpression modules composed of candidate
CNV-lncRNAs and 19957 mRNAs were constructed using
WGCNA on the human kidney developmental transcriptomic
data (n= 40) from LncExpDB11. A total of 49 coexpression
modules were identified, with 66.80% (6010/8997) CNV-lncRNAs
distributed among these modules. The remaining 33.20% (2987/
8997) did not cluster with any module (labeled ‘gray’). Among the
CNV-lncRNAs clustered in the coexpression modules, 18.94%
(1704/8997) were defined as hub CNV-lncRNAs (module mem-
ber (MM) ≥ 0.8, P < 0.05) (Supplementary Data 2).

We computed the correlation coefficients between coexpres-
sion modules and sexes/developmental stages of the donors
(Supplementary Data 2). The brown (r_Developmental stage=
−0.623, P= 1.740 × 10−5), turquoise (labeled as CAKUT_sig1,
r_Developmental stage=−0.582, P= 8.180 × 10−5) and light-
green (labeled as CAKUT_sig2, r_Developmental stage=−0.502,
P= 9.587 × 10−4) modules showed high negative correlation with
developmental stages (Fig. 2a and Supplementary Data 2).

Functional enrichment analyses of CAKUT associated coex-
pression modules. We summarized the known CAKUT genes
(n= 172) that have been reported as of August 2022 (Supple-
mentary Table 1) and tested their enrichment in the coexpression
modules. Out of the 49 coexpression modules, 21 contained at
least one CAKUT gene, and two modules (CAKUT_sig1, n= 78,
P= 1.150 × 10−6; CAKUT_sig2, n= 5, P= 0.046) showed sig-
nificant enrichment of the CAKUT genes (Fig. 2b, c and Sup-
plementary Data 2).

To reveal the functional significance of the coexpression
modules, we performed functional enrichment analysis on the
protein coding genes in modules that contained at least 5 CAKUT
genes. The results suggested that the largest module CAKUT_sig1,
which contained 5630 protein coding genes, was enriched in
functions related to CAKUT such as renal system development
(Padj= 0.004), kidney development (Padj= 0.005), and urogenital
system development (Padj= 0.006). Additionally, the CAKUT_sig1
module also showed enrichment in functions involving multiple
extrarenal systems like appendage development (Padj= 0.002),
limb development (Padj= 0.002), in utero embryonic development
(Padj= 0.005), and ventricular septum development (Padj= 0.008)
(Fig. 2d). The CAKUT_sig2 module, which was also enriched in
CAKUT genes, also showed enrichment in CAKUT-related
functions of nephron development (Padj= 2.862 × 10−3), cell
junction assembly (Padj= 2.862 × 10−3), and glomerulus develop-
ment (Padj= 3.048 × 10−3) (Fig. 2d and Supplementary Data 3).

Validation of regulatory effects for HSALNG0134318 and
HSALNG0115943. Consistent with enrichment of the CAKUT-
associated functions, 49.76% (206/414) of CNV-lncRNAs in the
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CAKUT_sig1 module and 34.78% (8/23) of CNV-lncRNAs in the
CAKUT_sig2 module showed high correlation (|r | ≥ 0.7) with
CAKUT genes (Supplementary Data 4, 5). Although CAKUT
cases share developmental origins, they encompass a broad
spectrum of clinical phenotypes, such as kidney anomalies (renal
agenesis, hypoplasia, dysplasia and multicystic dysplasia), vesi-
coureteral reflux, obstructive uropathy, duplicated collecting

system, posterior urethral valves, and ectopic kidney. 22q11.2
deletion and 17q12 deletion have been most linked to kidney
anomalies4. Since we used the transcriptomic datasets of kidney
development for coexpression analysis, we focused on 2 hub
CNV-lncRNAs: HSALNG0134318 located in 22q11.2 (MM=
0.87) and HSALNG0115943 located in 17q12 (MM= 0.85) from
the CAKUT_sig1 module, which were coexpressed and
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significantly correlated (|r| ≥ 0.5, Padj < 0.05) with multiple
CAKUT genes (Fig. 3a, b and Supplementary Data 2–4). In
addition, most of these coexpression relationships were also
observed through expression patterns of kidney development
(Fig. 3c and Supplementary Data 1, 6). Knockdown experiments
of two hub CNV-lncRNAs in the human embryonic kidney
(HEK293) cell line were conducted to validate their regulatory
effects on the coexpressed CAKUT genes. The results showed that
knockdown of these CNV-lncRNAs significantly downregulate
(P < 0.05) CAKUT genes (Fig. 4a, b and Supplementary Data 7).
Interestingly, HSALNG0115943 was regulated by
HSALNG0134318 (Fig. 4a and Supplementary Data 7). Further-
more, RNA-seq analysis and functional enrichment analysis
suggested that knockdown of HSALNG0134318 significantly
downregulate genes (n= 839, Padj < 0.05) enriched in kidney
development-related pathways (Fig. 4c, Supplementary Figs. 2, 3
and Supplementary Data 8).

Driving roles of HSALNG0134318 and HSALNG0115943 dur-
ing kidney organoids differentiation. To further identify the
roles of two hub CNV-lncRNAs in kidney development, we
investigated the expression patterns of HSALNG0134318 and
HSALNG0115943 in an RNA-seq dataset of kidney organoids
differentiation from human induced pluripotent stem cells
(iPSCs) (differentiation day 0–25). Noticeably, WGCNA indi-
cated that HSALNG0134318 (MM= 0.85) and HSALNG0115943
(MM= 0.87) were also hub CNV-lncRNAs that clustered in
modules significantly correlated (|r | ≥ 0.5, Padj < 0.05) with kid-
ney organoids and early differentiation stage respectively (Fig. 5a
and Supplementary Data 9). We verified the coexpression rela-
tionships between the CNV-lncRNAs and CAKUT genes pre-
viously identified in CAKUT_sig1 module: HSALNG0134318
showed high positive correlation with NOTCH2, KAT6B, and
CDC5L (Fig. 5b and Supplementary Data 2, 9); HSALNG0115943
showed high positive correlation with PSMD12, KDM6A, ANOS1,
and negative correlation with IFT74, BBS4, IFT52, NRIP1, BBS7,
and NIPBL (Fig. 5c and Supplementary Data 2, 9). In another
dataset consisting of 12 mature kidney organoids derived from
kidney tissues (differentiation day 25–28), the correlation rela-
tionships between two CNV-lncRNAs and CAKUT genes were
observed, consistent with other datasets (Supplementary Fig. 4
and Supplementary Data 10, 11).

The kidney organoids differentiation greenyellow module
containing HSALNG0134318 was significantly enriched in kidney
development-related functions of renal tubule development
(Padj= 0.028), nephron tubule development (Padj= 0.028), and
distal tubule development (Padj= 0.028) (Fig. 5d and Supple-
mentary Data 9). Differential expression analysis of differentiated
proximal tubules (n= 3) and glomeruli samples (n= 6) from the
mature kidney organoids dataset suggested that HSALNG0115943
was upregulated in the proximal tubules, whereas
HSALNG0134318 did not show a significant change (Fig. 5e
and Supplementary Data 10). Differential expressed patterns of
CAKUT genes were also identified (Fig. 5f and Supplementary
Data 10).

Potential synergy involving CAKUT associated CNV-lncRNAs.
To reveal the potential synergy of CAKUT associated CNV-
lncRNAs with other ncRNA species, we investigated the potential
contribution of competing endogenous RNA (ceRNA) mechan-
ism driven by CNV-lncRNAs distributed in the CAKUT_sig1 and
CAKUT_sig2 modules (kidney developmental WGCNA,
n= 437). We found that CAKUT gene AFF3 in the CAKUT_sig1
module was significantly regulated by co-expressed CNV-
lncRNAs HSALNG0148020 (Padj= 3.390 × 10−4),
HSALNG0111125 (Padj= 4.490 × 10−5) and HSALNG0110138
(Padj= 1.586 × 10−4) through the ceRNA mechanism (Supple-
mentary Fig. 5 and Supplementary Data 12). The hub CNV-
lncRNA HSALNG0134318 was not identified as a driver in the
lncRNA-miRNA-mRNA regulatory network (Supplementary
Data 12). To study the potential interaction between
HSALNG0134318 and other genes within their CNV region
22q11.2, we characterized the expression of 538 lncRNA, 123
protein coding genes and 22 miRNAs in 22q11.2 (Supplementary
Data 12). We found that only 5.69% (7/123) of the protein coding
genes and 2.97% (16/538) of the lncRNA in the 22q11.2 region
distributed in two CAKUT related modules (CAKUT_sig1 and
CAKUT_sig2), of which HSALNG0134318 was the only hub
CNV-lncRNA (MM= 0.87) (Supplementary Data 12). The
miRNA hsa-miR-1306-5p and hsa-miR-3198 in the 22q11.2 CNV
region had potential interaction with HSALNG0134318 (Supple-
mentary Fig. 6 and Supplementary Data 12). Furthermore, we
predicted the synergic transcription factors (TFs) of
HSALNG0134318 according to its promoter region sequence
(Supplementary Table 2 and Supplementary Data 12). Among
these predicted transcription factors, TFAP2A was in the CAKUT
gene list (Supplementary Table 2 and Supplementary Data 12).

Expression patterns of the CAKUT_sig1 module in kidney,
heart, brain and cerebellum. Since the CAKUT_sig1 module
showed function significance involving multiple systems (Fig. 2d),
we further compared the expression patterns of its CNV-
lncRNAs and mRNAs in the kidney, heart, brain, and cere-
bellum developmental samples. Differential expressed genes in
the kidney tissues were identified (Fig. 6a and Supplementary
Data 13–15). Comparing with the kidney samples, genes with
heart-biased expression were enriched in cardiac functions, and
genes with brain/cerebellum-biased expression were enriched in
neurological functions (Fig. 6b and Supplementary Data 13–15).
On the other hand, the kidney-biased genes were associated with
multiple organs development involving kidney development,
neural development, cardiac development and other organ
development (Fig. 6c and Supplementary Data 13–15). We fur-
ther summarized the known congenital heart disease (CHD)
genes and neurodevelopmental disorders (NDDs) genes (Sup-
plementary Data 16). The results showed that both two gene sets
were enriched in CAKUT genes (Fig. 6d and Supplementary
Data 16). Among the CAKUT genes involved in these disorders,
43.8% (14/32) were distributed in the CAKUT_sig1 module
(Fig. 6e, Supplementary Table 3 and Supplementary Data 2),
and they showed significantly upregulated expression in the

Fig. 1 Study workflow. a 19 recurrent CNVs associated with CAKUT (pathogenic or likely pathogenic) were identified based on clinical researches of
congenital anomalies of the kidney and urinary tracts (CAKUT) cases3,4,12,13 (Table 1). We retrieved lncRNAs located within these genomic regions as
candidate CNV-lncRNAs. Weighted gene coexpression network analysis (WGCNA) was performed to characterize the coexpression profile of CNV-lncRNAs
and protein coding genes based on human kidney developmental transcriptomic data (n= 40). Downstream analyses were conducted to identify function and
expression patterns of CAKUT-associated CNV-lncRNAs and their potential target CAKUT genes. b Based on the in vitro kidney organoids differentiation RNA-
seq data (n= 53), the key driving roles of CAKUT-associated CNV-lncRNAs during the formation of kidney structure were verified. c In vitro knockdown
experiments were performed to validate the predicted regulatory effects on kidney development of hub CNV-lncRNA HSALNG0134318 and HSALNG0115943 in
human embryonic kidney cell line (HEK293), evaluated by qPCR analyses and RNA-seq analyses. hiPSCs, human induced pluripotent stem cells.
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developing kidney (Kidney vs Heart: P= 6.764 × 10−16;
Kidney vs Brain: P= 7.254 × 10−21; Kidney vs Cerebellum:
P= 3.125 × 10−41; Fig. 6f and Supplementary Data 16).

Discussion
As the leading cause of end-stage renal disease, CAKUT account
for approximate 41.3% of children who receive renal replacement
therapy22. Disturbances in the normal nephrogenesis can arise
from exposure to environmental factors and defects in genes may
lead to CAKUT. A better understanding of the genetic etiologies
of CAKUT is essential for precision diagnosis, prevention, and
treatment on CAKUT and its associated clinical outcomes. CNV
has been recognized as a common cause of CAKUT. Sanna-
Cherchi et al. found that the CNV distribution was significantly
skewed toward larger gene-disrupting events in cases compared
to ethnicity-matched controls (P= 4.8 × 10−11) through exam-
ining CNVs in 522 patients with renal hypodysplasia. 10.5%
(55/522) of the cases harbored 34 CNVs associated with known
genomic disorders, which was detected in only 0.2% of 13,839
controls (P= 1.2 × 10−58). Additionally, another 32 cases (6.1%)
were found carrying large gene-disrupting CNVs that were absent
from controls3; Verbitsky performed a genome-wide analysis of
CNVs in 2824 CAKUT cases and 21498 controls, suggesting that
CAKUT cases carried a significant burden of CNVs affecting
coding genes and were enriched for known genomic disorders.
Six loci including 1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12,
and 22q11.2 accounted for 65% of cases with CNVs associated
with known genomic disorders4. In the present study, we sum-
marized the recurrent CAKUT-associated CNVs and found that
most of these CNVs (63.16%, 12/19) remained undetermined for
the pathogenic genes (Table 1).

Like other congenital anomalies associated CNV studies, the
etiologies of CAKUT-associated CNVs were currently interpreted
based on their interference on the protein coding gene dosage.
Despite the success of such strategy in several recurrent micro-
deletion syndromes such as the 17q21.31 deletion syndrome caused
by haploinsufficiency of KANSL123, most CNVs also affect non-
coding genomic regions that might have regulatory effect on the
pathogenic mechanisms of diseases5. Recently, multiple lines of
evidence indicated that CNVs might cause birth defects through
affecting their encompassed lncRNAs9, which have been identified
as key regulators in development and disease6,8,10. In the present
study, we found that CAKUT genes enriched modules
(CAKUT_sig1 and CAKUT_sig2) were both negatively correlated
with developmental stage (Fig. 2a–c and Supplementary Data 2). In
previous studies over cross-species evolution of lncRNAs, Cardoso-
Moreira and Sarropoulos et al. found that in contrast to most
protein-coding genes (73–90% depending on the species), only a
fraction of lncRNAs (16–38%) show developmentally dynamic
expression and enrichment for functional loci24,25. In addition,
across all organs, genes used early in development are less tolerant
to loss-of-function mutations24,25. Taken together, these results
support the relationship between the CAKUT_sig1 and
CAKUT_sig2 modules and their enriched developmental functions
(Fig. 2d and Supplementary Data 3), as well as potential con-
tributions of lncRNAs within modules to the etiologies of CAKUT-
associated CNVs. Noticeably, only a small fraction of protein
coding genes in the CAKUT_sig1 (6.31%, 355/5630) and
CAKUT_sig2 (9.78%, 22/225) modules, as well as known CAKUT
genes (12.21%, 21/172, Supplementary Table 1) were distributed in
19 CAKUT-associated CNVs (Fig. 3a, Table 1 and Supplementary
Data 2). In comparison, the CAKUT_sig1 (49.76%, 206/414) and
CAKUT_sig2 (34.78%, 8/23) modules contained a considerable
number of CNV-lncRNAs that highly correlated with CAKUT
genes (|r | ≥ 0.7, Fig. 3b and Supplementary Data 4, 5). In summary,T
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these results suggest that CAKUT-associated CNVs were more
likely to affect the expression of CAKUT genes outside the CNV
regions remotely by disturbing the lncRNAs within
CNVs, thus contributing to CAKUT. We further validated this
hypothesis through knockdown experiments of 2 hub CNV-
lncRNAs HSALNG0134318 and HSALNG0115943 in HEK293 cell
lines (Fig. 4a–c and Supplementary Data 7, 8).

Most of the CNV-lncRNAs are not evolutionarily conserved25.
Therefore, compared to traditional animal models, the kidney
organoids have become an ideal in vitro model to study the
molecular mechanism of human kidney development26,27. Single
cell RNA-seq analyses have supported the fidelity of kidney
organoids as models of the developing kidney and affirmed their
potential in disease modeling28. Based on the RNA-seq data of
in vitro kidney organoids differentiation, we verified the coex-
pression between CAKUT genes and 2 hub CNV-lncRNAs
HSALNG0134318 and HSALNG0115943 (Fig. 5b, c and Supple-
mentary Data 9). Surprisingly, HSALNG0134318 and
HSALNG0115943 were hub CNV-lncRNAs (MM ≥ 0.8) in both
kidney developmental WGCNA and kidney organoids differ-
entiation WGCNA (Figs. 3a, 5a and Supplementary Data 2, 9). In

addition, kidney organoids differentiation modules of
HSALNG0134318 and HSALNG0115943 were also related to
kidney and embryonic development (Fig. 5a, d and Supplemen-
tary Data 9). Furthermore, kidney organoids have overcome
the limitations of two-dimensional cell cultures, whereby
branching of the ureteric bud and formation of cellularly complex
three-dimensional structures were unattainable27. To specifically
study the expression patterns of HSALNG0134318 and
HSALNG0115943 in different kidney tissues, we characterized
their differential expression patterns between different kidney
organoid-derived tissues (glomeruli and proximal tubules), which
provided initial clues for further studies on their molecular
mechanisms in CAKUT (Fig. 5e and Supplementary Data 10).

It’s worth pointing out that CRKL has been identified as the
main genetic driver of kidney defects in 22q11.2 CNV29,30. In
fact, CRKL locates at the central part of 22q11.2 (22q11.21), and
HSALNG0134318 locates at the distal part of 22q11.2 (22q11.22,
chr22:22,298,141-22,307,554, hg38). Since the occurrence of
kidney abnormalities in 22q11.2 CNV that did not involve CRKL
was still unexplained, the genetic effect of other candidates in
22q11.2 region should not be ignored. It’s worth noting that
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CAKUT gene counts in each module (Supplementary Data 2). c Two developmental stage-correlated modules that significantly enriched CAKUT gene sets
(PH < 0.05, PH represents hypergeometric P value) are shown (CAKUT_sig1 and CAKUT_sig2). Protein coding gene (including CAKUT gene) counts and
CNV-lncRNA counts in each module are shown in black and red font, respectively. Significant enrichment is indicated with the PH value in red font. Protein
coding genes that went for WGCNA (n= 19957) were used as the background gene list (Supplementary Data 2). d Functional annotations of two modules
that enriched genes are shown. For each module, the top seven (ranked by Padj) and organ development-associated functional annotations are shown
(CAKUT_sig2 module only significantly enriched in three GO terms). GO terms that related to kidney development are in red font. The y axis represents
GO terms, and the colors of the bars represent different CNV-lncRNA coexpression modules (Supplementary Data 3). The x axis displays the values of
−log10(Padj). The red dashed line indicates Padj of 0.05, ** denotes Padj < 0.01 (Supplementary Data 1).
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expression of HSALNG0134318 and CRKL showed highly corre-
lated expression in developmental kidneys (Fig. 3b), and knock-
down of HSALNG0134318 would significantly downregulate the
expression of CRKL (P= 3.778 × 10−11, Fig. 4a). Therefore,
expression disturbance of CRKL could be the downstream effect
of HSALNG0134318 deletion other than the dosage effect of
CRKL itself. We identify 4 driver lncRNAs regulating CAKUT

genes through ceRNA mechanism in the CAKUT_sig1 and
CAKUT_sig2 modules using the LncmiRSRN31 (Supplementary
Fig. 5). HSALNG0134318 was not identified as a driver lncRNA
since only top 20% of tested lncRNAs with enriched targeted
miRNAs were selected in this algorithm. Previously, miRNA
miR-185 located in 22q11.2 was shown to be associated with
CAKUT32. Therefore, we further investigated the potential
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interaction of lncRNAs and miRNAs in 22q11.2.HSALNG0134318
is also the target of two miRNAs (has-miR-3198 and has-miR-
1306-5p), of which has-miR-3198 also target the CAKUT gene
DHODH (Supplementary Fig. 6 and Supplementary Data 12).
Whereas, knockdown of HSALNG0134318 had no effect on the
expression of DHODH (Supplementary Data 8). The miRNA miR-
185 could targets 22q11.2 CNV-lncRNAs (HSALNG0134144 and
HSALNG0134523) and CAKUT genes (ATN1, EMC10, GNB2,
IGF1R, NSD1, SIX1 and SIX5) (Supplementary Fig. 6 and Sup-
plementary Data 12). We also noticed that three CAKUT genes
including IFG1R (log2FoldChange=−0.564, Padj= 3.413 × 10−5),
IFT52 (log2FoldChange= 0.747, Padj= 2.282 × 10−4), and CRKL
(log2FoldChange=−0.569, Padj= 1.364 × 10−4), which could be
significantly regulated through knockdown of HSALNG0134318,
were targets of miRNAs located at 22q11.2 (Supplementary Fig. 6
and Supplementary Data 8). Therefore, 22q11.2 ncRNAs and
mRNAs could have connections during kidney development.
Deletion of such region should have synergy effect on clinical
phenotypes. Since knockdown of HSALNG0134318 affected the
expression of CRKL, HSALNG0134318 could be upstream of the
kidney developmental pathways involving CRKL. Through tran-
scription factor prediction, we identified the CAKUT gene
TFAP2A, encoding a transcription factor, could govern the
expression of HSALNG0134318 in kidney development (Supple-
mentary Table 2 and Supplementary Data 12).

The complexity of birth defects in patients with syndrome
increases the difficulty of clinical diagnosis, treatment, and
management. CAKUT, CHD, and NDDs have been found to
share pathogenetic CNVs33. The current study also identified
overlapping recurrent CNVs and known genes associated with
CAKUT, CHD and NDDs (Table 1, Supplementary Fig. 1,
Fig. 6d). The CAKUT_sig1 module contained the largest amounts
of extrarenal malformation-causing CAKUT genes (43.8%, 14/32,
Fig. 6e; Supplementary Table 3). Since the CAKUT_sig1 module
was also involved in multiple phylogenetic functions (Fig. 2d and
Supplementary Data 3), we further compared the expression
patterns of its CNV-lncRNAs and protein coding genes in the
kidney, heart, brain, and cerebellum developmental samples. We
found that the kidney-biased genes were associated with devel-
opment of multiple organs, including kidney, neural, cardiac and
other organ development (Fig. 6c, f and Supplementary
Data 13–16). Regarding the potential mechanisms underlying the
involvement of the CAKUT_sig1 module in multiple phyloge-
netic disorders, functional enrichment analyses indicated that the
most significant (ranked by Padj) functions of the CAKUT_sig1
module involved ncRNA metabolic process (Padj= 6.506 × 10−18)
and ncRNA processing (Padj= 3.666 × 10−14) (Fig. 2d and Sup-
plementary Data 3). This highlights the potential roles of CNV-
lncRNAs in this module. On the other hand, the most significant
functions also involved cilium organization (Padj= 6.506 × 10−18)
and cilium assembly (Padj= 3.022 × 10−17) (Fig. 2d and Supple-
mentary Data 3). The cilia determine left-right axis patterning

during embryogenesis and have been reported to play an
important role in cardiac, renal, limb, liver and spleen
development34,35. In view of the developmental pathways
involved in the CAKUT_sig1 module were mostly affected by
left-right axis development that determined in early embryonic
stage (Fig. 2d and Supplementary Data 3)34, we speculate that the
cilia assembly process regulated by CNV-lncRNAs could poten-
tially be related to multiple phylogenetic disorders, which is
worthy of further study.

There are several limitations in this study that could be
addressed in future research. First, based on human kidney
developmental and kidney organoids differentiation tran-
scriptome datasets, we have proven stage-specific expression and
strong driving roles of CNV-lncRNAs during nephrogenesis at
both organ and cellular levels. However, the physiological and
molecular mechanisms in which CNV-lncRNAs are involved
have not been elucidated. Similarly, knockdown experiments of 2
hub CNV-lncRNAs HSALNG0134318 and HSALNG0115943 in
HEK293 cell lines provided evidences that they could regulate
several known CAKUT genes including CRKL (Fig. 4a, b and
Supplementary Data 7), as well as affect pathways involved in
kidney and multiple systems development (Fig. 4c, Supplemen-
tary Fig. 2d and Supplementary Data 8). Nevertheless, a lack of
deep insight over these mechanisms is a limitation of the study.
Since lncRNAs can either repress or activate gene expressions in
cis, in trans or even through epigenetic modification6,36, iPSC-
induced kidney organoids, cardiomyocytes and neural progenitor
cells in vitro models combined with high-throughput sequencing
technologies such as ChIP-seq, scRNA-seq, and proteomics could
be further used to study the molecular mechanisms by which
HSALNG0134318 and HSALNG0115943 cause CAKUT and
concomitant extrarenal malformation. Secondly, the significance
of enrichment in known CAKUT gene sets was related to gene
counts in each module and the size of known CAKUT gene sets.
Since CAKUT genes that have been identified so far is limited
(totaled to 172 CAKUT genes in current study, Supplementary
Table 1), modules other than the CAKUT_sig1 and CAKUT_sig2
modules (e.g., the kidney developmental brown module that
contained 18 CAKUT genes, P= 0.573; the kidney developmental
magenta module that contained 8 CAKUT genes, P= 0.076)
could not be ignored in the pathogenesis of CAKUT (Fig. 2b, c
and Supplementary Data 2). Lastly, the accumulation of more
clinical genetic data, especially non-coding genomic variants data,
and comprehensive phenotypic information of patients is needed
to help us identify more CAKUT-associated CNV-lncRNAs.
Altogether, we still have a long way to go to provide substantial
insight into the regulatory roles of CNV-lncRNAs in CAKUT and
extrarenal malformations.

In conclusion, we revealed potential regulatory relationships
between CNV-lncRNAs and CAKUT genes in human kidney
developmental and kidney organoids differentiation tran-
scriptome datasets. For the CAKUT_sig1 module that most

Fig. 3 Hub CNV-lncRNAs HSALNG0134318 and HSALNG0115943 with multiple coexpressed CAKUT genes during kidney development. a The circos
plot shows CAKUT-associated CNVs (n= 19), two hub CNV-lncRNAs (HSALNG0134318: MM= 0.87; HSALNG0115943: MM= 0.85) and coexpressed
CAKUT genes (n= 78) in the CAKUT_sig1 module. The colors of CNVs represent the types of CNV. Two hub CNV-lncRNAs are highlighted in red font.
The height of bars in the inner circos represent the mean expression level (TPM) of corresponding genes during kidney development (Supplementary
Data 1, 4). b Pearson correlation coefficient between two hub CNV-lncRNAs (HSALNG0134318 and HSALNG0115943) and coexpressed CAKUT genes
(n= 78) in the CAKUT_sig1 module during kidney development are shown. The colors of inner and outer circles represent Pearson correlation coefficient
of CAKUT genes to HSALNG0115943 and HSALNG0134318, respectively (Supplementary Data 4, 5). c Expression patterns of two hub CNV-lncRNAs
(HSALNG0134318 and HSALNG0115943, in red boxes) and predicted regulated CAKUT genes (in blue boxes) are shown (Supplementary Data 6). The
numbers on x axis represents embryonic developmental stage (week). The y axis represents mean expression value of each stage. The center line
represents a median value. The box limits represent upper and lower quartiles. The whiskers represent 1.5x interquartile range. The points represent
outliers. Data in Fig. 4 were calculated using the human kidney developmental dataset (n= 40). MM, module membership; r, Pearson correlation
coefficient (Supplementary Data 1).
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enriched CAKUT genes, we performed in vitro validation of two
hub CNV-lncRNAs HSALNG0134318 and HSALNG0115943
located in well-known CAKUT associated CNVs 22q11.2 and
17q12 respectively. The results suggested that HSALNG0134318
and HSALNG0115943 play strong regulatory roles on the CAKUT
genes and pathways involved in kidney and multi-organ devel-
opment. Our results highlighted the potential contribution of

lncRNAs within CNVs to the pathogenetic process of CAKUT
and concomitant extrarenal malformation.

Methods
Study design. We aimed to investigate the potential contribution of lncRNAs to
the pathogenicity of CAKUT associated CNVs. 19 recurrent CAKUT-associated
CNVs were identified based on clinical researches of congenital anomalies of the
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Fig. 4 Reduction of hub CNV-lncRNAs may affect CAKUT gene expression and kidney development. a, b qPCR analyses were used to detect expression
changes for CAKUT genes that were coexpressed with two hub CNV-lncRNAs after knockdown of CNV-lncRNA HSALNG0134318 (Lnc1, a) and
HSALNG0115943 (Lnc2, b) in human embryonic kidney cell lines (HEK293). The colors of bars and dots represent different treatment groups. Pearson
correlation coefficients of CAKUT genes to CNV-lncRNA in the human kidney developmental dataset (n= 40) are labeled below. The knockdown
experiments were conducted in at least three biological replicates. The error bars are shown as means ± SD. Two-tailed t test was used for comparison
between two groups (Supplementary Data 7). c The GOcircle plot shows enriched kidney development-associated pathways of down-regulated genes
(log2FoldChange < 0 and Padj < 0.05, n= 839) after HSALNG0134318 knockdown in the HEK293 cell line are shown in GOcircle plot. The colors of bars in
the inner circle represent z-score of each GO term. Distributions and colors of dots in the outer circle represent log2FoldChange of genes enriched in each
GO term. Descriptions of enriched GO terms are shown in the right panel (Supplementary Data 8). Significant levels are indicated as follows: *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 (Supplementary Data 1).
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Fig. 5 Driving roles and characteristics of hub CNV-lncRNAs HSALNG0134318 and HSALNG0115943 during kidney organoid differentiation. a The
heatmap shows Pearson correlation coefficient (r) between 30 kidney organoids coexpression modules and sample traits (differentiation stage). Modules
and corresponding module membership (MM) values of two hub CNV-lncRNAs (HSALNG0134318 and HSALNG0115943) are marked on the left. Only
significant correlation (|r|≥ 0.5, Padj < 0.05) are labeled. The colors represent correlation coefficient value and direction (Supplementary Data 9).
b, c Expression patterns of two hub CNV-lncRNAs (HSALNG0134318, b and HSALNG0115943, c) and predicted regulated CAKUT genes, which were
coexpressed both in developmental WGCNA and kidney organoids WGCNA, are shown in line plots (Supplementary Data 9). Positively and negatively
correlated CAKUT genes are represented by red and blue lines, respectively. The x axis represents kidney organoids differentiation stages from iPSCs to
mature kidney organoids. The y axis represents mean expression value (TPM) of each stage. The error bars show mean ± SD of each stage. d Functional
annotations of kidney organoids coexpression modules that contain two hub CNV-lncRNAs (HSALNG0134318: greenyellow, HSALNG0115943: blue) are
shown. For each module, organ development-associated functional annotations are displayed. The x and y axes represent values of −log10(Padj) and GO
terms, respectively. The red dashed line indicates Padj of 0.05. The colors of the dots represent different modules. The sizes of the dots represent enriched
gene counts in each GO terms. GO terms that directly related to kidney development are in red font (Supplementary Data 9). e, f Differential expression
patterns of CNV-lncRNAs (e, n= 8997) and CAKUT genes (f, n= 172) between mature kidney organoid derived proximal tubules (n= 3) and glomeruli
(n= 6) are shown in volcano plots (Supplementary Data 9). Two hub CNV-lncRNAs (HSALNG0134318 and HSALNG0115943) are labeled in red font. The x
and y axes represent log2FoldChange (proximal tubules vs glomeruli) and −log10(Padj), respectively. Red dots represent significantly up-regulated genes in
the proximal tubules (log2FoldChange≥ 1, Padj < 0.05). Blue dots represent significantly up-regulated genes in the glomeruli (log2FoldChange≤−1,
Padj < 0.05). Gray dots represent genes that do not show differential expression. The horizontal and vertical red dashed line indicate Padj= 0.05 and
|log2FoldChange |= 1, respectively, ** denotes Padj < 0.01 (Supplementary Data 1).
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kidney and urinary tracts (CAKUT) cases3,4,12,13 (Table 1). We retrieved
lncRNAs located within these genomic regions as candidate CNV-lncRNAs
(Supplementary Data 2). To establish the kidney developmental coexpression
networks for the CNV-lncRNAs, we performed weighted gene coexpression
network analysis (WGCNA) over candidate CNV-lncRNAs and protein coding
genes using the human kidney developmental RNA-seq data (n= 40) from
LncExpDB11 (Supplementary Data 2). Downstream analyses, including path-
ways analyses and enrichment analyses for known CAKUT genes, were used to

identify coexpression modules associated with kidney development and CAKUT.
We mainly focused on the CAKUT genes enriched CAKUT_sig1 module, which
showed significant correlation (|r | ≥ 0.5, Padj < 0.05) with developmental stage
and multi-organ development including kidney and urinary tract (Padj < 0.05).
To explore the molecular basis of underlying extrarenal malformation caused by
CAKUT associated CNVs (Table 1), we performed multiple organs differential
expression analyses over CNV-lncRNAs and protein coding genes in the
CAKUT_sig1 module.
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Two hub CNV-lncRNAs in the CAKUT_sig1 module, HSALNG0134318 within
22q11.2 and HSALNG0115943 within 17q12, showed strong coexpression and
correlation with multiple key CAKUT genes. Using the in vitro kidney organoids
differentiation RNA-seq data (n= 53), we validated the key driving roles of
HSALNG0134318 and HSALNG0115943 during the formation of kidney structure.
To characterize the expression patterns of HSALNG0134318 and HSALNG0115943
in the specific kidney tissues, differential expression analyses were conducted
between the kidney organoids derived proximal tubules and glomeruli.

To further confirm the predicted regulatory effects of HSALNG0134318 and
HSALNG0115943 on CAKUT genes expression and kidney development, in vitro
knockdown experiments along with qPCR analyses and RNA-seq analyses were
performed in the human embryonic (HEK293) kidney cell lines.

Human kidney developmental data. The gene expression data from LncExpDB11

were generated through comprehensive annotation for lncRNAs of the original
dataset of human kidney developmental samples (n= 40) collected from
ArrayExpress (E-MTAB-6814) (Supplementary Data 2). The tissue sampling of
embryonic samples (n= 30) started at 4 weeks post-conception and continued
weekly until 20-week post-conception except for 14-, 15-, and 17-week post-con-
ception. Postnatal tissues (n= 10) were sampled from neonates, infants
(6 ~ 9 months), toddlers (2 ~ 4 years), and school age children (7 ~ 8 years)25.

In vitro kidney organoids differentiation RNA-seq data. To validate the roles of
CNV-lncRNAs in the formation of kidney structure, we collected a series of RNA-
seq datasets that covered several differentiation stages (days 0, 4, 7, 18, 25, and 28)
from human induced pluripotent stem cells (iPSCs) to kidney organoids. Candi-
date samples were differentiated from human iPSC line in the same laboratory37,38,
following the same growth protocol and sequencing platform (GPL18573, Illumina
NextSeq 500). RNAs were extracted using QIAGEN RNeasy micro kit. RNA
libraries were prepared for sequencing using standard Illumina protocols. Only
samples of wild genotype were included in our study to avoid biases caused by gene
expression interference. The number of biological replicates of each differentiation
stage ranges from 3 to 21, for a total of 41 single-end RNA-seq libraries and 12
paired-end RNA-seq libraries. For single-end RNA-seq samples (n= 41), the raw
data were available from the Gene Expression Omnibus (GEO) under accession
GSE88942, GSE89044, GSE99468, GSE99469, and GSE107305. For paired-end
RNA-seq samples (n= 12), the raw data were available from the Gene Expression
Omnibus (GEO) under accession GSE99583, GSE99582, and GSE111992. Detailed
information and growth protocols of the kidney organoids were available in the
GEO accessions.

Human heart, brain, and cerebellum developmental data. The annotated
human heart (n= 50), brain (n= 87) and cerebellum (n= 27) developmental data
from LncExpDB11 originated from ArrayExpress (E-MTAB-6814). The tissue
sampling started at 4 weeks post-conception and continued weekly until 20-week
post-conception except for 14-, 15-, and 17-week post-conception. Postnatal tissues
were sampled from neonates, infants (6 ~ 9 months), toddlers (2 ~ 4 years), school
age (7 ~ 9 years), teenagers (13 ~ 19 years), and adults (~65 years)25.

Known CAKUT, CHD, and NDDs gene sets. Known CAKUT genes were sum-
marized from the Online Mendelian Inheritance in Man database (https://www.
omim.org)39, as well as from reviews on CAKUT1,33,40,41 (Supplementary Table 1).
The known congenital heart disease (CHD) gene set was generated in our previous
study10. For known neurodevelopmental disorders (NDDs), genes were summar-
ized from studies including autism spectrum disorder21 (ASD, n= 213),

schizophrenia42,43 (SCZ, n= 76), intellectual disability44 (ID, n= 45) and epileptic
encephalopathies45,46 (EE, n= 46). After removing duplicates, a total of 172
CAKUT, 198 CHD and 334 NDDs genes were included in multiple organ devel-
opment analyses.

Recurrent CAKUT associated CNVs and CNV-lncRNAs retrieval. Nineteen
recurrent CAKUT-associated CNVs (pathogenic or likely pathogenic CNVs
identified in at least two CAKUT cohorts) were identified based on four inde-
pendent clinical studies, totaling 2824 CAKUT cases3,4,12,13 (Table 1). The anno-
tated lncRNAs11,15 that mapped to the genomic regions of 19 recurrent CAKUT
associated CNVs were retrieved using BEDTools v2.29.247.

WGCNA of human kidney developmental data. Normalized gene expression
data (TPM) involving candidate genes from the human kidney developmental
RNA-seq data were used for coexpression analysis. The R package WGCNA
v1.7048 was used for coexpression network construction and module identification.
Pearson correlation was used to calculate module-trait correlations. For module-
trait correlations, adjusted P value was caluculated with corPvalueStudent function
in WGCNA R package. The power value was set at three for coexpression network
construction. The parameters for the blockwiseModules function were as follows:
maxBlockSize=5000, TOMType= ”unsigned”, minModuleSize= 30, reassign-
Threshold= 0, mergeCutHeight= 0.25, numericLabels= T and pamRe-
spectsDendro= F. The module membership (MM) value was used to estimate the
correlation between each gene/lncRNA and the module eigengene of a given
module. The CNV-lncRNAs in each module with MM values ≥ 0.8 were defined as
hub CNV-lncRNAs8. Protein coding genes in each module were used as the input
for Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses with the R package clusterProfiler
v3.1049.

Multiple organs differential expression analyses for the kidney develop-
mental CAKUT_sig1 module. To identify the molecular basis underlying extra-
renal malformation caused by CAKUT-associated CNVs, particularly
cardiovascular defects and neural developmental disorders (Table 1), we performed
differential expression analyses over CNV-lncRNAs and protein coding genes in
the CAKUT_sig1 module (significantly correlated to developmental stage and
multiple organs development including kidney and urinary tract, Fig. 2). Human
kidney, heart, brain and cerebellum developmental data were used for differential
expression analyses (see ‘Human kidney developmental data’ and ‘Human heart,
brain and cerebellum developmental data’ section). Totally three groups (kidney vs
heart, kidney vs brain and kidney vs cerebellum) of differential expression analyses
were conducted using DESeq2 v1.3250, with six sets of differential expressed genes
identified (Fig. 5). The cut-off values were set as the adjusted P < 0.05 and the
log2fold change ≥4. Protein coding genes and CAKUT genes in each gene sets were
used as the input for Gene ontology (GO) enrichment analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment analyses with the R
package clusterProfiler v3.1049.

Quantification of lncRNA and CAKUT genes expression levels in the kidney
organoids. The raw data (fastq files) of in vitro kidney organoids differentiation
RNA-seq data (n= 53) were utilized to generate read counts for the set of lncRNAs
and protein-coding genes. We mapped the reads from each library against the
reference genome from LncBook15, including well annotated lncRNAs (n= 101293)
and protein-coding genes (n= 19957). The data were processed as follows: quality
analyses and base quality filtering with FastQC v0.11.9 (https://www.bioinformatics.

Fig. 6 Differentially expressed and multifunctional genes in the CAKUT_sig1 module. a For the CAKUT_sig1 module, the heatmap shows the expression
landscape of significantly differentially expressed CNV-lncRNAs and protein coding genes (|log2FoldChange |≥ 4, Padj < 0.05) in the developmental kidney,
heart, brain and cerebellum (Kidney samples: n= 40, heart samples: n= 50, brain samples: n= 87, cerebellum samples: n= 27). The counts (including
CNV-lncRNAs and protein coding genes) of differentially expressed genes in each cluster are shown on the left. The tissue types of corresponding samples
are labeled above the heatmap. The colors represent gene expression value (log10TPM) in different samples (Supplementary Data 13–15). b Functional
annotations of heart, brain and cerebellum differentially expressed gene clusters compared to kidney samples are shown (Supplementary Data 13–15). For
each gene cluster, the top seven biological process GO terms (ranked by Padj) are shown. The x and y axes represent values of −log10(Padj) and GO terms,
respectively. The red dashed line indicates Padj of 0.05. The colors of the bars represent different gene clusters. c Functional annotations of kidney
differentially expressed gene clusters compared to heart, brain and cerebellum samples are shown (Supplementary Data 13–15). For each gene cluster,
organ development-associated functional annotations are shown. The associated organs of corresponding GO terms are labeled above the bar plot. The x
and y axes represent GO terms and values of −log10(Padj), respectively. The red dashed line indicates Padj of 0.05. The colors of the bars represent different
gene clusters. d Gene counts and intersection of congenital heart disease (CHD), neurodevelopmental disorders (NDDs) and CAKUT gene sets are shown
in Venn diagrams (Supplementary Data 16). Intersection counts are shown in red font. e Distribution of known CAKUT genes associated with two or more
phylogenetic disorders (intersection in d, n= 32) in developmental WGCNA modules (Supplementary Table 3; Supplementary Data 16). f Expression
patterns of CAKUT genes associated with extrarenal development defects in the CAKUT_sig1 module (n= 14) in different tissues are shown in the violin
plots. The x and y axes represent tissue types and gene expression levels (log2TPM), respectively (Supplementary Data 1, 16). CHD congenital heart
disease, NDD neurodevelopmental disorders, CAKUT congenital anomalies of the kidney and urinary tracts.
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babraham.ac.uk/projects/fastqc) and Trim Galore v0.6.6 (https://github.com/
FelixKrueger/TrimGalore), rRNA removing with SortMeRNA v4.3.451, alignment
with STAR v2.7.1052, reads counting with featureCounts53 implemented in the
Subread package v2.0.3. We normalized read counts using TPM and then identified
CNV-lncRNAs and CAKUT genes expression levels in each sample.

WGCNA of in vitro kidney organoids differentiation RNA-seq data. Genes that
did not reach expression level of 10 TPM in any sample were filtered. With this
screening criteria, 621 CNV-lncRNAs (6.90%, 621/8997) and 12087 protein-coding
genes (60.57%, 12087/19957) were selected for WGCNA in the in vitro kidney
organoids differentiation RNA-seq data. The normalized gene expression data
(TPM) involving candidate genes for the in vitro kidney organoids differentiation
RNA-seq data were used for coexpression analysis. The power value was set at 14
for coexpression network construction. Other parameters involved in kidney
organoids WGCNA were the same as developmental WGCNA (see ‘WGCNA of
human kidney developmental data’ section).

Characterized of differentially expressed CNV-lncRNAs and protein-coding
genes in the proximal tubules and glomeruli. Using paired-end RNA-seq samples
(day 25) (see ‘In vitro kidney organoids differentiation RNA-seq data’ section), we
identified the CNV-lncRNAs (n= 8997) and protein-coding genes (n= 19957) that
differentially expressed between mature kidney organoid derived proximal tubules
(n= 3) and glomeruli (n= 6) using DESeq2 v1.3250. The cut-off values were set as
the adjusted P < 0.05 and log2fold change ≥1. To identify the functions of proximal
tubules and glomeruli differentially expressed genes, protein coding genes in each
differentially expressed gene sets were used as the input for Gene ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses with the R package clusterProfiler v3.1049.

Pairwise gene expression correlations between two hub CNV-lncRNAs and
CAKUT genes. To identify reliable correlations between two hub CNV-lncRNAs
(HSALNG0134318 and HSALNG0115943) and CAKUT genes (n= 172) during
kidney development and kidney organoids differentiation, three datasets that cover
different development and differentiation stages were used to calculate pairwise gene
expression correlations: Human kidney developmental data (n= 40), single-end
in vitro kidney organoids differentiation data (n= 41, day 0–25) and paired-end
in vitro kidney organoids differentiation data (n= 12, day 25–28) (see ‘Human
kidney developmental data’ and ‘In vitro kidney organoids differentiation RNA-seq
data’ section). For each dataset, Pearson correlation was employed to calculate
pairwise gene expression correlations. The P values were adjusted for multiple testing
using the Benjamini–Hochberg method. The cut-off of significant correlation was set
as absolute value of correlation coefficient (r) ≥ 0.5 and the adjusted P < 0.05.

CNV-lncRNAs knockdown in human embryonic kidney (HEK293) cell lines.
Knockdown experiments of HSALNG0134318 and HSALNG0115943 were con-
ducted through transient transfection with Smart Silencers (mixture of small
interfering RNAs and antisense oligonucleotides targeting CNV-lncRNAs, syn-
thesized by RiboBio, Guang Zhou, China). The Smart Silencer was transfected into
HEK293 cell lines (RRID: CVCL_0045, Cyagen, Suzhou, China) with the Lipo-
fectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA). The silencer sequences
were listed in Supplementary Table 4.

Quantitative reverse transcription qPCR analyses. A total of 1 µg cellular RNA
was used as the template for cDNA preparation with the PrimeScript RT Reagent
Kit (Takara, Dalian, China). Quantitative reverse transcription qPCR (RT-qPCR)
was performed with the TB Green Premix Ex Taq II kit (Takara, Dalian, China) on
the CFX 96 Real-Time PCR detection system (Bio-Rad Laboratories, Inc., Hercules,
CA, United States). Relative gene expression levels were calculated based on the
2�44Ct method. At least three biologically independent experiments were con-
ducted for each group. GAPDH was used as the internal reference gene. The RT-
qPCR primer pairs were listed in Supplementary Table 5.

RNA-seq analyses of HSALNG0134318 knockdown HEK293 cell lines. For
HSALNG0134318 knockdown HEK293 cells (n= 3) and control groups (n= 3),
RNA was harvested using NovaSeq 6000 Reagent Kit. 2 ug of total RNA was used
for the construction of sequencing libraries. RNA libraries were prepared for
sequencing using standard NovaSeq stranded mRNA prep protocols. Sequencing
was performed on the Illumina NovaSeq 6000 (GPL24676). The raw data were
processed as follows: quality analysis and base quality filtering with FastQC v0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and Trim Galore
v0.6.6 (https://github.com/FelixKrueger/TrimGalore), rRNA removing with Sort-
MeRNA v4.3.451, alignment with STAR v2.7.1052, reads counting with
featureCounts53 implemented in the Subread package v2.0.3, differential expression
analysis and principal component analysis with DESeq2 v1.3250, hierarchical
clustering with hclust function in R Stats package v4.1.154 and functional enrich-
ment analysis with clusterProfiler v3.1049. For differential expression analysis, gene
raw counts were normalized with rlog function in DESeq2 v1.3250.GOplot v1.0.255

was used to calculate Z-score of each enriched GO terms.

Quantification of sample traits. For human kidney developmental data, sample
traits were collected from ArrayExpress (E-MTAB-6814). Categorical variables of
samples were quantized into 1 and 0. For sex, male was quantized into 1 and female
was quantized into 0. Continuous variables (Developmental stage) of samples
were quantized into week according to the following rules: For embryo samples
(before birth), the developmental stage value equal how many weeks they were
post conception (For example, if the embryo was 10 weeks old, the value was 10.).
For samples collected after birth, the developmental stage value equal 40
(human pregnancy estimated value of 40 weeks) plus age (count in weeks). 1 year
was calculated as 52 weeks, 1 month as 1/12 years, and 1 week as 7 days
(For example, for a sample at 6 months after birth, the development stage value was
40+ 6/12 × 52= 66; for a sample at 7 days after birth, the development stage value
was 40+ 7/7= 41) (Supplementary Data 2).

For the single-end in vitro kidney organoids differentiation RNA-seq data
(n= 41), sample traits were collected from original sample information from GEO
database (see ‘In vitro kidney organoids differentiation RNA-seq data’ section). For
differentiation stage, samples were classified into following categories according to
the description of in vitro kidney organoids differentiation37: cells in early
differentiation stage (day 0, 4), nephron progenitor cells (day 7) and kidney
organoids (days 18, 25). Categorical variables of samples (specific kidney organoids
derived tissue type) were quantized into 1 and 0 (Supplementary Data 9).

Prediction of the transcription factors. To identify the transcription factors (TFs)
that have potential synergy with CNV-lncRNA through regulating transcription,
we retrieval the genomic sequence of promoter region (upstream by 2000 bases) of
CNV-lncRNA from hg38 assembly with UCSC (http://genome.ucsc.edu)56. TFs of
Homo sapiens that potentially bind to the promoter region were predicted with
PROMO57,58. The TFs that predicted with the dissimilarity rate lower than 5%
were considered as hits.

Identification of miRNAs interactions with CNV-lncRNAs and mRNAs. For
CNV-lncRNAs distributed in the CAKUT_sig1 and CAKUT_sig2 modules (kidney
developmental WGCNA, n= 437), we retrieved 238624 lncRNA-miRNA interac-
tion evidences from LncBook14. Genomic loci (hg38) of miRNAs were annotated
based on miRbase59. 331604 miRNA-mRNA interaction evidence were generated
from our previous study10. Integrating the interactions evidences with human
kidney developmental data (n= 40), we conducted the lncRNA-miRNA-mRNA
regulatory network analysis using LncmiRSRN v3.031 to estimate the contribution
of competing endogenous RNA (ceRNA) mechanism to the pathogenicity of CNV-
lncRNAs distributed in the CAKUT_sig1 and CAKUT_sig2 modules.

Statistics and reproducibility. For RNA-seq analyzes, a threshold of adjusted
P < 0.05 was used for differential gene expression analysis. For the correlation and
causal effect in the lncRNA-miRNA-mRNA regulatory network analysis, a
threshold of adjusted P < 0.05 was used. The P values were adjusted for multiple
testing using the Benjamini–Hochberg method. Hypergeometric tests were used to
estimate the significance of enrichment between two gene sets, using a threshold of
P < 0.05. For comparing expression levels of multifunctional genes between dif-
ferent organs and RT-qPCR analyzes, two-tailed Student’s t test was used for
comparison between two group. For knockdown experiments on HSALNG0134318
and HSALNG0115943 in the human embryonic kidney (HEK293) cell lines, three
biologically independent experiments were conducted for each group.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq raw data for knockdown experiments on HSALNG0134318 in the human
embryonic kidney (HEK293) cell lines that generated in this study are available in GEO:
GSE223312. The source data for figures are available in Supplementary Data 1. Data
generated during this study are available in Figshare (https://doi.org/10.6084/m9.figshare.
23624658.v2, Supplementary Data 2–16 files)60. Accession code of other raw data that
support the results in this work are all available in Methods section.
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