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Fast detection of slender bodies in high density
microscopy data
Albert Alonso 1 & Julius B. Kirkegaard 1✉

Computer-aided analysis of biological microscopy data has seen a massive improvement with

the utilization of general-purpose deep learning techniques. Yet, in microscopy studies of

multi-organism systems, the problem of collision and overlap remains challenging. This is

particularly true for systems composed of slender bodies such as swimming nematodes,

swimming spermatozoa, or the beating of eukaryotic or prokaryotic flagella. Here, we develop

a end-to-end deep learning approach to extract precise shape trajectories of generally motile

and overlapping slender bodies. Our method works in low resolution settings where feature

keypoints are hard to define and detect. Detection is fast and we demonstrate the ability to

track thousands of overlapping organisms simultaneously. While our approach is agnostic to

area of application, we present it in the setting of and exemplify its usability on dense

experiments of swimming Caenorhabditis elegans. The model training is achieved purely on

synthetic data, utilizing a physics-based model for nematode motility, and we demonstrate

the model’s ability to generalize from simulations to experimental videos.
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Large-scale, high-throughput quantification of microscopy
data has increasingly become possible with the aid of com-
puter vision1–6. In particular within the last decade, deep

learning techniques7–9 have improved and enabled accurate
image analysis of microscopy data in a broad range of areas
including cell counting10,11, cell segmentation12–14, nucleus
detection6,15, sub-cellular segmentation16, drug discovery17,
cancer detection18–20, and the identification of infectious
diseases21,22. Detection models serve as the fundamental opera-
tion in tracking procedures, and combined with suitable tracking
algorithms, these can achieve morphologically resolved organism
tracks that can accurately quantify organism motility23, the
application of which ranges from fundamental neuroscience24–26

and the circuitry of simple organisms27–30 to drug discovery31–35.
Multi-organism detection can be achieved at increasing levels

of fidelity: at the crudest, only center-of-mass locations or
bounding boxes are predicted36 which does enable tracking of
organisms but provide little morphological information. In con-
trast, pixel-wise segmentation models12 and pose estimation
using keypoints37 reveal accurate shape dynamics when employed
on high-resolution data. However, these methods rely on high
definition objects, as segmentation and prediction are highly
sensitive to noise. In particular for organisms that are long and
slender, pixel-wise segmentation fails at low resolution as correct
predictions require sub-pixel accuracy. Moreover, at high den-
sities, these methods may fail due to their inability to properly
handle overlap between organisms.

Here, we consider the problem of studying slender organisms
at low resolution and high density with the goal to enable both
accurate identity tracking and quantification of shape dynamics.
This problem has traditionally been approached by employing
pixel-wise segmentation and subsequent skeletonization
procedures38–43, an approach that requires model-based
approaches44,45 or ad-hoc procedures46 to solve the problem of
correctly identifying overlapping organisms, the combinatorial
complexity of which blows up at high densities. To this end we
abandon pixel-wise output and instead construct a neural net-
work architecture that predicts, potentially overlapping, cen-
terlines directly47–49. Our method enables both accurate shape
prediction and tracking in dense experiments of slender objects, a
key challenge for a broad class of systems (Fig. 1), including
tracking of nematode worms50–52, spiral or elongated
bacteria53–56, spermatozoa57,58, the flagella of both
eukaryotes42,43 and prokaryotes59, and freely swimming flagella
such those of microgametes60.

Our method relies on recent advances in deep learning61–65

and extends these by a few simple ideas: In still micrographs, the
identities of individual worms can end up being obscured by
overlaps making them impossible to accurately identify, and only
by relying on the adjacent frames can they be correctly resolved.
Thus, to allow the neural network to encode the identity of
individual bodies as a function of their motion, the input to our
neural network is taken to be short video clips rather than single
frames. Our network outputs multiple independent predictions,
and for each produces (1) the centreline of the organism, (2) an
estimated confidence score for the prediction, and (3) a latent
vector, the space of which we induce a metric on that measures
whether two predictions are trying to predict the same body. To
train the network, each output quantity is associated with a
specific loss term, where, importantly, the centerline loss term is
permutation-invariant in the labels. To resolve overlap, we do
non-max suppression36, but rather than measuring distances
between curve predictions, we use the latent space output, which
allows two predictions to be kept even though they are close in
physical space. This enables correct predictions for data in which
objects overlap very closely. Our method is further tailored to

support the subsequent tracking process, which must link
uniquely predictions from frame to frame. To that end, we not
only predict the object location at a single timepoint, but also
predict consecutive past and future centerlines. Using these time-
resolved predictions in the linking process enables high-precision
tracking even through dense regions.

Our method is in-principle applicable to all microscopy data-
sets that involve slender bodies, but we do not develop its general
applicability here. Instead, we focus on its applications for
tracking dense experiments of swimming C. elegans worms, a
popular model system in neuroscience66, human diseases67, drug
discovery32, motor control68, memory69, and ageing70. Studies of
C. elegans often rely on phenotypic assays that measure the
motility of the nematode worms as a function of some environ-
mental condition or treatment35,71–83, the throughput of which
can be massively increased if overlap between organisms can be
tolerated. Likewise, resolving identities of organisms during
overlap is crucial for studies of interactions between organisms84.
Previous work on tracking C. elegans have generally employed
classical computer vision approaches to accurately track single or
a few high-definition worms39,85–89, or many low-resolution
worms at non-overlapping densities40,90,91, in some cases by
utilizing a computational model of the worm motion for
hypothesis tracking39,44,45,85.

Recently, deep learning techniques have been utilized to track
C. elegans worms using e.g. bounding box predictions92–94 and
fully resolved centreline in the case of isolated worms95, allowing
for detection also during periods of self-overlap.

With this paper, we publish a dataset of videos of motile C.
elegans worms imaged at a wide range of densities. The dataset
includes~ 1,500 labeled midlines that we use to evaluate, but not
train, our detection model. We demonstrate that our model can
be trained exclusively using synthetically generated data and yet
generalizes well to real videos. Our method leverages the parallel
capabilities of convolutional neural networks and is thus able to

Fig. 1 Microscopy images of different microorganisms whose slender
structure and frequent overlaps makes them hard to detect using
classical approaches. a C. elegans motility experiment from the dataset of
this paper. b Motile, flexuous, thin, spiral-shaped B. pilosicoli bacteria. Still
from ref. 55, with permission. c Beating flagella of the green alga C.
reinhardtii, provided by Kirsty Wan, University of Exeter. d Swimming
human spermatozoa. From dataset in ref. 58.
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handle thousands of detections in a single pass, resulting in real-
time detection at ~90 Hz at 512 × 512 resolution on a single GPU.
The code is open source and available at https://github.com/
kirkegaardlab/deeptangle.

Results
Architecture. Our model is based on single-stage detection
models36,61 that output many candidate predictions per target in
a single forward pass and rely on a score system to prune until a
single candidate is left for each target object. The performance of
such single-stage models has been shown to enable accurate real-
time bounding box detection64. Figure 2 illustrates the overall
structure of our approach. The backbone of our neural network
(Fig. 2a) consists of convolutional residual networks62 and the
output of our model is composed of a set of centerline predictions
z= [x−, x, x+] representing the past, present, and future motion
of the bodies. We represent the centerlines by k equidistant points
along the center of the body [Fig. 2d]. The centerlines contained
within the set maintain alignment with a consistent head posi-
tioning across the three predictions. In addition, the model out-
puts confidence scores s and latent vectors p that are used for
subsequent filtering (Fig. 2b) (see Methods).

We take the input to our model to be a stack of consecutive
frames in order to provide the model with a temporal context
(Fig. 2c). In the present case of motile slender objects where
dynamic crossings and overlap between objects are very common,

a temporal context can provide the necessary information to
resolve the problem of correct identification. Furthermore, the
temporal context allows the output of our model to include
information on the motion of the centerlines, which we will
further exploit for tracking purposes.

The backbone of our neural network performs a 162-fold
reduction in resolution when mapping the input images to feature
space, from which the network outputs multiple anchored
predictions. This anchored approach means that the only
restriction on input size is that its dimensions be divisible by
16, and, in particular, it allows training at a certain resolution
H ×W and subsequent inference at another H0 ´W 0 without loss
of accuracy. We choose the resulting number of candidates to be
considerably larger than the number of objects in the frame, thus
ensuring that all objects have suggestions.

Detection on dense C. elegans experiments. To evaluate our
approach, we study microscopy videos of swimming C. elegans
worms. We are particularly interested in videos captured at much
higher densities than those typically used in motility experiments.
Thus we evaluate our model on wide-field videos captured under
approximately uniform illumination40, exemplified in Fig. 3a. In
our dataset, the number of nematode worms varies ranging from
~400 with a small probability of overlap occurring (≈0.05 average
overlaps per worm) to extremely densely packed plates with up to
~6000 nematodes, where there is, on average, one overlap per

Fig. 2 Method workflow. a Structure of the detection method. Trainable neural networks are colored in gray, and represent the convolutional neural
network f(I; θ) and the latent space encoder q(λ, x0; ϕ). b Procedure to prune unfiltered predictions to final detections with the use of the encoded latent
space vectors. c Method overview from the input clip I (we use a stack of 11 frames in this work) to the final matrix of centerlines x. The target frames
[I−, I, I+] (center frames from the clip, orange) are explicitly shown for both the synthetic and real videos. In addition, the training setup is represented
using lighter color arrows; from synthetic data to loss backpropagation. After detection, direct visualization of the predicted centerlines x is possible.
d Diagram with a centerline descriptor composed of k equidistant points along the skeleton of the nematode. e Visual representation of the two distances
used in Eq. (2), the minimum of which corresponds to correct head-tail alignment and is the one that will be used in the model.
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worm. This means that in the dense plates, detection methods
that stop tracking after contact between worms happens are
rendered completely ineffective.

Defining worm density ρ as the number of worms in a region
per square millimeter, we find, as expected, a linear relation
between the average amount of overlap per worm and the density
(Fig. 4a). Due to the spatial heterogeneity of the worm
distribution inside the plate, higher densities can be observed
when considering small regions. On 100 mm2 scales, the highest
density in the dataset is ρ ~ 2.5 mm−2, but this jumps to an
extreme ρ ~ 3.5 mm−1 when considering 10 mm2 regions, where
humans begin to struggle to correctly identify worms. For
quantitative evaluation of our model, ~200 random regions of the
videos were sampled and hand-labeled resulting in ~1500 labeled
worm centerlines. A sample of frames is shown in Fig. 3b to
provide a sense of the different densities encountered in the
evaluation dataset, with the predictions of the model overlaid.

To train our network, we implement a physics-based synthetic
dataset generator to exploit perfectly defined labels (see Methods).
This approach removes the need for a supervised dataset, and also
allows labeled videos in situations where manual labeling may not
be reliable, or where the subjectivity of the human labellers can
result in inconsistent labels. Physics-based synthetic datasets have
successfully been used to train systems on similar conditions, for
instance where manual labeling may introduce unnecessary noise
or bias to the model16. Naturally, this requires the formulation of
a physical model that is accurate on the relevant time scales.
Furthermore, dependence on synthetic datasets can result in a
divergence between the target and the training data, potentially
leading to inaccurate predictions during inference—a phenom-
enon that is avoided if the model is trained on real data.

Performance. Despite being trained exclusively on synthetic data,
the model’s inference performance is very good on real clips.
From visual inspection, no immediate discrepancies are observed
between detections in low density clips and at high density

(Fig. 3b). Likewise, per design, the network accuracy is inde-
pendent on the input clip dimensions, and the parallel structure
of convolutions permits the use of large videos covering thou-
sands of nematodes to be processed simultaneously in a single
forward pass (Fig. 3a). We note, however, that even though no
quality impact on detections is observed when using large fields-
of-view clips, there can be a dependency if non-uniform illumi-
nation is used as different sections of the frame may have dif-
ferent requirements for preprocessing.

For a quantitative assessment of the method accuracy, we
compare to the manually labeled dataset, an example of which
alongside the model predictions can be seen in Fig. 4c. As the
predictions are densely defined centerlines (here, ~50 points), we
used an asymmetric version of dynamic time warping δadtw
(defined in “Methods” and illustrated in Fig. 4b) to evaluate the
accuracy of the predictions using labels with lower fidelity.

The results of evaluating the trained model on the labeled
dataset are shown in Fig. 4. For reliable comparisons, we first
solve the assignment algorithm for the label-prediction pairs. This
means that in the case of two completely overlapped worms, two
predictions need to be present to not count as a miss, and
likewise, two predictions cannot be considered to target the same
label. We find an average error of δadtw ≈ 0.54 px with no strong
dependency between accuracy and density of worms [Fig. 4d],
with the exception of a slight increase in error for extremely dense
clips (~3.5 mm−2). The average error corresponds to less than the
width of a worm (≈2 px ≈ 50 μm), and part of this can be
attributed to the fact that human accuracy is also near the half-
pixel level (Fig. 4c). Some outliers can be seen however, which can
mostly be attributed to an artefact of the model, where the
network mistakes a single long worm for two overlapping shorter
predictions. This effect seems particularly sensitive to incorrect
intensity normalization of the videos.

Let σϵ be a cutoff distance above which we no longer consider
the predictions to be targeting the closest label. For all the figures
in Fig. 4, this cutoff is assumed to be σϵ= 3.0 px, and we observe

Fig. 3 Qualitative showcase of the capabilities of the model. a Detected centerlines predicted on an entire densely populated well plate with a single
forward pass through the neural network. Inset shows a zoom-in section to demonstrate the accuracy of detection across the entire plate (except near
borders, where the plate interferes). The total plate contains around 6000 detections. b Close-up evaluation of different experimental clips with different
densities of worms.
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no significant changes by tuning it within the range of sensible
values. We define the True Positive (TP) rate as the fraction of
predictions that both get assigned a label and this label is within
the distance σϵ of the prediction. Figure 4e shows that the model
rarely predicts a centerline where there is nothing with a TP rate
of 0.999. Nevertheless, there are some predictions that do not get
assigned a label which can be attributed to the double-prediction
artefacts just mentioned. The likelihood of this happening
decreases with density, but the rate is so low that it is almost
negligible. Similarly, we define the False Negative (FN) rate as the
fraction of labels that are not assigned a prediction closer than σϵ.
Figure 4f shows that the model in general manages a low FN rate
at around ~0.015, but that this increases to a rate of ~0.06 at
extreme densities such as ρ ≥ 3.0 mm−2, where clusters tend to be
densely packed and manual labeling likewise becomes
challenging.

The filtering process depends on two user-defined thresholds:
the score threshold τs∈ [0, 1] is used to prune predictions with low
confidence scores (Fig. 2b(1)) and the overlap threshold τo∈ [0, 1]
is used for filtering by setting the maximum probability of two
independent predictions to be targeting the same object (Fig. 2b(2)).
Throughout this paper, we have set these to τs= τo= 0.5. We
evaluate how different combinations of thresholds may alter the

performance results. Figure 4g–i shows the average performance
obtained across all densities when filtering the predictions with
variable thresholds. In spite of some dependency between worm
density and TP/FN rates, we consider the average metric to be a
good indicator of the performance for each case.

Figure 4g shows the effect of the thresholds on accuracy. No
significant dependency on the thresholds is observed. This can be
explained by the fact that accuracy is determined by the best
predictors only (through assignment), which are not discarded until
a high τs is used, and once those are removed, τo becomes irrelevant.
Further, the fact that there is no notable difference between different
values of τo indicates that the clusters are highly compact.

In contrast, Fig. 4h shows that the TP rate has a stronger
dependency on τo at low τs because low score predictions do not
form compact clusters, and therefore a larger exclusion radius is
required to discard them. Finally, Fig. 4i shows that misses only
begin to occur once the best predictions are discarded, and a
strong dependence on the τs is not observed before that point.

Tracking from consecutive detections. Motility assays require
not only accurate detections but also the ability to link these across
frames to form time-resolved tracks of individual organisms. This
is challenging at high densities where we have the breakdown of

Fig. 4 Quantitative performance metrics on the detection of slender bodies in dense experiments of swimming nematodes. a Average number of
overlaps counted on frames of pixel size 512 × 512 with different densities of worms (N= 90). b Illustration of the asymmetric dynamic time warping
distance error corresponding to the average value of the orange euclidean distances between the prediction (green) and the labeled points (white).
c Example frame with manually labeled points (white) and models predictions (colored). The metric is only evaluated in the lighter area of size 100 × 100.
d Quantified accuracy of the detections by showing the distance to the manually labeled centerlines. Distributions for different densities are shown. The
violin plots represent the 99 percentile of the data whereas outliers are plotted individually. e Rates for True Positive on the manually annotated dataset
[N= 364, 467, 441, 143]. f Rates for False Negative on the manually annotated dataset [N= 1825, 2078, 1902, 597]. g–i Performance of the model with
different combinations of score (τs) and overlap (τo) thresholds. N= 1420. Error bars indicate standard error.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05098-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:754 | https://doi.org/10.1038/s42003-023-05098-1 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


the assumption that the closest detected object to the previous
frame corresponds to the same identity. In general, greedy
approaches to particle tracking such as assigning directly the clo-
sest particle in consecutive frames frequently leads to failed tracks.
Instead, the process of tracking can be efficiently formulated as a
set of linear assignment problems96. Naturally, here we can expand
upon particle tracking by using a metric that measures distances
not between center-of-mass of the worms, but between the full
centerlines (Fig. 2e). This works well for most predictions but can
fail for fast-moving worms or in dense clusters.

A separate approach to tracking is Kalman filtering. This would
require separate detection of entry and exit events of worms, as
well as a probabilistic model for worm motility, which would
most likely have to be highly non-linear. Kalman filtering is viable
for the tracking of few organisms, but for present large-scale
systems we require a more efficient approach. As our model also
outputs centerlines from adjacent frames (to embed temporal
information into the latent vector, see Methods), we propose a
directed metric that leverages both past x− and future x+

centerlines predictions (Fig. 5a). Thus to find a mapping σ from
one frame to the next, we solve

σ ¼ argmin
σ

∑
i
dðxiðtÞ; x�σ i ðt

0ÞÞ þ d xþi ðtÞ; xσ i ðt
0Þ

� i
:

�
ð1Þ

Identity assignment can be seen as a network flow global
optimization where nodes represent detections and edges carry
the cost of assignment. To avoid having to perform all possible
combinations of assignments, we include a physical distance
threshold on the midpoint of the central line. This threshold
significantly simplifies the assignment scheme and improves the
runtime of the filtering process (Fig. 5b). Notice that due to the
flip-invariance of the distance metric, consecutive assignments of
sets of centerlines are not necessarily aligned, hence a trivial
alignment of the centerlines is carried out during post-processing
before being analyzed. Likewise, head-tail alignment with the real
worm is not granted and a post-processing step would be
required to guarantee the alignment, e.g., by using temporal
information such as the direction of the undulation wave
(Fig. 5e).

To quantify the performance of these methods, we define the
tracking integrity ι as a scalar that indicates how consistent the
assignment of a label to a prediction is along the tracked video.
Perfect tracks have ι= 1, whereas labels that get assigned two
different identities for half of the duration of the video have ι ¼ 1

2,
and so on (see 4 for a detailed definition). We evaluate this on
synthetically generated videos of 10 s (200 frames) that have
perfectly labeled tracks, the results of which are shown in Fig. 5c.
On videos with densities up to 2.0 mm−2, we achieve an average

Fig. 5 Tracking methodology and results. a Illustration of the directed distance used to assign consecutive detections of the same identity. The simplified
drawing shows two independent predictions at adjacent frames and showcases how the assignment scheme computes the identity by comparing future-
present and past-present distances and choosing the assignment that minimizes their sum. b Diagram showcasing how using a location cutoff simplifies
the assignment problem. Nodes represent independent detections at each frame whereas edge values are given by the directed distance measure. The
assignment happens by minimizing the sum of edges at each timestep. c Comparison of using the straightforward centerline distance and the proposed
directed approach. The accuracy is evaluated by measuring the integrity of the tracks. In contrast to other metrics in this paper, this plot has been obtained
using synthetic worms as long-term, accurate tracks are required to evaluate the tracking integrity (See 4 for details on Tracking integrity). Error bars
indicate standard error (N ~ 300 at lowest density to N ~ 3000 at highest density). d Qualitative example of 30 s trajectories of the center of mass of the
nematodes in a dense experiment. The still background image represents the last frame of the video. To improve the visualization, a small subset of the
trajectories is shown. In contrast, a corner of the frame is used to display all the trajectories to showcase the density of simultaneous tracks. e Two samples
of the centerline angle ψ of two randomly sampled nematodes from (d). f Undulations corresponding to 30 s of the detections relative to the center of
mass coordinate of nine randomly sampled nematodes from (d). g Standard error value of the measurements of the center of mass speed as a function of
density. h Showcase of the possible throughput of the method, by simultaneously tracking more than 6000 tracks from a full dense plate. A small window
on the tracks is shown to showcase their continuity.
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integrity of ι ≈ 0.97. This is ~30% improvement of the error over
using direct detection assignment defined in Eq. (2). We observe
that the integrity is almost perfect at low densities, but drops to
ι ≈ 0.93 at the highest densities.

When applied to high density videos of C. elegans, the tracking
method is able to keep track of individual worms as they pass
through clusters of other worms (Fig. 5d) (see Supplementary
Videos 1–3). In contrast to pixel-level classification of worms, our
approach outputs centerlines directly, and thus subsequent
analysis is straightforward. For instance, one may directly study
the worm undulations (Fig. 5f) or extract the worm centerline
angle ψ ¼ arctanðyðs; tÞ � y0ðtÞ; xðs; tÞ � x0ðtÞÞ to provide insight
into the movement patterns and kinematics of the worm (Fig. 5e).

One of the key advantages of our methods is its ability to
collect a larger number of samples compared to traditional
techniques, while still obtaining reliable results. As the standard
error decreases with the number of samples, using our methods
allows for metrics to be gathered with less uncertainty while still
requiring the same experimental setup. For instance, Fig. 5g
shows how the error of estimating the average speed of the center
of mass of the nematodes decreases with density. This advantage
can be extended to tracking large numbers of nematodes in
crowded environments, such as extremely dense petri dishes
where more than 6000 concurrent tracks can be simultaneously
computed (Fig. 5h). Thus, with our method, we are able to collect
a larger number of samples and obtain more precise and reliable
results, even in challenging conditions.

Discussion
We have introduced a deep learning approach for detecting and
tracking slender bodies, such as swimming nematodes, in
microscopy data. The presented convolutional neural network
architecture is capable of accurately detecting a large number of
overlapping organisms, a task that can be particularly challenging
for standard methods such as bounding boxes and pixel-level
classifiers due to the issue of occlusion and overlap. To address
this, we have implemented a latent space encoding which allows
us to filter by non-maximum suppression and effectively handle
overlapping objects. Not only is our method capable of accurately
detecting and tracking slender bodies, but it also demonstrates
strong scalability, performing well across a range of input frame
sizes and densities of bodies. This makes it an ideal tool for a
variety of experimental settings where centerlines are useful
descriptors, including studies of swimming nematodes, swim-
ming spermatozoa and beating eukaryotic or prokaryotic flagella.

Besides a suitable detector model, labeled training data is also
needed. We have demonstrated that relying on a physics-based
model to generate synthetic data is adequate to train our network
to perform well on real data. This is a key achievement as it
means that applications of our system for different experimental
studies do not require large datasets to be procured, but rather the
implementation of a suitable simulation. Our approach for syn-
thetic data generation relies on over-sampling the behavior of the
worms. This is naturally a trade-off as too extreme behavior can
lead to datasets that are too hard for the neural network to
replicate. For our model, we found that we slightly undersampled
certain worm shapes such as strong coiling, which the model
therefore could struggle with identifying. Though we did not look
into this here, an interesting avenue for future research would be
to bootstrap synthetic motility models on small datasets of real
organisms. In a similar fashion, the frame-generator procedure
should oversample the textures, pixel intensities and noise of real
videos. Here, it could be interesting to study whether style
transfer15 or diffusion models97 could be used to further reduce
the gap between training and inference data. We note that we

have only developed and studied a simulation of swimming C.
elegans worms, and the study of other slender-body systems with
our framework requires corresponding synthetic models.

For tracking, we introduced a directed metric that employs past
and future centerline predictions to link them across time. At very
high densities this may still fail, in particular because the directed
metric yields little advantage if predictions are missing in some
frames. A potential way to improve on this could come from
utilizing the latent space encoding as well. This would require
temporal continuity in the latent space representation, which is
achievable by modifying the associated loss function. This should
enhance the integrity of tracking, as it could potentially be used to
resolve issues such as switches by leveraging the separation of
close physical predictions with different temporal behavior that
characterises the latent encoding. We believe that these sugges-
tions might be fruitful avenues for further research for improving
deep learning models for dense detection of centerlines. Fur-
thermore, we note that high short-time scale tracking integrities
can still, over longer times, lead to loss of identity. The tracking
integrity measurement thus sets the time scale over which accu-
rate statistics can be formed. For longer times scales, other
methods are needed98.

Our approach differs significantly from previous approaches to
slender-body tracking. For C. elegans tracking in particular,
previous trackers have focused on either accurate single worm
tracking95, few worm tracking39,45,85–89, or large-scale
tracking40,90,91. However, we found that none of these existing
approaches were designed to handle the type of data and densities
that we have presented here, and we thus omit quantitative
comparisons.

In this paper, we have proposed a new approach for fast and
precise detection and tracking of slender bodies in microscopy
data. Its speed and accurate performance across a range of den-
sities and sizes, combined with the ability to handle overlapping
objects, make it a valuable tool for a variety of experimental
settings where precise tracking is essential for obtaining quanti-
tative metrics.

Methods
Model structure
Centerline predictions. We choose to represent the centre-line of the slender bodies
of interest by arrays consisting of k equidistant points (Fig. 2d). These coordinate
arrays, which we refer to as centerline, become high-precision descriptors even for
complex shapes when k is chosen large. To reduce the complexity of predicting k
points, we embed the centerline representation with a principal component (PCA)
transform A, the dimension κ of which can be much smaller than k50. The PCA
components λ represent shape, and in addition hereto, the network also predicts
the offset x0 of the centerline, the internal calculation of which is done in a local
coordinate system defined by the anchor points. Thus, instead of predicting 2k
floating point values per centerline, the network needs only output κ+ 2.

The temporal context of the input image stack permits output centerline
prediction also for the non-central images. In our approach, we predict a set of
three centerlines z= [x−, x, x+] corresponding to the three central frames
[I−, I, I+] of the input stack (Fig. 2c). We consider the middle centerline x the main
output, whereas the past x− and future x+ centerlines are considered auxiliary
predictions whose main purpose lies in their use during the latent space encoding
as well as the tracking procedure.

We define the similarity measure between two centerlines by the standard
Euclidean distance. In the case of detections that look symmetric from either end,
we exploit this symmetry and employ the flip-invariant distance defined by

d2 x; x0ð Þ ¼ min ∑
k

i¼1
ðxi � x0iÞ2; ∑

k

i¼1
ðxi � x0k�iþ1Þ2

� �
; ð2Þ

as illustrated in Fig. 2e.
Likewise, we define a distance between two collections of consecutive

centerlines z, z 0 by their weighted average d2s ¼ ∑tωt d
2ðz t ; z 0tÞ, where the weights

can be adjusted to give focus to central predictions, and for the present case we
choose ω= 2ω−= 2ω+.

The neural network is trained to minimize the distance d2s between predictions
and labels. To do so, we let the independent predictors specialize for different
shapes. This is achieved by using a permutation-invariant loss such that the total
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loss is computed as a sum over the labels only, each using the predictor that best
match the labels. Thus many centerline predictions will not contribute to the
detection loss.

Confidence scores. Each independent prediction of the network includes a con-
fidence score s, which is used to filter out bad candidates. In bounding box or mask
detection, intersection over union (IoU) is commonly used to evaluate the accuracy
of a prediction, however, this metric does not generalize well to centerline pre-
dictions when there is overlap. Instead, we introduce a custom metric to define the
goodness of a centerline set z by comparing it to its label ẑ,

ŝ ¼ exp �d2s ðz ; ẑÞ=σ2s
� �

: ð3Þ

Here, σs is a parameter that sets the scale over which the score varies. The metric
is sensitive to perturbations on accurate predictions, i.e. predictions close to labels
where ds→ 0, but loses sensitivity the worse the predictions are. This is a useful
feature as correct scoring for good predictions is crucial for choosing the best one,
whereas low-scoring predictions are discarded in any case and their relative scoring
therefore unimportant.

The score prediction is trained using L2 loss. To avoid conflicting backwards
error propagation between this task and that of centerline prediction (as scoring
bad predictions is easier), we stop the gradient flow in the computational graph on
the last layer of the score-predicting part of fθ (Fig. 2a) such that it does not
interfere with the accuracy of the predicted centerlines.

Latent space for candidates suppression. Finally, we need to ensure that there is only
one prediction per object. Bounding box detectors let the user decide the fraction of
overlap between prediction boxes of the same class that should be considered to be
targeting the same object. As our method must work at high densities, this task is
complicated by the fact that two predictions might be very close, even completely
overlapping in the central frame, and yet represent different objects. The task of
choosing a suitable cutoff distance is therefore difficult, and we make this a
trainable task. We do so by embedding each prediction in a low-dimensional latent
space in which comparison between predictions is cheap, thus allowing efficient
and fast candidate suppression also at high densities.

Our method computes the latent vectors p for predictions using an auxiliary
neural network, qϕ which acts directly on the eigenvalues λ and offsets x0 rather
than the more redundant centerline coordinate points. We induce a Euclidean
metric on the latent space with the interpretation that two predictions i, j are
predicting the same object with probability

Pði $ jÞ ¼ exp �jjpi � pjjj2
� �

if jjx0i � x0jjj≤ σ l ;
0 otherwise:

(
ð4Þ

Here, σl is a real-space visibility cutoff that prevents far predictions to interact in
the encoded space, thus avoiding the need to scale the dimensionality of the latent
space with the number of candidates or the input size. We note that when using the
flip-invariant metric ds on centerlines, we explicitly construct the latent space
encoder to likewise be flip-invariant.

To train the latent space, we assume that during training predictors are ‘trying’
to predict the label closest to the prediction centerline. Combined with the
probability interpretation, this allows us to use binary cross entropy as a loss
function for the probability defined in Eq. (4). To avoid wrong clustering between
undefined close-by predictions, the loss contribution of each prediction is scaled by
the product of their real scores ŝi ŝj , thus ensuring that the network focuses its
attention on good predictions that will not be filtered out. Finally, since the encoder
should not alter the performance of the centerline suggestions, the loss on the
latent space representations only updates the weights qϕ of the encoder, but is
trained concurrently with the main model.

We employ non-max suppression to choose the best prediction of each object,
but with distances measured in latent space, as illustrated in Fig. 2b. Concretely:
Once all the predictions whose score is lower than a threshold τs have been
discarded, multiple candidates are likely to still remain for each target object. The
lack of low score predictions exposes clusters in the latent space that correspond to
single objects. We sort the remaining predictions by their score, automatically
accepting the highest-scored one. Once a prediction i is accepted, all predictions j
that have a high probability Pði $ jÞ>τo of being the same object are removed.
This is equivalent to setting an exclusion radius rl in the latent space as shown in
Fig. 2b. We keep iterating on the remaining predictions, pruning the latent space
until all candidates have been iterated. The final number of accepted predictions
should equal the number of objects in the frame.

Neural network architecture
Convolutional neural network. Most of the weights of the network are at the feature
detection convolutional network whose backbone is made of four ResNet groups
consisting of 2, 4, 4, 2 blocks with strides 1, 2, 1, 2, respectively. We modify the
original ResNet architecture by replacing the initial max-pooling layer with an
average-pool layer to avoid translational invariance. The final shape of the feature
space is [H/16,W/16, C], with C being the number of candidates each cell proposes.
We have set C= 8 for this project in order to fulfill the condition of the number of

predictions being larger than the number of bodies even at high densities. All in all,
there will always be C candidates per cell regardless of input size, which leads to a
large number of candidates to be sorted in the filtering process. The head of the
convolutional neural network is composed of two fully connected layers of 512 and
C ⋅ (3(m+ 2)+ 1) cells, respectively, with batch normalization in between. Due to
the orientation invariance of the loss function on the centerline predictions, it is
possible that the centerlines in the predicted set x−, x, x+ are not aligned. To
remedy this, we aligned them by comparing them with the eigenvalues of the
flipped centerline. In order to get the flipped eigenvaluesλf, we use

λf ¼ A�1JAλ ð5Þ
where A is the PCA transformation matrix and J is the exchange matrix.

Latent space encoder. The encoder qϕ is composed of two fully connected layers
with batch normalization in-between. The input of the encoder is the vector of size
3(m+ 2) characterizing the centerline predictions and the output is D floating
point values, corresponding to the coordinates of p in the D-dimensional latent
space. We have found D= 8 to be a well-performing dimension in our experi-
ments. Due to the orientation invariance of the centerlines predictions, we need to
construct the encoder to cluster those centerlines regardless of orientations as well.
To do so, the input values are expanded to include those of the flipped centerlines
λ→ (λ, λf) and both are fed to the same layer. To ensure symmetry, the output is
then summed before passing through the last layer. In doing so, the encoder
becomes independent of centerline orientation.

Training
Simulation-based training. Our in silico data generator has two main components:
a physics-based model for the organism and a synthetic frame generator.

In silico worms are generated on demand every training step which removes the
possibility of overfitting to the generated frames. In order to train the model to
work effectively with a range of worm densities, we generate batches with different
numbers of worms in a uniform manner, without bias towards low or high worm
counts. This teaches the model to handle a variety of densities without overfitting
to any specific case. And to make the model more robust, training also happens on
densities whose manual annotation would be extremely challenging. The
simulation and video synthesis are implemented in a GPU framework which
enables fast end-to-end training without the performance penalization of data
transferring between the accelerator and the host machine.

We base the worm simulation on resistive force theory, as it has previously been
shown to correctly predict the position of the skeleton for short spans of time99.
Since the network only perceives the frames surrounding the target frames, we
found the total duration of the clip to be short enough that a linear swimming
model approximation fits our needs. The physics-based model should encapsulate
all types of organism behavior. This can be achieved by oversampling the behavior,
i.e. by making the simulations more diverse in the behavior than reality and thus
hope to include all types of real behavior as well. Details on the worm simulation
and video synthesis can be found in the in silico dataset section of the methods.

Despite the potential for physics-based simulations to be used for synthetic
training data, discrepancies with real data may lead to inaccuracies when applied to
real microscopy images. This reality gap can be the result of an overly simplified
motility model or physics model, or the result of imprecise video synthesis. The gap
may be further increased by the fact that the model relies on the PCA
transformation matrix A obtained on synthetic data, where the number of PCA
components used have been chosen to accurately reproduce all synthetic patterns,
but not necessarily to generalize to out-of-sample videos. Thus we find that our
model is limited to accurate skeleton predictions only on shapes that resemble
those produced by our simulations, and the goal of the simulations is therefore to
reproduce a broad spectrum of possible motility patterns. Likewise, we find that
our model is susceptible to the brightness of the videos, and accordingly we adjust
the real videos to increase their resemblance to the training data.

Loss functions. Centerline descriptors are trained as a regression problem. Thus, the
loss contribution is given by the custom distance defined in Eq. (2). To enforce
specialization on the predictors, and due to the number of predictions M being
considerably larger than the number of bodies N, only the best predictors are
accounted for in the loss. Nevertheless, there may be labels x̂ completely or partially
outside the frame at tc, despite being inside at t0. To make sure not to punish bad
predictions at the boundaries for not matching invisible centerlines, instead of
using the number of simulated bodies N, the subset of bodies completely inside the
frame Nv is used and the final loss expression is given by:

lx ¼
1
Nv

∑
Nv

i
min
m

d2s ðzm; ẑ iÞ ð6Þ

The score L2 loss is computed as the difference between the values predicted and
the score the centerline proposals should have. Thus, using Eq. (3), we train the
predicted score of all predictions using:

ls ¼
1
M

∑
M

i
exp �min

n

d2s ðz i; ẑnÞ
σs

� �
� s

� �2

ð7Þ
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Finally, the loss function for the latent space encoder is a modified cross entropy
loss scaled by the product of scores. Denote Pi;j ¼ Pði $ jÞ as defined in Eq. (4),
then the encoder loss is defined as an average over all pairs of predictions 〈i, j〉 that
are physically within the cutoff σl,

lp ¼
1
S

ŝiŝjðtij logðPi;jÞ þ ð1� ti;jÞ logð1�Pi;jÞÞ
D E

hi;ji
; ð8Þ

where S ¼ ∑ŝi ŝj , and ti,j indicates whether i and j are targeting the same label k, and
is set by

tij ¼
1 if ki ¼ kj
0 otherwise

�
ð9Þ

with ki, kj being the closest labels to the predictions zi, zj respectively.

Training details. Training has been done from scratch, i.e. without the use of a
pretrained backbone. During training, the frame size for the input clips used was
256 × 256, but due to the anchored approach, this does not constrain inference to
happen at the same resolution. Synthetic input is generated on demand and on
device rather than using a fixed pre-generated dataset. Thus, the network never sees
the same frame twice and there is no host-to-device data transfer. As mentioned in
the main text, all networks are trained simultaneously, despite the weights of each
one depending on different cost functions. The code has been written in JAX using
HAIKU and training has been carried out on a cluster of 8 × NVIDIA A5000’s.

Inference. Inference happens at any resolution whose dimensions are multiple of
16. The input frames need to be slightly pre-processed as mentioned in the pre-
vious sections. Candidate predictions are chosen using a score threshold, and non-
maximum suppression in latent space is used for filtering. Due to the sequential
nature of the filtering process, the implementation is written to use the CPU
using NUMBA.

Input clips pre-processing. The images used to train the model have dark (small
pixel intensity) backgrounds, as we employ zero-padded convolutional layers. This
is relevant for real recordings, where a negative flip may be necessary to match the
network requirements. During training, generated clips are normalized using a
1–99 percentile normalization. For real clips, to accommodate uneven lighting
conditions and potential obstructions we apply contrast limited adaptive histogram
equalization (CLAHE) and subsequently correct the intensity of videos to match
the variations of the simulated data (see Supplementary Fig. 1). Note that we match
real data to the synthetic as this avoids the need to retrain the network for different
experimental setups.

In silico dataset
Worm simulation. Worm trajectories are computed by employing a resistive force
theory swimming model used to predict rigid body motions of C. elegans from the
undulations99. Thus, we ensure that from a given set of generated undulations, the
produced motions will match those of real worms. From empirical observations, we
propose a simple Eq. (10) to generate the undulation of swimming adult worms.
The set of equations is specifically targeted to the dataset of dense swimming C.
elegans, but we expect it to also apply to other life stages by modifying the para-
meters of the sampling distributions. Similarly, the undulations proposed do not
take into account self-coiling, as it is rare on free swimming nematodes, but
changing Eq. (10) appropriately would allow the system to learn to detect them.
We define the motions by the centerline angle ψk(s) with s∈ [0, 1] [Fig. 2d], and
decompose this into a linear combination:

ψðsÞ ¼ ψuðs; tÞ þ ψsðs; tÞ: ð10Þ
This logically separates the worm undulations into two types of motion: one

corresponding to a sinusoidal motion ψs and one in which the whole body bends
ψu. These we define by

ψuðs; tÞ ¼ A cos
2π
T

t þ ρ1

� �
cos kusk þ ρ2
	 
 ð11Þ

ψsðs; tÞ ¼ ~A cos
2π
T

t þ kssk þ ρ3

� �
ð12Þ

where ~A ¼ 1
2 1þ j sin 2πtð Þjð ÞA and the rest of parameters are sampled from ran-

dom distributions. Although many improvements for the above equations can be
suggested, we prefer to keep the model simple.

Once the values of the parameters for ψ are generated for all the timesteps of the
simulation, the positional coordinates are obtained using

x!ðs; tÞ ¼ L
Z s

0

cos ψðs0; tÞ þ γ
	 


sin ψðs0; tÞ þ γ
	 


 !
ds0 ð13Þ

where γ is a random orientation and L is the length of the worm (also sampled).

Once the skeleton is defined, the rigid body motions are predicted by solving99

F
!¼

Z L

0
f
!

ds ¼ 0; ð14Þ

τ!¼
Z L

0
ð x!� x!CoMÞ ´ f

!
ds ¼ 0; ð15Þ

where the force f
!

can be calculated from the centerline velocity U
!¼ ∂t x

!þ
V þ Ω ´ ð x!� x!CoMÞ by

f
!¼ αt ð̂t � U

!Þ t̂ þ αn ðn̂ � U!Þ n̂: ð16Þ
Here, V and Ω are the center-of-mass velocity and rotational velocity (that we

are solving for), and αt and αn= α αt is the tangential and normal drag coefficients,
which is also sampled for (α > 1). We did not find a need for using a non-linear
force theory. The simulation is run with Python 3.9 using the JAX library.

Video synthesis. Given the labels for the centerlines positions, synthetic videos are
generated to be used as input during training. In order to add width to each worm,
we vary the local body radius r by a function of the form

rðsÞ ¼ ~R sin arccos asþ bð Þð Þ
�� �� ð17Þ

The pixel values of those circles are calculated with anti-aliasing. Once the worms
have been rendered, noise artefacts such as uneven background, blurring, Gaussian
noise, etc. are added to replicate the observed conditions of real experiments.
During training, standard augmentation techniques are applied as well. In the same
manner as the simulation of the motion and the neural network training, frame
generation is also written in Python using the JAX library in order to leverage GPU
capabilities.

Evaluation
Experimental dataset. Videos of swimming C. elegans were filmed using the pro-
tocol described in ref. 40.

Manually annotated dataset. The evaluation dataset is annotated using a custom
tool that can be found at https://github.com/kirkegaardlab/deeptanglelabel. Around
~1500 centerlines have been annotated (see data availability).

Asymmetric dynamic time-warped error metric. We introduce a custom metric to
suitably compare the densely defined centerlines of the predictions to labels that are
defined using only a few labeled points. The metric used must be shift-invariant, as
having points anywhere along the centerline should yield zero error regardless of
whether the label points precisely coincide with the prediction points or not.
Likewise, label points should be monotonically assigned along the centerline in
order to avoid artificially reducing the error for strongly bent or self-coiling worms.
Finally, it must be robust against the subjectivity of the labellers, as manual
annotations might miss or avoid spots where visibility is low such as the end-points
of the worms.

To satisfy all these requirements, we introduce a metric based on the dynamical
time warping (DTW) distance used to measure the similarity between temporal
curves. In our modified version, asymmetric DTW, summation only runs over label
points. Thus, the metric δadtw is defined as follows: Let d(i, j) be the Euclidean
distance between label point i and prediction line segment j, then

δadtw ¼ min
α

1
N

∑
N

i¼1
dði; αðiÞÞ; ð18Þ

where α: [1,N]→ [1,M] is a monotonic (non-decreasing or non-increasing)
assignment of the N label points to the M prediction line segments. A visual
representation of the metric is shown in Fig. 4b, and the OðNMÞ algorithm for its
calculation is detailed in Table. 1. We note that, just as is the case for the dynamic
time warping distance, this is not a true distance in the mathematical sense.

Tracking
Tracking implementation. Tracking is done by sequentially predicting individual
frames. For better performance, batching of frames allows for parallel detections
and can drastically reduce execution time. Nevertheless, due to the requirement of
including surrounding frames for each detection, a considerable increase in
memory usage is observed. Once a collection of centerline detections is obtained,
each prediction is adapted in order to make it work with the TrackPy Python
library. Due to the peculiarity of our distance metric, we implement a custom
neighbor strategy that avoids the assumption of a symmetric distance function.

It may happen that some detection artefacts appear during the sequential
detection performed during tracking. We have implemented a quick check on the
resulting tracks to make sure not to have stubs, and fix obvious branching of tracks
due to these artefacts. A slight increase in integrity is observed on dense clips.

Tracking integrity. Given a true label of a track of length N, we associate to this
track at each time point i a prediction identity Ii. We may then define the integrity
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of the track as ι ¼ 1=N2 ∑N
i¼1 ∑

N
j¼1½Ii ¼ Ij�. For instance, if a label is given identities

I= [1, 1, 1, 5, 5, 5, 3, 3, 3] during the track, i.e. there have been two identity swaps,
we find ι ¼ 1

3, which has the interpretation that the track was correct for a third of
the time. This measure will in general scale like ι ~N−1, as longer tracks will have
higher likelihood of identity swaps.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dataset videos and labels can be found at https://zenodo.org/record/8093305. Pretrained
weights can be downloaded at https://sid.erda.dk/share_redirect/FEUsqYEqBy. The
source data for graphs and charts is available as Supplementary Data 1 and any
remaining information can be obtained from the corresponding author upon request.

Code availability
Main code can be found at https://github.com/kirkegaardlab/deeptangle with a fixed
version available at https://zenodo.org/record/8093334. and code for labeling videos at
https://github.com/kirkegaardlab/deeptanglelabel.
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