
ARTICLE

Disruptor: Computational identification of
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protein-DNA interactions
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We report an Osprey-based computational protocol to prospectively identify oncogenic

mutations that act via disruption of molecular interactions. It is applicable to analyse both

protein-protein and protein-DNA interfaces and it is validated on a dataset of clinically

relevant mutations. In addition, it is used to predict previously uncharacterised patient

mutations in CDK6 and p16 genes, which are experimentally confirmed to impair complex

formation.
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Missense mutations play a central role in the onset and
progression of cancer1. Examples of relevant molecular
mechanisms include oncogenic activation/inactivation

of proteins1, disruption of the contacts between proteins and their
macromolecular interaction partners2–5, or emergence of cancer
drug resistance6. The last has been previously addressed by a
computational protocol6,7 predicting likely resistance mutations
in the pharmacological target of targeted cancer drugs. Alteration
of protein-protein interactions plays a major role in oncogenic
signalling and is thus the focus of many experimental and com-
putational studies8–11. These network-based studies investigate the
cancer-related interactome with the aim to e.g. identify novel
therapeutic strategies or provide novel insights into cancer biology.
In addition, several studies mapped known cancer-associated
mutations on proteins, including protein-protein interfaces9,12–16

or investigated disruption of protein-protein interactions outside of
a cancer context17. However, to the best of our knowledge, no
theoretical framework exists to systematically evaluate mutations
within the interaction interfaces of critical signalling and regulatory
components to identify disrupting mutations involved in the
aetiology and progression of cancer.

We suggest that such mutations (1) have a high likelihood to be
formed in a particular cancer type and (2) affect the molecular
interactions formed by interaction partners, i.e. disrupt in the
investigated cases. We report here the development and validation
of a computational protocol, Disruptor, to address these aspects.

Results and discussion
Disruptor builds upon our previous work6 where we systematically
evaluate the impact on binding affinity for all possible mutations
within the binding interface (Fig. 1a, b) using experimental structures
of central protein complexes. In addition, we combine gene
sequences and mutational signatures18 to calculate the relative
probability with which a specific mutation is formed. Results of these
analyses are used to predict and rank mutations that have a high
probability to become clinically relevant for carcinogenesis (Fig. 1b).

We have tested Disruptor on five well-studied targets involving
p53:DNA (a consensus recognition sequence), p53:ASPP2 (also
known as 53BP2), ERK2:DUSP6, p16 (also known as INK4a or
CDKN2A):CDK6 (Fig. 1b, c), and Smad4:Smad2 complexes. In
all cases, Disruptor predicted clinically relevant mutations, which
have been demonstrated to disrupt binding to their respective
interaction partner (Table 1). For example, this includes highly
prevalent p53 hotspot mutations, e.g. at residues R248, R249, and
R273, which are known to interfere with binding of the tran-
scription factor to its DNA response element and thus hamper
transactivation2,5. Furthermore, transactivation data deposited in
the International Agency for Research on CANCER (IARC) TP53
database (version R20, July 2019)19 confirmed that 31% (67 out of
215) of our predicted mutations were indeed non-functional or
only partially functional. In contrast, only 4% of mutations (10
out of the 215) showed transactivation activity despite their
classification as disruptive. Unfortunately, for the vast majority of
predicted p53 mutations (64%) within the DNA binding site, no
functional or mechanistic data were available. This lack of data
was not limited to p53, which is a thoroughly investigated target,
but we could observe it for all investigated examples: for each
interaction pair, we identified several mutations, that have not yet
been investigated experimentally despite their detection in cancer
patients, sometimes even multiple times (Supplementary
Tables 1–8). To investigate some of these understudied mutations
in more detail, we selected three p16 (G23S, G55D, and P81L,
Fig. 1c) and two CDK6 (D102N and D110N) patient mutations
predicted by our method, based on Log10 K* scores in compar-
ison to the wildtype score (ΔK* (Log10) score) and exclusion of

triple contiguous mutations in a sequence, for experimental
validation. Please note, we introduced the p16 mutations into
mouse, not human, p16 and thus G23S, G55D, and P81L corre-
spond to mouse G15S, G47D and P73L in Fig. 1c. Intriguingly, in
a biochemical assay for quantifying binary complex formation of
cellularly expressed proteins (termed LUMIER assay;20 Fig. 1d)
all five of our selected mutants showed a significant decrease in
their binary interaction with the binding partner when compared
to the non-mutated complex of p16:CDK6 (Fig. 1e).

Besides providing validation of Disruptor, this indicates that there
may be many more overlooked disease-relevant mutations in
patients that occur only at low rates and thus only affect a small
patient population or even individuals. We therefore suggest that our
method could be an especially valuable tool in precision medicine.

However, some limitations of the current approach should be
noted. There are many other mechanisms by which mutations
can affect protein function that are not addressed in this com-
putational framework. For example, many p53 mutations also
exert a gain-of-function phenotype, e.g. via changes in protein
stability or reprogramming of DNA or protein-protein interac-
tion preferences21. In addition, Disruptor requires structural data
as input, which may not always be available. We are thus working
on the extension of our computational toolbox towards additional
molecular mechanisms and are investigating the suitability of
computationally derived structural models as starting point for
our analyses. Unfortunately, the lack of a comprehensive dataset
describing the impact of all possible mutations within the inter-
action site of a protein on binding to its partner as well as their
relevance for cancer patients prevents us from evaluating the
performance of Disruptor in a systematic manner. However, we
are encouraged by the fact that we could identify disruptive
patient mutations for all case studies investigated in our retro-
spective as well as our prospective experiments.

Taken together, we report a computational protocol to pro-
spectively predict protein mutations affecting binding to macro-
molecular interaction partners. It can be applied to investigate
data on novel patient mutations, guide selection of mutants for
subsequent wet lab experiments, and even predict a potential
mode of action on a molecular level. In addition, Disruptor can
not only be used to systematically investigate all mutations within
the interaction interface of a given target of interest, but also
identify those that will most likely emerge in the clinic. Moreover,
we highlight an adaptable computational workflow for antici-
pating and unveiling the functional relevance of less common and
overlooked patient mutations.

Methods
Preparation of input structures. The following PDB entries were used for the
analysis: 1tup (p53:DNA complex)22, 1ycs (p53:ASPP2)23, 2fys (ERK2:DUSP6)24,
1bi7 (p16:CDK6)25, and 1u7v (Smad4:Smad2)26. All structures were prepared
using the default parameters of the Protein Preparation Wizard27 in Maestro
release 2020-328 and all water molecules and buffer components were deleted. In
case of CDK6, ERK2, and p53:ASPP2, only residues within 12 Å of the interaction
interface were included, and chains A and B were used for the calculation for both
p53:ASPP2 and Smad4:Smad2. All three p53 copies were analysed in case of 1tup.

Computational evaluation of mutations. Structures and definitions of mutable
residues and allowed mutations were submitted in YAML file format. In case of
histidine mutations, all three protonation states were considered. Mutable residues
were either investigated alone or in pairs. Mutable residues were set to continuously
flexible, all other residues were kept rigid. ZAFF29 force field parameters were
added for zinc ions and zinc coordinating residues and downloaded here: https://
ambermd.org/tutorials/advanced/tutorial20/ZAFF.htm (access date 2021/04/07).
Template coordinates and force field parameters for phosphoserines were calcu-
lated using Antechamber 19.0. An example input file for each of the interaction
pairs is provided in Supplementary Data 1. Osprey version 3.27,30 was used for
calculating K* scores, which predicts low-energy structural ensembles and provides
an approximation to binding affinity. It does this by computing provable bounds
on the partition function values for molecular ensembles of the protein, interaction
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partner, and bound complex31. The proof of the epsilon accuracy of the algorithm
is presented in Appendix A of Lilien et al.31, and a recent summary of the algo-
rithm’s details can be found in the Method Details section of Guerin et al.7. The
stability threshold was disabled and an epsilon of 0.03 was used.

Calculation of relative probabilities. A detailed description of the calculation of
relative probabilities has been reported previously6,7,32. Briefly, mutational sig-
natures and their contribution to the mutational burden in a particular cancer

type18 have been combined to calculate cancer-specific values for single base
exchanges within a defined trinucleotide context. These have been used to calculate
relative probabilities for generation of the DNA sequence mutations encoding for
the investigated protein amino acid mutation. We only calculated relative prob-
abilities for mutations that could be generated with single- or double base pair
exchanges, because we considered mutation of the whole trinucleotide codon
required for triple contiguous mutations in a sequence as extremely unlikely6.
Colorectal and cervical cancer associated relative probabilities have been calculated
for ERK2, and melanoma and colorectal cancer associated relative probabilities
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have been calculated for p16 and smad4, respectively. No cancer-associated relative
probabilities have been calculated for p53, given that p53 mutations have been
observed in the majority of cancer types.

Data analysis. Mutations with a change of Log10 K* scores > –3 in comparison to
wildtype scores from the same run were considered to disrupt the interactions.
Please note, that this cut-off can be adapted at the user’s discretion and according
to the project requirements. Histidine mutations were included only if all three
protonation states disrupted binding. Triple contiguous mutations in a sequence
requiring mutations of all three bases of the codon were discarded. This led to a
final set of mutations we considered clinically relevant (see Supplementary Data 2).
Importantly, we only need to correctly classify whether a mutation disrupts the
investigated interaction and how likely its formation is in patients in relation to the
other mutations under consideration. Accurate calculation of the exact binding
affinities or probabilities of mutation formation is thus not required. To prioritise
mutations further, the number of individual mutations included for each residue
position were analysed. Protein residues with the highest number of predicted
individual mutations were considered as “mutational hotspots” and cancer-
associated probabilities for all mutations at these positions were calculated to
prioritise individual mutants further. An overview of the top-three mutational
hotspots, and the individual mutations and their relative probabilities are reported
in Supplementary Tables 1–8. Data were analysed using Microsoft Excel version
2019, Prism 6 for Windows - version 6.07 (GraphPad), and Python 3.7.6.

Selection of mutants to be tested. Two of the three p16 mutations (human G23S
and G55D (mouse G15S and G47D)) were chosen because they were prioritised by
our protocol (Fig. 1c, Supplementary Table 6) and both have been associated with
hereditary melanoma33,34. P81L (corresponding to P73L in mouse) was included,
because within the dataset of computationally predicted mutations (Supplementary
Data 2) it was among the most frequently reported in cancer patients (29 times). In
contrast, CDK6 generally appears to be mutated at a very low rate, with only 97
unique missense mutations reported in COSMIC35 (access date 2022/04/25) in
total and the most common mutations observed only five times in patient samples.
For comparison, the p16 H83Y mutation is reported 128 times and one of 387
unique missense mutations deposited. We therefore focused on two CDK6
mutations (i.e. D102N and D110N, Supplementary Data 2) that were also observed
in the clinic.

Cell culture and antibodies. HEK293 cells (ATCC, CRL-11268) were grown in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS). Transient transfections were performed with TransFectin reagent (Bio-
Rad, #1703352). Antibody used for LUMIER experiments was mouse anti-FLAG
(Sigma-Aldrich, #F3165). The expression constructs were cloned using cDNA as PCR
templates for amplifying the inserts (CDK6: Gene ID 12571, p16: Gene ID 12578),
digestion with restriction enzymes and ligation into a Flag or NLuc vector.

Western blotting. Expression of indicated Flag-tagged CDK6 constructs in
HEK293 cells were determined via Western blotting with indicated Flag antibody
[mouse anti-FLAG® M2-tag 1:1000 (Sigma-Aldrich, St. Louis, MO, USA, F3165-
1MG)]. 5× SDS loading buffer was added to the lysate to reach a final con-
centration of 1× SDS LB. Western Blots are shown in Supplementary Figs. 1 and 2.

LUMIER experiments. HEK293 cells were transiently transfected with wild type or
mutated p16-NLuc (NanoLuciferase) and 3×Flag-tagged wild type CDK6 con-
structs. Subsequent to homogenising the cells with a syringe [lysis buffer: 150 mM
NaCl, 10 mM sodium phosphate (pH 7.2), 0.05% Triton-X100 supplemented with
standard protease inhibitors] the lysates were clarified by centrifugation at
13,000 rpm for 20 min. Cell extracts were incubated on an overhead shaker with
anti-flag antibody (0.6 μg per sample) and protein G–Sepharose beads or IgG beads
for 3 h at 4 °C. Isolated complexes were washed three times with lysis buffer and
three times with PBS. Probes were transferred to 96-well white-walled plates and
subjected to bioluminescence analysis using the PHERAstar FSX luminometer
(MARS, version 3.30 (BMG Labtech). As substrate benzylcoelenterazine is used.
NLuc bioluminescence signals were integrated for 1.2 s following addition of
luciferase substrate. Raw Data Bioluminescence signals are shown in Supplemen-
tary Fig. 1 and raw data values are provided in Supplementary Data 3.

Statistics and reproducibility. LUMIER results were reported from six inde-
pendent experiments. Significance was determined by two sided t-test *p < 0.05;
**p < 0.01; ***p < 0.001.

Data availability
Expression constructs and the data that support the findings of this study are available
from the corresponding author upon reasonable request.

Code availability
OSPREY is free and open-source and available on GitHub at https://github.com/
donaldlab/OSPREY3.

Fig. 1 Overview of the workflow and computational and experimental p16-CDK6 results. a Schematic representation of the molecular mechanism, where
the two binding partners are presented in blue and green. Upon mutation (red), binding is disrupted. b Overview of the computational workflow. The inset shows
the interaction between p16 (green) and CDK6 (blue), with the interaction interface coloured yellow (p16) and violet (CDK6). c Heatmap showing the changes in
the Osprey30 Log10 K* score for mutations (Y-axis, H1-3 correspond to different histidine protonation states) compared to wildtype (wt, marked black) p16 residues
(X-axis). Triple point mutations are marked grey. Hotspot residues predicted to disrupt interaction with CDK6 are coloured red on the p16 surface below. Arrows
indicate the p16 residue position. d Schematic depiction of the LUMIER assay for the detection of protein:protein interactions. A p16 protein tagged with the
NanoLuc Luciferase (NLuc) is transiently expressed in HEK293T cells together with Flag-tagged CDK6. The complex is immunoprecipitated with Flag antibodies
and the emission of light is detected on-bead upon substrate (benzylcoelenterazine) addition if the bait protein is present. Expression profiles have been validated
by Western Blot as shown in Supplementary Figs. 1 and 2. Introduction of dimerisation interfering mutations to either CDK6 or p16 lower the detected luciferase
signal. e LUMIER assay of Flag-tagged CDK6 variants in the presence of wildtype or mutated p16-NLuc. Please note, we introduced the p16 mutations into mouse,
not human, p16 and thus G23S, G55D, and P81L correspond to mouse G15S, G47D and P73L. The bioluminescence signals were normalised on the corresponding
input signals. Bars represent the luciferase intensity relative to wild-type CDK6 and p16 interactions. Error bars represent SEM of n= 6 independent experiments.
Significance was determined by two sided t-test *p <0.05; **p < 0.01; ***p < 0.001. Structures were visualised using PyMOL42.

Table 1 Examples of top-ranked computationally predicted
patient mutations confirmed to disrupt complex formation.

Protein Interaction
partner

Mutation ΔK* (Log10)
scorea

Reference

p53 DNA consensus
sequence

R248Q −4.46b Merabet et al.2

R248W −4.54b Merabet et al.
R249S −4.60b Merabet et al.
R273C −7.86c Garg et al.5

R273H −7.74c Garg et al.
R273L −7.55c Garg et al.

ASPP2/53BP2 R248W −53.49 Gorina et al.23

R249S −4.14 Gorina et al.
R273H −5.01 Gorina et al.

ERK2 DUSP6 D321N −8.76 Brenan et al.3

Taylor et al.36

p16 CDK6 G23D Xd McKenzie et al.37

M53I X Harland et al.38

D84G −5.19 Yarbrough et al.39

D84H X Ruas et al.40
D84N −5.26 Ruas et al.
D84V X Yarbrough et al.
D84Y X Ruas et al.
R87P X Yarbrough et al.

smad4 smad2 R361C −4.68 Shi et al.4

D537E −7.03 Shi et al.
D537Y X Gori et al.41

aDifference of mutant Log10 K* score in comparison to wildtype score.
bChain A results.
cChain B results.
dBinding was completely disrupted for the mutant and thus no difference to the wildtype score
could be calculated.
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