
ARTICLE

Global within-species phylogenetics of sewage
microbes suggest that local adaptation shapes
geographical bacterial clustering
Marie Louise Jespersen 1,2, Patrick Munk 1, Joachim Johansen 2,3, Rolf Sommer Kaas 1, Henry Webel2,

Håkan Vigre 1, Henrik Bjørn Nielsen 3, Simon Rasmussen 2✉ & Frank M. Aarestrup 1✉

Most investigations of geographical within-species differences are limited to focusing on a

single species. Here, we investigate global differences for multiple bacterial species using a

dataset of 757 metagenomics sewage samples from 101 countries worldwide. The within-

species variations were determined by performing genome reconstructions, and the analyses

were expanded by gene focused approaches. Applying these methods, we recovered 3353

near complete (NC) metagenome assembled genomes (MAGs) encompassing 1439 different

MAG species and found that within-species genomic variation was in 36% of the investigated

species (12/33) coherent with regional separation. Additionally, we found that variation of

organelle genes correlated less with geography compared to metabolic and membrane genes,

suggesting that the global differences of these species are caused by regional environmental

selection rather than dissemination limitations. From the combination of the large and

globally distributed dataset and in-depth analysis, we present a wide investigation of global

within-species phylogeny of sewage bacteria. The global differences found here emphasize

the need for worldwide data sets when making global conclusions.
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Sewage samples have proven useful for surveillance of anti-
microbial resistance (AMR)1,2 and infectious diseases, e.g.
poliovirus, norovirus, and rotavirus3,4. Very recently, sew-

age samples have been used in the surveillance of the Covid-19
pandemic5–7. In supplement to such surveillance activities,
understanding of the microbial community residing in sewage is
important, because sewage has been suggested to comprise a
reservoir of AMR and at the same time, provide an environment
for potential genetic transfer between the bacteria in the
community8. Several studies have examined the bacterial com-
position of sewage samples by 16 S rRNA investigations9–11 or
mapping to reference databases12. However, such investigations
are limited to species previously identified and furthermore, it can
be difficult to distinguish closely related species from 16S rRNA
analysis, thus, species living in sewage that are closely related to
species from the human gut could be confused. Within the last
decade, investigations of microbiomes in human hosts, soil,
plants, and more have found that differences in bacterial com-
munities correlates with geography11,13–16. Among bacterial
species isolated from clinical infections such as Staphylococcus
aureus, Streptococcus pneumoniae, and Escherichia coli, within-
species diversity correlating with geography has been observed in
multiple studies17–19. Some of these geographical differences
could be a result of local environmental selection but may also be
due to the effect of dispersal limitations on local prevalence.
These findings challenge the long-standing, Baas Becking ecolo-
gical hypothesis that “Everything is everywhere, but the envir-
onment selects”20.

In the attempt to disentangle the effect of environmental selection
and/or dispersal limitations, researchers have studied the within-
species diversity not only from isolates, but also in metagenomics
data. Correlations between diversity within species and geography
have been identified in bacterial species, such as Eubacterium rectale
and Candidatus Pelagibacter, from marine metagenomes21 and
human gut microbiomes22. Another study did not identify sig-
nificant geographical differences within subspecies of for instance
Bacteroides vulgatus and Alistipes putredinis from the human gut23.
However, the subjects included in that study were limited to North
Americans and Europeans. It has often been difficult to obtain
comparable samples in a standardized way across large geographies.
The Global Sewage dataset2, containing samples from 101 different
countries, serves as an ideal candidate for a broader investigation of
regional within-species diversity. A phylogenetic analysis of
79 samples focusing only on reference mapping to known bacterial
species has previously been performed12 and found geographical
clustering for environmental and human commensal bacteria.

In this study, we aim to investigate the microbial community of
sewage by constructing metagenome assembled genomes (MAGs)
and determine the within-species phylogeny on a global scale,
using 757 sewage samples from 241 sites and a total of 101 dif-
ferent countries. With these phylogenies, we increase the depth of
the analysis by comparing geographical clustering between dif-
ferent genes when stratified by the cellular localization of the
encoded proteins. Both in terms of sample size and global reach
this study is the most comprehensive investigation of within
species diversity among sewage species to date. From our analysis,
we identified 3353 near complete (NC) MAGs from 1439 dif-
ferent MAG species and found that variation within some species
(12 species out of 33 investigated) correlated with geographical
separation. Furthermore, we found that, for a selection of species,
genes associated with organelles displayed on average 10% less
geographical variation compared to other groups of genes, sug-
gesting that the geographical clustering is primarily due to
environmental selection. Thus, we confirm the fundamental
microbial ecology doctrine that microbes are globally dispersed
but selected by the environment.

Results
Predominant bacteria in sewage do likely not originate from
the human gut. To identify bacterial genomes from sewage across
the world, we used a combination of two different metagenomics
genome binners (VAMB24 and MetaBAT225). From 757 samples
across 101 different countries (Fig. 1a and Supplementary Fig. 1),
we were able to create 3353 near complete (NC) metagenome
assembled genomes (MAGs) assigned to a total of 1439 different
MAG species. Of the MAGs we detected, 3301 were annotated to
bacteria and 52 to archaea. The taxonomic distribution of the
identified MAGs comprised 37 phyla, 75 classes, 151 orders, 259
families, 419 genera, and 215 species. However, we could only
annotate 699 MAGs (20.8%) at species level, leaving 2654
unknowns. Likewise, there were unannotated MAGs at genus
(29%), family (6%), and order (2%) level (see Supplementary
Data 1 for complete taxonomic annotations). All MAG species
were included in the analysis regardless of annotation level. The
identified MAG species captured a wide range of taxonomy from
the known microbial tree of life (Fig. 1b, c).

As the sewage was collected from urban areas, we were
interested in knowing how large a fraction of the MAGs that
could be associated with the human gut microbiome. The 3353
NC MAGs, we identified, were less than the number of NC
MAGS (5036) found from binning of 1000 human faecal
samples24, however, these gut MAGs represented a lower number
of different MAG species (645). Lower assembly quality and
higher strain diversity has been suggested to reduce binning
performance26, which could be why the binning of the sewage
metagenomes is more complicated than binning of the human
gut samples. Additionally, we found that only 1.2% of all the NC
MAGs could be identified as human gut microbiome species
(mash distance <0.05 to any genome from the Unified Human
Gastrointestinal Genome (UHGG) catalogue27), similar to a
previous study based on mapping of reads from a subset of the
Global Sewage samples, where 3.7% of the reads were found to be
associated with the human microbiome2. In contrast to this, other
studies using 16 S rRNA marker genes have found a higher
proportion (15% and 4.3–28.7%)10,11. The difference in these
results could be due to the limitations of each of the different
methods for bacterial identification. There are advantages and
disadvantages for different methods for bacterial identification
and genome binning can be used to detect prevalent, including
novel, bacterial genomes.

To further investigate differences in the bacterial composition,
we compared the overall ratio of phyla between the seven World
Health Organization (WHO) regions and a pool of human gut
samples (Fig. 2a). The phylum-level composition based on the
retrieved NC MAGs was similar in all samples regardless of
geography with proportions of Firmicutes and Proteobacteria in
all regions, consistent with untreated sewage 16S rRNA amplicon
sequencing in Hong Kong and USA9,11 and shotgun sequencing
in Portugal28. However, the phylum compositions differed
significantly from 1000 diverse human gut metagenomes (Two-
sample Kolmogorov-Smirnov, P < 2.2e–16, Supplementary
Data 2), suggesting again that the MAGs recovered from sewage
do not primarily originate from the human gut. As the human
gastrointestinal tract is a hypoxic environment, and sewage gets
oxygenated, we expected an enrichment for aerophilic and
aerotolerant organisms in the sewage system, which could drive
a taxonomic shift. MAGs abundant in sewage indeed showed a
higher prevalence of genes associated with oxidative phosphor-
ylation, compared to MAGs abundant in humans (Fig. 2b).

When mapping all our reads back to the collection of classified
MAGs from this study and human gut, we confirmed similar
regional taxonomic profiles (Fig. 2c). Additionally, these results
suggest that species associated with humans make up a minor
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proportion of a taxonomically more diverse sewage bacteriome
with more potential sources (mean Shannon diversity of >3.75
and 2.4 in sewage and human gut, respectively, Fig. 2d).
Furthermore, around 70% of the human gut microbiome reads,
whereas just 41% of the sewage reads were assigned to the MAG
collection.

Together our results suggest a major shift in taxonomy,
enrichment for aerophilic organisms and a lower genome
retrieval efficiency, due to higher alpha diversity and multi-host
strain heterogeneity, in the sewage compared to human guts.

Sewage bacteria vary according to geography. To infer the
phylogeny and identify geographical clustering within single
species, we identified MAG species that were present across
multiple samples. From the 1439 different MAG species, only 41
contained MAGs retrieved from ten or more different samples.
Altering the 95% species Average Nucleotide Identity (ANI)
threshold to 90% or 97.5% only resulted in a few variations to the
originally identified MAG species cluster sizes and only a single
new MAG species, found in ten or more samples, was identified
(Supplementary Fig. 2). This is consistent with other studies
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Fig. 1 Distribution of samples and MAGS worldwide. a World map of sampling sites. 757 sewage samples were collected from 241 different sampling
sites spanning 101 different countries. Sampling sites are highlighted and coloured according to the regional grouping from the World Health Organization
(WHO). Sampling times can be found in Supplementary Fig. 1. The map was created using ggplot2 in R61. b Maximum likelihood (ML) tree of marker gene,
amino acid alignments for all bacterial MAGs and bacterial genomes included in GTDB-Tk. The MAGs identified from sewage are scattered throughout the
tree of known bacterial species. c ML tree of marker gene, amino acid alignments for all bacterial MAGs identified in this study. The identified MAGs are
clustered according to phyla rather than geographical origin. Inner band is showing the geographical origin of samples according to WHO region, colours
follow legend in b. Outer band is showing the phyla of MAGs, coloured according to the legend on top.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05083-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:700 | https://doi.org/10.1038/s42003-023-05083-8 |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


suggesting the use of 95% ANI as a species threshold29,30, how-
ever, ANI boundaries could vary between species and these
results are debated31,32.

For each of the 41 species of 10 or more genomes, we
identified orthologous genes and found between 1437 and 4967
different orthologous genes for each species. We inferred a
maximum likelihood tree for each gene and created a combined
multi-gene phylogenetic tree for each species using ASTRAL. For
instance, Cluster 5 (C5), which we identified as belonging to the
Brachymonas genus, contained between 1 and 12 MAGs from
each geographical region and the phylogenetic species tree was
based on 2298 orthologous gene trees (Fig. 3a). Potential
chimeric genomes could be placed incorrectly in the phyloge-
netic trees, to validate that our approach was not biased by such
chimeric genome bins, we repeated the species-level phylogenetic
trees with a dataset of 50 human gut samples spiked with 1–3

different Salmonella strains from Nissen et al. 202124. We found
that only very similar strains (ANI > 99%) were in risk of being
mixed into one MAG and that such mixed MAGs were placed
exactly as or very similar to the most identical reference strain in
the species trees, thus not affecting the results from our analyses
(Supplementary Fig. 3 and Supplementary Table 1). Additionally,
we checked if the within-species differences found in the trees
were biased by the binning methods (VAMB vs MetaBAT) and
found that this was not the case (R2 < 0.25, Supplementary
Fig. 4).

To assess the degree of geographical clustering and potential
dispersal limitation, we performed a PERMANOVA test on the
distance matrices from the ASTRAL trees with more than one
genome from at least two regions, leading to a total of 33 tested
species (Supplementary Fig. 5). Geographical clustering was
identified as the R2 value from the PERMANOVA test, which
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Fig. 2 Bacterial composition of sewage. a Relative frequency of the 11 most prevalent phyla between the different regions. The ratio plotted is the
taxonomy of the combined pool of MAGs from all samples of a certain region. In this plot, only the 11 phyla found in more than ten samples across regions
were plotted, while the remaining MAGs were grouped into one combined category (others). The phyla ratio between sewage samples of all regions were
similar, but the phyla distribution in the human gut samples were different from these (Two-sample Kolmogorov-Smirnov, P < 2.2e–16, Supplementary
Data 2). b Frequency of genes involved in the oxidative phosphorylation pathway. These genes were identified from the best representative genome of the
40 most prevalent MAG species from the Global Sewage data set and from the MAG species obtained in Nissen et al. 202124. Colours according to sample
origin of the MAG species genome. Only one gene involved in oxidative phosphorylation is found in all human gut MAG species, whereas up to five genes
from this pathway is found in the MAG species from sewage. c PCA plot of clr transformed read count abundance of the combined data set of 2,084 MAG
species obtained in this work and in Nissen et al. 202124. The bacterial abundances (phylum level) in sewage samples across all regions were similar,
however, the bacteria in the human gut samples consists of only a small fraction of the variety of bacteria found in sewage. d Shannon Diversity index
comparison between sewage samples from different regions and human gut samples. The Shannon diversity index was calculated from Transcripts Per
Kilobase Million (TPM) using the vegan package in R58. The alpha diversity is similar between sewage samples from all regions, but the diversity in the
human gut samples is lower. Sample sizes for figures (a, c, and d) are n= 244, 136, 71, 160, 80, 36, 30, and 15 for Europe & Central Asia, East Asia &
Pacific, Latin America & Caribbean, Sub-Saharan Africa, North America, South Asia, Middle East & North Africa, and Human gut respectively. The boxplot
centre, lower and upper hinge correspond to the median, first and third quantiles, respectively. The upper and lower whiskers extend to the largest and
smallest values, no more than 1.5* the inter-quartile range (IQR, ie. the distance between first and third quartiles). Data points beyond these values are
plotted as individual outliers.
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describes how much of the variation in the data that can be
explained from the regional origin of the samples. Of the 33 tested
trees, 12 clustered significantly (P < 0.05, BH corrected) according
to genome sample region (Fig. 3b). These were the trees of
Lactococcus raffinolactis, Brachymonas denitrificans, Escherichia
coli, and Escherichia flexneri and unknown species within the
genera: Neisseria, Veillonella, and Brachymonas, the families:
Leptotrichiaceae, Desulfobulbaceae, and Saccharofermentanaceae,
and the Selenomonadales order. These results were consistent
when pruning trees from outliers (Supplementary Fig. 6). Other
metagenomic studies of sewage and human gut samples have also
shown that some species vary according to geographical
dispersion, while others do not12,22,24. One study of the human
gut microbiome found a higher number of species within

Firmicutes, where variation was geographically separated22.
However, we did not find any phyla enriched in geographical
clustering (Supplementary Fig. 7). On average 56% of the
variation in the 12 significant trees could be explained by
geography, additionally, several smaller clusters (C26, C28, C34,
and C38) with a high degree of geographical clustering (>50%)
did not achieve significance (0.11 > p > 0.05). The portion of
variation explained by geography is much higher than the average
of 19% variation in the significant trees found by a similar study
of the human gut microbiome24, suggesting that more of the
genomic variation found in environmental bacteria correlates
with geography than the variation found in gut microbes. The
geographical clustering suggests that either dispersal limitations
or local selection can cause localized divergence.
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corrected. The boxplot centre, lower and upper hinge correspond to the median, first and third quantiles respectively. The upper and lower whiskers extend
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Rank Sum test. The significance level highlighted is of the p value between genes from organelles and membrane from the Wilcoxon test adjusted by BH
correction. We found the geographical clustering (R2) of the organelle genes to be lower than the ones from the membrane genes in 25 MAG species, of
which nine were significantly lower. The distribution of gene tree geographical R2 values and sample sizes can be found in Supplementary Fig. 9. *P < 0.05,
**P < 0.01, ***P < 0.001.
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Organelle-associated genes show less geographical variation.
To investigate whether the observed geographical clustering was
the result of dispersal limitations or local selection, we examined
whether the clustering varied between different groups of genes.
We hypothesised that proteins on the surface of the bacteria
would be subject to selective pressure from the environment,
because of their direct interaction with the surroundings,
whereas the intracellular proteins, not directly interacting with
the environment, would vary as a consequence of genetic drift.
We therefore tested whether the variation explained by geo-
graphy differed as a function of overall gene product cellular
location (organelles, membrane, and metabolic). As we found
that organelle genes varied less than other genes in 94% of
species (Supplementary Fig. 8), we wanted to ensure that our
test was not driven by differences in gene conservation levels.
We found that this was not the case, as gene variation was
unrelated to geographical clustering (R2) (Supplementary
Table 2). Additionally, gene lengths, regional distributions
across trees, and the number of MAGs per species were also
unrelated to geographical clustering (R2), with the exception of
one species (C26), which we therefore excluded from further
analysis.

With a Kruskal-Wallis Rank-Sum test on geographical
clustering (R2) from the three gene groups (membrane,
organelle, and metabolic), we found nine MAG species with
significantly (P < 0.05, BH corrected) different geographical
clustering (R2) between the groups after Benjamini Hochberg
(BH) correction of p values. The significant MAG species
included E. coli, E. flexneri, Sebaldella termitidis and unknown
species in the Veillonella, Brachymonas, and Neisseria genera and
the Desulfobulbaceae, Saccharofermentanaceae, and Thiotricha-
ceae families. One of the MAG species with significant
differences was C5 (Brachymonas), in which the trees of genes
associated with organelles had significantly lower geographical
clustering (R2), than trees of genes from the other two groups
(Fig. 3c). The lower geographical clustering (R2) in organelle
gene trees were also found for the eight other significant MAG
species (Fig. 3d and Supplementary Fig. 9) (two-sided Wilcoxon
Rank Sum test, P < 0.05 BH corrected, Supplementary Data 2).
Moreover, six of the nine significant MAG species were
significantly clustered according to geography in the ASTRAL
species tree and the three remaining clusters (C34, C37, and C38)
showed a high degree of geographical clustering but were not
significant. Likewise, we saw lower geographical clustering (R2)
in organelle genes for the majority (16 of 23) of the remaining
MAG species without significant difference.

To support these findings, we calculated the dN/dS ratio for the
nine MAG species with significant differences between organelle
and membrane geographical clustering (R2). For all the nine
MAG species, the dN/dS ratios were larger for membrane genes
than organelle genes, suggesting positive selection of the
membrane genes (Supplementary Fig. 10). Furthermore, this
difference was significant for seven MAG species (C3, C5, C13,
C14, C34, C37, and C38) (two-sided Wilcoxon Rank Sum test,
P < 0.05, BH corrected, Supplementary Data 2).

Collectively, our results show similar levels of geographical
clustering in the membrane genes and metabolic genes for a
selection of species, whereas the genes associated with the
organelles displayed significantly less geographical clustering. We
expect that the organelle genes would have followed a similar
evolutionary trajectory as the metabolic and surface genes if the
clustering was a result of dispersal limitations. Our results thus
suggest that for some species (36% of the investigated) the
geographical clustering is primarily due to regional selection,
rather than dispersal limitations.

Discussion
Here, we present an investigation of how sewage bacteria are
dispersed globally. We found that in general the bacteria identi-
fied by metagenomic binning in untreated sewage, from the inlet
to the wastewater treatment plants, showed a degree of geo-
graphical clustering for the within-species diversity. Interestingly,
the genomic variation in organelle genes showed less regional
clustering than genes involved in metabolic and membrane
functions, suggesting that the clustering observed is primarily due
to selection rather than dispersal limitations. Thus, the bacteria
residing in sewage can spread globally, but are under evolutionary
pressure to adjust to the different environments across the world.
This selection pressure combined with the co-existence of mul-
tiple bacterial species and the presence of antimicrobial resistance
genes (ARGs) and antimicrobial drugs in sewage create a high
probability for transferral of ARGs between bacteria8. To prevent
global transmission of these genes, it is important to better
understand how sewage bacteria are globally disseminated.

The WHO has a goal of delaying the dissemination and emer-
gence of AMR through monitoring33. We have previously suggested
that sewage sampling is a desirable strategy for such surveillance
activities34. Metagenomics binning can be used to identify novel,
bacterial genomes that are not present in reference databases. Here,
we found that binning of shotgun sequences could identify a frac-
tion of the bacteria residing in the sewage samples and that the
bacteria originating from the human gut were a small subgroup of
the microbiome found in these samples. This is a reminder that
when using sewage samples for surveillance activities, the detection
method should be selected carefully. If monitoring human-derived
pathogens in sewage, one needs to consider that DNA from these
organisms is a very small fraction of the total pool of microbial
DNA. Mapping to reference genomes can be useful for the mon-
itoring of the global spread or the local levels of a particular species,
like we have seen for the covid-19 pandemic7. However, metage-
nomic assembly and binning could be used to identify potential
candidates for surveillance and possibly to clarify the genomic
context in which ARGs emerged and disseminate. Thus, there is
more potential for new and important discoveries using metage-
nomics binning of sewage samples.

In conclusion, this study shows a clear geographical phyloge-
netic clustering of 12 bacterial species from sewage and suggests
that this could be caused by global differences in the selection
pressure in wastewater and the corresponding adaptation of
sewage bacteria. Thus, demonstrating the importance of more
understanding of the dynamics in the microbial life residing in
sewage. Furthermore, the worldwide differences found with-in
different bacterial species underpin the importance of including
samples from the entire world if global conclusions must be made.

Methods
Global sewage dataset. Samples were collected and handled as part of the Global
Sewage project2,35 . In brief, untreated sewage samples were collected before the inlet
to the wastewater treatment plant at sample sites. DNA was extracted and frag-
mented from the untreated sewage and libraries were sequenced using Illumina
paired-end sequencing to an average sequencing depth of approximately 42 mio
reads. BBduk was used for adaptor removal and quality trimming of reads, using a
quality threshold of 20 and a minimum read length of 50 bp. In total, 757 samples
from 241 sites spanning 101 different countries across the world were included in
this project. Of the 757 different samples, 56 were re-sequenced to reach a sufficient
sequencing depth, the handling of these duplicates is described under the relevant
methods. A complete list of samples included can be found in Supplementary Data 3.

Genome binning. We assembled forward, reverse, and singleton reads with
metaSpades (v3.13) using kmer sizes between 27 and 127 bp with an interval of
20 bp. Scaffolds above 1000 bp were saved for further analyses. For binning with
MetaBAT2 (v2.10.2)25, we filtered contigs to a minimum size of 1500 bp and
performed single-sample binning with MetaBAT2 using default settings. For bin-
ning with VAMB (v3.0.1)24, we combined contigs >2000 bp from all samples into
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one catalogue. From a pilot run with VAMB24 binning, we found no increase in the
number of NC MAGs when using contigs >1500 bp, therefore we chose a mini-
mum contig size of 2000 bp to reduce mapping time. We mapped reads from each
sample to the contig catalogue using Minimap2 (v2.6)36. Afterwards, jgi_-
summarize_bam_contig_depths from MetaBAT (v2.10.2)25 was used to calculate
abundances of contigs in each sample. The output abundances were combined into
a matrix, normalized using vambtools24, and used as input to VAMB. We calcu-
lated and normalized Tetra Nucleotide Frequencies (TNFs) using vambtools as
well. From the contig catalogue, we obtained contig names and lengths and used
them as input to VAMB along with the normalized TNFs. We ran VAMB using the
memory mapping mode available at the github repository. VAMB was run using a
GPU with a mini-batch size of 256 and a network of 48 latent and 1024 hidden
neurons.

We assessed the quality of all MAGs with a size above 1 Mbp using CheckM
(v1.1.3) lineage_wf37. We defined the quality of MAGs as in Almeida et al. 201938

where NC MAGs were defined as >0.9 completeness and <0.05 contamination. We
used NC MAGs in our further analysis. To group similar MAGs (likely to be
different variations of the same bacterial species) into clusters, we used dRep
compare (v2.2.3)39 with a mash threshold of 90% and an Average Nucleotide
Identity (ANI) threshold of 95% on all identified NC MAGs. dRep dereplication
was run with the same thresholds on each of the dRep clusters identified from the
comparing and the resulting score was used to select between MAGs from the same
sample within one cluster, to avoid redundancy if a bin was identified both by
MetaBAT and VAMB. Additionally, the dereplication results were used to select
the best MAG species representative for each cluster of MAGs. We assessed the
taxonomy of all NC MAGs with GTDB-Tk classify_wf (v0.3.2)40.

For comparison of the taxonomic distribution of sewage MAGs to human gut
species taxonomy, the MAGs created in Nissen et al. 202124 were used. Difference
in phylum distributions between human and sewage samples were tested for
significance with a two-sample Kolmogorov-Smirnov test in R. Additionally, these
human gut MAGs were dereplicated like the MAGs from the sewage data and used
together with reads from 15 randomly selected human samples (no infant or
diseased hosts) from the dataset from Almeida et al. 201938 for abundance
comparisons. The read count abundances of MAG species were obtained using
CoverM (v 0.6.1)41, by mapping to the best representative MAG species genomes.
In the mapping process reads from duplicated samples were pooled into a single
fastq file, and prior to abundance investigations the counts from all samples were
rarefied. The rrarefy function from the Vegan R package was used to rarefy the
counts to the minimum number of counts (431.564) found in a sample, afterwards
the abundance matrix was filtered based on the expected/covered ratio of a genome
(>=0.5) and Transcripts Per Kilobase Million (TPM) were calculated from the read
counts. The expected coverage (c) of a genome was calculated as:

c ¼ 1� 1� l
g

� �r

ð1Þ

Where l is the average read length, g is the genome length, and r is the number
of counts mapped. This calculation is simplified from the calculation described in
Rasmussen et al. 201542. The fraction of sewage MAGs likely to originate from the
human gut microbiome was found by using MASH (v2.0)43 to map to the Unified
Human Gastrointestinal Genome (UHGG) catalogue27 and identified as within a
mash distance of 0.05 to any genomes in this catalogue.

Phylogeny. We reconstructed phylogenetic trees containing all the identified
MAGs using the marker gene set from GTDB-Tk. One tree was created
including the GTDB-Tk reference species and another without these. Both trees
were inferred with FastTree (v2.1.11)44 and rooted on a Thermotogae, because
this is the bacterial phylum most closely related to Archaea45. We visualized the
trees using iTol (v1.0)46. For the 41 dRep clusters spanning ten or more samples,
a separate tree of the MAGs belonging to each cluster was inferred. For this, we
used Prodigal (v2.6.3)47 protein predictions from GTDB-Tk as input to Sonic-
paranoid (v1.3.4)48, to identify orthologous genes, using the fast mode. To align
DNA sequences of all identified orthologous, we used MAFFT (v7.453)49.
Samples were excluded from the alignments if they had more than one copy of
an orthologous gene, to avoid uncertainty of which gene was used to infer
phylogeny. We used TrimAl (v1.4)50 to convert alignments to phylip format,
prior to building a separate phylogenetic tree for each gene using IQ-TREE
(v1.6.8)51 with automatic model selection. Trees were created if a gene was
observed in at least three samples, which is the lowest possible number of
samples that a tree can be inferred from with IQ-TREE. To infer the overall
species tree phylogeny, we used all the gene trees from a specific MAG species as
input to ASTRAL (v5.7.4)52. In this tree, IQ-TREE was used to correct branch
lengths with the ASTRAL tree as constrained tree input. We used the ggtree
(v2.0.4) package in R53 for visualization of species trees. To validate this method
for investigation of within-species differences, we applied CheckM and dRep
compare with same settings as described to a dataset of 50 human gut samples
spiked with one to three different Salmonella strains and furthermore, created an
ASTRAL species tree as described above for the MAG species found from this
analysis.

Functional annotation. To assign functional annotation to the genes, we used the
Prodigal protein predictions from GTDB-Tk as input to InterProScan (v5.36-
75.0)54. From the InterProScan output, we then extracted the GO-term annotation
and used the GO.db-package (v2.1)55 in R to get the annotations within the Cel-
lular Component category. We grouped the genes into the top-level annotations
within this category, to get overall groupings for comparisons between gene groups.
We selected the groups membrane and organelle for further analysis, and the
remaining genes were combined into one collapsed group. The organelle-associated
genes were mostly coding for proteins that were a part of the ribosome (85%) and
to a lesser extend proteins bound to the chromosome (9%), acting as part of the
flagellum (5%), or polyhedral organelles (1%). For many of the orthologous genes
(up to 91%), it was not possible to annotate them to any cellular component GO
term. To include these unannotated genes in the analysis, we grouped them with
gene groups other than membrane and organelles. When investigating the biolo-
gical process GO term annotation of this gene group, the largest fraction (on
average 45%) of genes were annotated to be part of a metabolic pathway and we
therefore considered this group to represent metabolic genes. The genes involved in
oxygen tolerance were likewise identified from the InterProScan output, by iden-
tifying the genes involved in the KEGG pathway map00190, oxidative
phosphorylation.

dN/dS calculation. Codeml (paml (v.4.9j)56) was used for genewise dN/dS cal-
culation. Genes with genetic variation between samples were identified with the
snppos_analyzer from CSI phylogeny (v1.4)57 and only these genes were input to
codeml. Furthermore, to make sure that gene alignments were in frame, only
alignments starting with a start codon (ATG, TTG, or GTG) were included. The
phylip format gene alignments from the phylogeny reconstruction were converted
to fasta files using TrimAl (v1.4)50 and stop codons were removed prior to dN/dS
calculation. Along with the alignments, the gene tree files from IQ-TREE (v1.6.8)51

were used as input to codeml paml (v.4.9j)56. One dN/dS ratio per gene was
calculated with codeml by setting the model option to 0 and the seqtype option to
codons. Additionally, optimization was performed one branch at the time (method:
1) and ambiguous sites were removed from the calculation (cleandata: 1), otherwise
default settings were used.

Statistics and reproducibility. To determine the amount of geographical var-
iation for both GTDB-TK tree, species trees, and gene trees, we used the adonis2
function from the vegan package in R (v2.5–6)58 to perform a Permutational
multivariate analysis of variance (PERMANOVA) according to geography.
Geographical clustering was identified as the R2 value from the PERMANOVA
test, which describes how much of the variation in the data that can be explained
from the regional origin of the samples. Prior to the testing, multiple MAGs
from the same city within one tree were limited to one representative MAG
based on the dRep score, this filtering also excluded any duplicate MAGs from
duplicated samples. In addition to this, a MAG was removed from the tree if it
was the only representative of a region in this tree. To adjust for multiple testing,
we corrected the p values from these tests using Benjamini & Hochberg (BH)
algorithm59, adjusting for the number of ASTRAL species trees tested with
PERMANOVA. For some short genes with low variance, the geographical R2-
values outputted from the PERMANOVA test were negative (Supplementary
Fig. 11). It is possible to get a negative R2 value when the fitted model is worse
than a horizontal line.

To identify species with any significant differences in geographical R2- or dN/
dS-values between gene groups, we grouped the values of the gene trees according
to the Cellular Component annotations and used a Kruskal-Wallis test on the
values from the different groups. Afterwards, we applied a Wilcoxon Rank Sum
Test on the groups from MAG species displaying significance (P < 0.05, BH
corrected) from the Kruskal-Wallis test, to identify which of the three groups that
were differing from each other. P values from the Wilcoxon- and Kruskal-Wallis
tests were adjusted using the BH algorithm59, adjusting for the number of gene
group tests.

To support the comparisons of geographical clustering (R2) between gene
groups, we investigated if different gene qualities could bias the geographical R2

value. This was done by calculating the Pearson Correlation Coefficient (PCC) for
geographical R2 values according to the number of samples in the tree, gene
variation, gene length, and regional entropy. Number of MAGs was counted in a
tree after removing duplicate city and single region samples, as it was done prior to
the PERMANOVA. Gene variation was obtained as the mean fraction of varying
sites across all pairwise sequences (mean pi). Gene lengths were identified as the
number of positions in the fasta output from Sonicparanoid. Regional entropy was
calculated as:

� ∑
n

i¼1
lnðpipi Þ ð2Þ

where n was the total number of regions in the tree, and pi was the proportion of
samples belonging to a specific region. We performed these calculations on all gene
trees tested with PERMANOVA. P values, test statistics, and 95% confidence
intervals of Kruskal-Wallis-, Wilcoxon-, and species tree PERMANOVA tests can
be found in Supplementary Data 2.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw reads are available in the European Nucleotide Archive (ENA) under the
accession numbers: PRJEB40798, PRJEB40816, PRJEB40815, PRJEB27621, and
ERP0154092,35. Source data for Fig. 2a, b and d are found in Supplementary Data 1, while
source data for Fig. 3c, d are in Supplementary Data 2. Other data are available upon
reasonable request.

Code availability
The code used in this paper is available on GitHub at https://github.com/marieljespersen/
Sewage_MAG_phylogeny 60.
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