
ARTICLE

Intermediately synchronised brain states optimise
trade-off between subject specificity and predictive
capacity
Leonard Sasse 1,2,3, Daouia I. Larabi 1,2, Amir Omidvarnia 1,2, Kyesam Jung 1,2, Felix Hoffstaedter 1,2,

Gerhard Jocham4, Simon B. Eickhoff1,2 & Kaustubh R. Patil 1,2✉

Functional connectivity (FC) refers to the statistical dependencies between activity of distinct

brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic

resonance imaging (fMRI) scanning session, researchers have proposed the computation of

an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few

time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute

disproportionately to interindividual differences. However, it remains unclear to what degree

different time points actually contribute to brain-behaviour associations. Here, we system-

atically evaluate this question by assessing the predictive utility of FC estimates at different

levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time

points of lower and intermediate co-fluctuation levels provide overall highest subject speci-

ficity as well as highest predictive capacity of individual-level phenotypes.
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In an effort to understand how brain organisation facilitates
flexible yet specialised cognitive function, much neu-
roscientific research has focused on the functional connectivity

(FC) between brain areas by investigating their pairwise corre-
lations of functional magnetic resonance imaging (fMRI) blood
oxygen level-dependent (BOLD) signals1–3. These pairwise cor-
relations are assumed to represent the strength of connectivity
(also called edges) between brain areas (also called nodes).
Notably, considerable promise for the eventual applicability of FC
as a biomarker has been shown with numerous studies demon-
strating that FC differs between individuals, is stable within an
individual4–8, and relates to individual-level cognition4,9–13 as
well as clinically relevant symptoms of mental disorders14–17. In
this context, recent research has focused on investigating how
different time points in the rs-fMRI time series contribute to
some of these properties of FC18–20. However, it is not yet well
understood how different time points contribute specifically to
the predictive utility of FC.

In order to move closer to the goal of applicability of FC
biomarkers for real-world applications, researchers have tried to
improve behavioural prediction by searching for the most suitable
feature engineering schemes9, machine learning algorithms10,12,
preprocessing parameters and brain parcellations21,22. Others
focused on optimisation of within-individual stability and
uniqueness of the FC fingerprint. This can be investigated within
the identification framework in which the success of this opti-
misation is reflected in a higher success rate for the identification
of an individual based on their FC profile or FC fingerprint4.
With one such promising approach edge time series (ETS) are
leveraged to select specific time points to estimate FC18. These
time points of high-amplitude co-fluctuations, called events,
contribute disproportionately to FC and are thought to reflect
fluctuations in cognitive state18. Despite the high magnitude of
changes in resting state fMRI signals, the extent to which they
contribute to cognition and behaviour is still a matter of debate in
the literature23–25. Although approaches to decompose task
activity into underlying recruitment of resting state networks
have been proposed, further research is needed to investigate how
resting state signals and their changes over time underlie cogni-
tive and behavioural performance26.

These ETS reflect the magnitude of co-fluctuations of each pair
of brain areas over time27,28 and are calculated as the product
between the z-scored time series for each pair of brain areas. To
study overall co-fluctuation patterns across all areas, the root sum
of squares (RSS) at each time point along the ETS has been
suggested as a meaningful measure of co-fluctuation amplitude18.
A higher RSS indicates higher co-fluctuations (or ETS) across the
brain, i.e. higher overall brain synchronisation. This allows for the
selection of only high-amplitude co-fluctuation (HACF) or low-
amplitude co-fluctuation (LACF) time points from the original
BOLD time series. HACF-derived FC has been shown to yield
enhanced subject specificity, bringing up the question whether
using these HACF time points might also amplify brain-
behaviour correlations18,19,29.

Thus far, a crucial missing component in the investigation of
ETS is the evaluation of individual differences at different co-
fluctuation amplitudes by means of prediction of phenotypes.
Previous research has shown that connectivity of brain areas that
contribute most to identification accuracy do not overlap with
brain areas that contribute most to prediction accuracy30. This
suggests that FC uniqueness and stability on their own do not
guarantee phenotypic relevance of brain connectivity
representations31. Furthermore, it is possible that different sub-
sets of time points are more or less predictive of different phe-
notypic domains. In addition, one may ask, whether any selected
subset of time points is more predictive than the full FC estimated

using all available time points. Previous research has suggested
that, to some degree, distinct brain states are differently associated
to specific behaviours. For example, brain states showing strong
integration between functional networks are associated with
better cognitive task performance, in particular for memory- and
attention-related tasks32–34. In addition, brain states characterised
by high modularity are associated with better performance during
motor tasks35,36.

Therefore, to address these questions, we systematically
investigated the phenotypic relevance of FC contributions at
different amplitudes of ETS co-fluctuations. Employing three
time point sampling strategies, we investigated predictiveness of
targets across the domains of cognition, behaviour, personality,
and demographics from FC including all time points, HACF time
points, LACF time points, or a combination thereof using the
Human Connectome Project (HCP-YA) S1200 dataset37,38. We
also validate our findings using the Human Connectome Project
Aging (HCP-A) dataset39,40. Further, to get a better under-
standing of what drives co-fluctuations, we investigated the
influence of structural connectivity on the relationship between
FC estimates at different co-fluctuation levels and predictiveness
of these targets.

Results
For each of the four resting state fMRI (rs-fMRI) runs of
771 subjects of the HCP-YA S1200 dataset37,38, we computed the
edge time series (ETS) and the corresponding root sum of squares
(RSS) along the ETS to quantify co-fluctuation amplitude using
the Schaefer parcellation with 200 parcels41. For each subject,
BOLD time series were ordered ranging from time points with
high overall co-fluctuation across the brain (high RSS; high
amplitude co-fluctuation [HACF]) to low overall co-fluctuation
(low amplitude co-fluctuation [LACF]). Next, we used three
different strategies for selection of time points with different
levels of co-fluctuation: (1) sequential sampling: consecutively
includes differing percentages of HACF or LACF using a
threshold ranging from 0 to 50%, (2) individual bins: all time
points were divided into 20 individual bins each comprising 5%
of time points, and (3) combined bins: included time points of all
possible combinations of individual bins (see Methods, subsection
Edge Time Series Construction and Functional Connectivity
Estimation, and Supplementary Fig. 1 for details). FC matrices
were created by calculating Pearson correlation coefficients
between time series of each pair of brain areas while only
including the selected time points. Using these distinct FC
matrices allowed us to systematically investigate the contributions
of time points with different levels of co-fluctuation to subject
specificity and prediction of 25 phenotypes. Identification was
performed between rs-fMRI data from day 1 and day 2 of HCP-
YA data collection and for each day FC was averaged across phase
encoding directions. For prediction, the FC matrices obtained on
both days were averaged, resulting in one FC matrix per subject
per co-fluctuation bin.

Differential identifiability and identification accuracy disagree
in their assessment of functional connectivity fingerprints. To
assess variance in identification accuracy and differential iden-
tifiability, we resampled the original 771 subjects 1000 times with
replacement, keeping only the unique subjects from the resam-
pled subject list. In the sequential sampling strategy, we could
replicate the finding that HACF time points yield higher differ-
ential identifiability (IDiff) than LACF time points (Fig. 1a). To
assess statistical significance of this observation we used two-
tailed Wilcoxon-signed-rank tests with a Bonferroni correction
for multiple comparisons. Across all specified sampling
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thresholds, HACF-derived FC provided statistically significantly
higher differential identifiability scores at the .05 alpha level of
significance (Fig. 1a). At the same time, the sequential sampling
strategy shows that LACF time points provide statistically sig-
nificantly higher identification accuracy (IAcc) than HACF time
points across all specified sampling thresholds (Fig. 1b). More-
over, it becomes evident across the individual and combined bins
sampling strategies that the highest IDiff is in fact achieved by
intermediate bins (Fig. 1c). In the individual and combined bins
sampling strategies, bins of intermediate co-fluctuation achieved
the highest IAcc overall (Fig. 1d, e). In the sequential sampling
strategy, it is most apparent that IAcc and IDiff show opposing
effects (Fig. 1a, b).

Functional connectivity estimated at intermediate levels of co-
fluctuation yield higher prediction accuracy than high-
amplitude co-fluctuation or low-amplitude co-fluctuation
time points. To test whether the differing behaviour of IDiff and
IAcc can inform about the predictive utility, we then applied the
sampling strategies to predict phenotypes using kernel ridge
regression. We selected phenotypes used in ref. 42 from the
categories Cognition, In-scanner task performance, and Person-
ality (see Table S1). Results displayed here consist of the 9 phe-
notypic targets with the highest prediction accuracy based on the
full FC. We report results for other difficult-to-predict targets
(Supplementary Figs. 2 and 3) as well as results using the coef-
ficient of determination (R2) as scoring metric (Supplementary
Figs. 4 and 5) in the supplementary information. To assess the
out-of-sample prediction accuracy of our models in the HCP-YA
dataset, we performed a 10-fold nested cross-validation (CV)

procedure. We ensured that family members were always kept
within the same fold in the 10-fold CV to maintain independence
between folds. We used a 5-fold inner CV on the training folds to
select the hyperparameters for ridge regression (l2-regularisation
strength) in a CV-consistent manner. The best parameters were
then fitted on the training folds of the outer CV and tested on the
outer CV test fold. Similarly, to avoid test-to-train leakage during
confound removal, we trained a confound regression model on
the training data only, to remove the effects of age, sex, and
framewise displacement (for more information see Methods,
subsection Prediction of Behavioural and Demographic
Measures).

In the individual and combined bins sampling strategies a
general trend can be observed with LACF time points yielding
higher prediction scores than HACF time points (Fig. 2). Using a
5% Bayesian ROPE43 (see Methods, subsection Prediction of
Behavioural and Demographic Measures) to compare each co-
fluctuation bin’s performance against the performance of full FC,
we found that across most targets co-fluctuation bins show
predictive utility that is equivalent to the full FC (Fig. 2).
However, in particular for the two targets that overall can be
predicted with the highest accuracy (Reading and Vocabulary), it
is apparent that HACF bins actually yield meaningfully lower
prediction accuracy scores than full FC.

In the sequential sampling strategy LACF time points also
consistently yielded better prediction accuracy than HACF time
points (Fig. 3). Results were consistent across scoring metrics. To
illustrate robustness, we performed several additional analyses
with different settings and parameters. To this end, we repeated
the same analysis using Connectome-based Predictive Modelling

Fig. 1 Subject specificity in the HCP-YA dataset assessed using two metrics and three different sampling strategies. Differential identifiability and
identification accuracy are obtained for the sequential sampling strategy (a, b), the individual bins sampling strategy (c, d), and the combined bins strategy
(e). In (a, b), threshold refers to the percentage of highest (HACF) or lowest (LACF) co-fluctuation time points chosen to estimate FC. In (e), the lower
triangle shows differential identifiability, whereas the upper triangle shows identification accuracy achieved by each pair of combined bins. In each
identification experiment subjects were resampled with replacement 1000 times, and in each resampling run only the subset of unique subjects were
chosen to perform the identification analysis. Asterisks (*) in (a, b) indicate a significant difference as determined by a Wilcoxon-signed rank test between
HACF-derived FC and LACF-derived FC at the .05 alpha significance level after Bonferroni correction and the error bars indicate a 95% confidence interval.
In (c, d) the box plot indicates the median (centre line) and the interquartile range. Source data can be obtained from Supplementary Data 1.
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(CBPM)9. Using this approach, prediction scores were lower, but
overall a similar pattern was observed (see Supplementary
Figs. 6–9). We further provide results for a subset of targets
using the Schaefer 300 and 400 parcellations, with or without
global signal regression, and for both scoring metrics (Pearson’s r
and R2), as these processing and analysis choices have been
shown to affect prediction accuracy22 (Supplementary
Figs. 10–19). For this analysis we chose Reading and Vocabulary,
because they yielded the best prediction accuracy scores as well as
Fluid Intelligence, because it is widely used for prediction in the
literature4,44.

Overall, we made two robust observations across all analyses;
LACF time points provide better predictive power than HACF
time points, and some intermediate time points perform even
better. To test whether these observations may be due to a

relationship between the RSS and in-scanner motion, we
correlated the RSS time series with framewise displacement
(FD) for every subject and every rs-fMRI run. These correlations
follow a normal distribution centered at zero and therefore show
little evidence of a relationship between RSS and in-scanner
motion (Supplementary Fig. 20).

Given the importance of inter-individual demographic differ-
ences in basic and clinical research, we also tested whether this
effect can be found when predicting age and sex which have
shown better prediction accuracy than psychometric variables
using FC12,45. In sex classification, we use a ridge classifier. In
fact, a pattern similar to the previous analysis can be observed for
both age and sex. In age prediction, the sequential sampling
strategy clearly shows that HACF-derived FC yields lower
prediction scores than LACF-derived FC (Fig. 4a). LACF-

Fig. 2 Prediction scores (Pearson’s r between observed and predicted values) for 9 phenotypic targets averaged across the ten folds in the grouped
cross-validation scheme when using combined and individual bins sampling strategies. Each panel (a–i) shows results for a different target. Bins range
from 1 (HACF) to 20 (LACF). Scores for individual bins are displayed on the diagonal, for combined bins off the diagonal. Scores for the full FC using the
whole time series are always displayed in the upper right corner. Comparison operators indicate whether scores obtained by a co-fluctuation bin are
equivalent to scores obtained by full FC ("='') or whether they are less ("<'') or greater (">'') than scores obtained by full FC according to a 5% Bayesian
ROPE43. These 9 targets are displayed, because they yielded best prediction accuracy using full FC compared to other targets displayed in Supplementary
Fig. 2. Source data can be obtained from Supplementary Data 2.
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derived FC even yields higher prediction scores than the full FC, a
pattern that can be found also in the combined bins strategy
(Fig. 4e). In the individual bins strategy it is further evident that
intermediate bins typically yield higher prediction scores than
both HACF and LACF time points (Fig. 4c). We further report
age prediction results using R2 (Supplementary Fig. 21) and mean
absolute error (MAE - Supplementary Fig. 22) as scoring metrics.
Considering the limited age range (22-37 years) in this sample,
the age prediction scores are reasonable.

In sex classification, combined bins largely yielded prediction
scores equivalent to full FC, however, a trend of prediction scores
decreasing with higher co-fluctuation levels can be observed
(Fig. 4e). In the individual bins strategy, both HACF and LACF
bins yielded lower scores than intermediate bins (Fig. 4d). Lastly,
comparing HACF and LACF time points using the sequential

strategy, it can be seen that LACF time points usually provide
better prediction scores than HACF time points (Fig. 4b). Again,
to test whether results are robust across different models, we
repeated sex prediction using support vector classifiers (SVC)
with a linear kernel (Supplementary Fig. 21) as well as a radial
basis function (RBF) kernel (Supplementary Fig. 22). The results
were very similar.

Validation dataset yields similar results. We then attempted to
replicate identification and prediction in the HCP Aging (HCP-A)
dataset (see Methods, subsection Datasets). Results for IAcc and
IDiff in the HCP-A dataset were consistent with the findings in the
HCP-YA dataset across all sampling strategies (Fig. 5). IAcc is
higher for LACF time points than for HACF time points, whereas

Fig. 3 Prediction scores (Pearson’s r between observed and predicted) for 9 phenotypic targets averaged across the ten folds in the grouped cross-
validation scheme when using FC estimates derived from time points at different levels of co-fluctuation magnitude using the sequential sampling
strategy. Each panel (a–i) shows results for a different target. Threshold refers to the percentage of highest (HACF) or lowest (LACF) co-fluctuation time
points chosen to estimate FC. Upper and lower boundary of the fill colours indicate the standard deviation across folds. A threshold of 100% corresponds
to full FC. These 9 targets are displayed, because they yielded best prediction accuracy using full FC compared to other targets displayed in the
Supplementary Fig. 3. Source data can be obtained from Supplementary Data 2.
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IDiff is higher for HACF time points than for LACF time points,
indicating that this effect is not sample-specific.

For prediction in the HCP-A sample we selected Language/
Vocabulary Comprehension and Cognitive Flexibility since these
measures were also available in the HCP-YA sample and showed
reasonable prediction accuracy. As there was no direct test of
fluid intelligence in the HCP-A sample, we also included
composite measures of fluid and crystallised cognition (see Table
S2). Results on four cognitive targets show that prediction scores
for these targets are overall largely equivalent to the full FC
(Fig. 6a–h). However, a trend can be observed such that
intermediate bins yield slightly higher performance than HACF
or LACF time points. Similar results are obtained using R2 as
scoring metric (Supplementary Fig. 23). Next, we also set out to
predict age and sex in the HCP-A dataset. However, since this
sample was not balanced (316 female, 242 male), for sex
classification we present balanced accuracy as scoring metric46.
Results showed a similar pattern as previously observed but note
the higher prediction accuracy for age on this sample due to its
wider age range (Fig. 6i, k, m). In the individual and combined
bins sampling strategies (Fig. 6k, l, m) scores are largely
considered equivalent to prediction using the full FC, with a
trend hinting at better performance in intermediate bins
compared to HACF or LACF bins. Further, the sequential
sampling strategy (Fig. 6i, j) makes it apparent that again LACF
time points consistently yield better predictive performance
compared to HACF time points. Again, in the supplementary
material we report results for age prediction using R2 (Supple-
mentary Fig. 24) and MAE (Supplementary Fig. 25) as well as
results for sex prediction using a SVC with linear kernel
(Supplementary Fig. 24) and a RBF kernel (Supplementary

Fig. 25). Results for these parameters were consistent with the
results displayed here.

Functional connectivity shows a stronger relationship to
structural connectivity during intermediate levels of co-
fluctuation. As a last analysis, we aimed to investigate the cor-
respondence between FC at different levels of co-fluctuation and
structural connectivity. As a first step, we correlated each subject’s
SC with each co-fluctuation bin FC estimate. Our findings indi-
cate that overall correlations between SC and FC tend to be
greater for intermediate bins and some LACF bins compared to
HACF bins (Fig. 7).

This trend is true for each of the three sampling strategies used.
After obtaining these results we further wanted to test whether
the information on underlying SC present in the intermediate
bins and LACF bins indeed relates to the greater predictive utility
of these bins (as compared to HACF bins). To test this we
regressed out SC from the FC estimates for each subject and each
co-fluctuation bin using a linear model and used the residuals for
prediction of three cognitive variables in the HCP-YA dataset for
which we observed a difference between HACF and LACF time
points with respect to their predictive utility (Figs. 2, 3). The
removal of SC from FC did not decidedly change prediction
scores (Fig. 8a–f). We further repeated this paradigm in the
prediction of sex and age. Here, the expected finding can be
observed to a greater degree in the prediction of age (Fig. 8g,
compare to Fig. 4a). Overall, however, regressing out SC does not
seem to meaningfully change prediction scores, considering that
the effect of intermediate time points and LACF time points
yielding better predictions than HACF time points remains.

Fig. 4 Age prediction scores (Pearson’s r) and sex classification scores (accuracy) using FC at different levels of co-fluctuation. Results are shown for
the sequential sampling strategy (a, b), individual bins (c, d), and combined bins (e) sampling strategies. In (a, b), threshold (x-axis) refers to the
percentage of highest (HACF) or lowest (LACF) co-fluctuation time points chosen to estimate FC and the y-axis indicates the prediction score. Upper and
lower boundary of the fill colours indicate the standard deviation across folds. In (c, d) the box plot indicates the median (centre line) and the interquartile
range. In (e) comparison operators indicate whether scores obtained by a co-fluctuation bin are equivalent to scores obtained by full FC (=) or whether
they are less (<) or greater (>) than scores obtained by full FC according to a 5% Bayesian ROPE43. Source data can be obtained from Supplementary
Data 3.
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Discussion
It has been suggested that the use of HACF time points with
enhanced subject specificity may amplify brain-behaviour
associations20,29. On the other hand, it has also been shown
that FC-based identification and prediction may constitute con-
flicting goals30,31. Therefore, here we systematically evaluated the
effect of inclusion of varying levels of functional co-fluctuations
on subject specificity and predictiveness of a range of phenotypes.
Across a broad range of analytical settings and in two different
cohorts, we observed that time points with intermediate levels of
co-fluctuation yield highest subject specificity (i.e. highest iden-
tification accuracies and differential identifiability between two
rs-fMRI sessions) and greater predictive power compared to the
other time points. Altogether, our findings suggest time points
with intermediate levels of co-fluctuation as a sweet spot cap-
turing subject-specific phenotypic information; an intermediately
synchronised and heterogeneous brain state situated in between a
stereotypical highly synchronised brain state (HACF) and a
weakly synchronised variable brain state (LACF). The highlighted
role of intermediate co-fluctuation amplitudes in our study can be
seen as a balanced point between increased synchrony (HACF)
and increased disorder (LACF) between brain areas. Such a
situation has also been reported at the brain neuronal level
through the criticality hypothesis47 where neuronal activity of
brain circuits self-organises into critical states or a transition
between order and disorder. It also implies that the most relevant
information of large-scale BOLD dynamics is encoded through
discrete events in contrast to the dominant view of continuous
fMRI data analysis48.

A previous study showed that differential identifiability of
HACF-derived FC was higher than of LACF-derived FC18.
Although we replicated this finding in our current study, we
observed the opposite pattern for the identification problem with
higher accuracies for LACF in contrast to HACF time points.
This finding is in line with another study on individual differ-
ences in FC estimated at different levels of co-fluctuation20, also
showing that Idiff was highest in HACF time points while Iacc was
highest at intermediate time points, and that removal of HACF
time points decreased Idiff while increasing IAcc. Looking further
into the subscores with which Idiff is calculated (within- and
between-subject correlations), it can be seen that for HACF time
points the within-subject correlations increase more than the
between-subject correlations (leading to higher Idiff; see Supple-
mentary Figs. 26–28). This suggests a highly synchronised brain
state that is stable within a subject. For LACF time points, on the
other hand, within-subject correlations decrease more than
between-subject correlations (leading to lower Idiff), suggesting
this weakly synchronised brain state to be less stable within a
subject. Integrating this with our identification accuracy findings,
the lower identification accuracies for HACF suggest that this
within-subject stable, highly synchronised brain state is also
similar across subjects, i.e., a more stereotypical brain state49.
Enhanced similarity between subjects at the HACF time points is
also in line with point process analysis findings where the spatial
maps of resting state networks can be reconstructed from a
limited number of high-amplitude events of fMRI48. It may
explain higher uniformity of HACF time points across the
population. The higher identification accuracies for LACF may

Fig. 5 Subject specificity in the HCP-A dataset assessed using two metrics and three different sampling strategies. Differential identifiability and
identification accuracy are obtained for the sequential sampling strategy (a, b), the individual bins sampling strategy (c, d), and the combined bins strategy
(e). In (a, b), Threshold (x-axis) refers to the percentage of highest (HACF) or lowest (LACF) co-fluctuation time points chosen to estimate FC and the y-
axis displays the subject specificity (Idiff or Iacc). In (e), the lower triangle shows differential identifiability, whereas the upper triangle shows identification
accuracy achieved by each pair of combined bins. In each identification experiment subjects were resampled with replacement 1000 times, and in each
resampling run only the subset of unique subjects were chosen to perform the identification analysis. Asterisks (*) in (a, b) indicate a significant difference
as determined by a Wilcoxon-signed rank test between HACF-derived FC and LACF-derived FC at the .05 alpha significance level after Bonferroni
correction. The error bars indicate a 95% confidence interval. In (c, d) the box plot indicates the median (centre line) and the interquartile range. Source
data can be obtained from Supplementary Data 1.
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suggest that these weakly synchronised co-fluctuation amplitudes
are less stable within a subject but even more variable across
subjects.

Next, we systematically examined the predictiveness of differ-
ent levels of co-fluctuation using machine learning based pre-
diction analyses. In Zamani Esfahlani et al.18, an exploratory

brain-behaviour correlation analysis was performed. The authors
performed PCA on 158 behavioural, trait, and demographic
variables to obtain a first principal component (PC1) explaining
20.3% of behavioural variance. Correlations with top 5% HACF
time points as well as bottom 5% LACF time points were weak,
but relatively stronger for top 5% HACF time points. In our

Fig. 6 Prediction accuracy (Pearson’s r) for four cognitive targets as well as age and sex prediction scores in the HCP-A dataset. The figure displays
results for prediction of cognitive targets using the individual and combined bins strategy (a–d; individual bins are on the diagonal) and the sequential
sampling strategy (e–h). Upper and lower boundary of the fill colours indicate the standard deviation across repeats. In addition, results are shown for age
prediction (Pearson’s r) and sex classification (balanced accuracy) using the sequential (i, j), individual bins (k, l), and combined bins (m) sampling
strategies. Threshold refers to the percentage of highest (HACF) or lowest (LACF) co-fluctuation time points chosen to estimate FC in the sequential
sampling strategy and the y-axis displays the prediction scores. In (k, l) the box plot indicates the median (centre line) and the interquartile range. In (m)
comparison operators indicate whether scores obtained by a co-fluctuation bin are equivalent to scores obtained by full FC (=) or whether they are less (<)
or greater (>) than scores obtained by full FC according to a 5% Bayesian ROPE43. Source data can be obtained from Supplementary Data 2 for plots
a–h, and Supplementary Data 3 for plots i–m.
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study, we also found that the predictive capacity of FC estimates
can indeed be improved by leveraging information from the ETS
to select a specific set of points from the original BOLD time
series. In contrast to Zamani Esfahlani et al.18, we found lower
predictiveness with HACF time points and higher predictiveness
with LACF and especially intermediate time points. This suggests
that time points of low to intermediate levels of co-fluctuation
may be best suited to make meaningful predictions. Using this
insight in preprocessing pipelines may ultimately improve
applicability of FC as an imaging-based biomarker of brain
function in precision medicine and psychiatry.

A pivotal question associated with our findings concerns the
origin of HACF and LACF events. Non-significant correlations
have been shown between co-fluctuation amplitudes and
breathing data, heart rate and motion (see Figs. S1 and S2 in
ref. 18), indicating that HACF events are unlikely to be driven by
physiological noise only. Two main possibilities remain consistent
with our results: On one hand there is evidence that HACF events
are driven by tasks or change of cognitive state as demonstrated
by the finding that RSS time series are more synchronised across
participants during movie-watching than during resting state18.
On the other hand it has been suggested that high RSS amplitudes
are simply the result of extreme values in a noisy, but stationary
distribution during rs-fMRI50,51. Temporal spacing of time points
is likely an important factor to consider due to (temporal)
autocorrelation50. Briefly, the reason that a few time points may
suffice to faithfully reconstruct full FC, may be due to the fact that
selected time points are well spaced along the time series, and
therefore capture a broad range of points from that distribution.
This may also play a relevant role in determining the predictive
utility of specific FC estimates.

Assuming the validity of the first hypothesis, LACF and
intermediate bins may then contain time points of brain activity
during which estimated FC corresponds to a greater degree to a
baseline brain state closer to underlying structural connectivity.
To test this hypothesis, we investigated the correlation between

FC at different levels of co-fluctuation and structural connectivity,
measured by probabilistic tractography. Our findings indeed
show higher correlations between FC during LACF and inter-
mediate time points and structural connectivity (SC), just as
another study showing that coupling between estimates of SC and
FC was stronger during time points of intermediate or low levels
of co-fluctuation52. This suggests that time resolved FC may
inform us about how structural constraints drive functional
organisation of the brain. In addition, language-related tasks
(HCP Young adult: reading, vocabulary; HCP Aging: crystallized
intelligence, language/vocabulary comprehension) were more
predictable using intermediate and LACF time points in contrast
to HACF. This observation supports the hypothesis of a stronger
link between SC and LACF time points. It is also in line with the
previous studies showing strong mapping between language and
anatomy53. However, the predictive capacity of LACF and
intermediate time points did not decrease after regressing out
structural connectivity, suggesting these time points capture
individual-level phenotypic information independent of brain
structure (Fig. 8). It seems unlikely therefore that the effect can
only be explained by higher similarity with structural
connectivity.

In light of these findings, it would be informative to investigate
the properties of ETS in task-based fMRI (t-fMRI). If HACF
events are in fact influenced by external stimuli, then one would
expect more frequent HACF events after null model thresholding
during task engagement. Otherwise, if the co-fluctuation levels and
FC estimates over time do not reject stationary null models, then
one could conclude that HACF events are simply the result of a
random stationary process. Designing relevant null distributions
for HACF/LACF of t-fMRI is an avenue for future work. A non-
trivial challenge is due to the fact that computation of ETS requires
z-scoring of the ROI time series, which is only appropriate if
sample mean and standard deviation are time invariant18,54. A
potential solution could be to regress out the block design from
t-fMRI and use the residuals for this type of analysis.

Fig. 7 Correlations between SC and FC averaged across subjects in the HCP-YA sample. Results are shown for (a) individual (on-diagonal) and
combined bins (off-diagonal) and the (b) sequential paradigm. In (b) upper and lower bounds of fill colours indicate minimum and maximum correlations
across subjects. Threshold (x-axis) refers to the percentage of highest (HACF) or lowest (LACF) co-fluctuation time points chosen to estimate FC and the
y-axis shows the Pearson correlation between FC edges and SC edges. Source data can be obtained from Supplementary Data 4.
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Fig. 8 Prediction accuracy for three cognitive targets in the HCP-YA sample (Pearson’s r between observed and predicted targets) as well as age and
sex prediction when removing SC from FC estimates for each subject. Prediction of the cognitive targets in the combined and individual (a–c) and the
sequential (d–f) sampling strategies as well as age prediction (Pearson’s r) and sex classification (accuracy) using the sequential (g, h), individual bins
(i, j), and combined bins (k) sampling strategies after removal of SC from FC. Threshold refers to the percentage of highest (HACF) or lowest (LACF) co-
fluctuation time points chosen to estimate FC in the sequential sampling strategy. In (i, j) the box plot indicates the median (centre line) and the
interquartile range. In (k) comparison operators indicate whether scores obtained by a co-fluctuation bin are equivalent to scores obtained by full FC (=) or
whether they are less (<) or greater (>) than scores obtained by full FC according to a 5% Bayesian ROPE43. Source data can be obtained from
Supplementary Data 5.
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Limitations. One possible limitation when predicting behavioural
variables is the unknown influence of confounding factors. In
particular, the influence of in-scanner motion has been found to
confound brain-behaviour relationships55. The impact of motion
may also become influential in the identification and identifia-
bility analysis through adding a highly personalised signature to
the fMRI datasets56. However, as pointed out above, correlations
between co-fluctuation amplitudes and physiological noise and
motion have been found to be non-significant18. Further, the
preprocessing strategies employed here to remove nuisance
variables and influences of motion from the neural signal have
been found to be among the most effective in the literature57–59.
In addition, we also removed framewise displacement (FD; a
measure of in-scanner head motion) from the predicted targets
using a linear model. This was done in a CV-consistent fashion,
meaning that a linear model was trained separately on the
training data for each train-test split in the CV to avoid any test-
to-train leakage of information regarding labels in the test set60.
Lastly, we checked the correlations between RSS and FD for every
subject and session, and found that correlations followed a nor-
mal distribution centered at zero (see Supplementary Fig. S20).

Moreover, there may be other machine learning models not
applied here, which perform better on FC estimates obtained
during HACF time points than on FC estimates obtained during
intermediate or LACF bins. However, in order to minimise this
risk, we applied CBPM4,9 and kernel ridge regression, two models
which are commonly used for FC-based prediction, and have
been consistently found to yield competitive results in the
prediction of cognitive and demographic variables4,12,22,44,61.
Both models show results consistent with our conclusions here.
Furthermore, we used three distinct models (linear SVM, RBF
SVM and a ridge classifier) for sex classification, each of which
confirmed the overall pattern that intermediate and LACF bins
yield better prediction results than HACF bins.

Conclusions and future research. It has previously been sug-
gested that HACF time points capture more individual-level
information18. However, our findings suggest that time points
with intermediate levels of co-fluctuation yield highest subject
specificity and predictive capacity of individual-level phenotypes
compared to HACF. We further find that assessments of subject
specificity provide more robust conclusions when multiple
metrics are used (i.e. Idiff and IAcc). Overall, our findings suggest
that intermediate time points may be more informative in
individual-level inference and they may inform future pre-
processing strategies aiming at identifying robust brain-based
biomarkers.

Methods
Datasets - Human Connectome Project (HCP). The details regarding collection
of behavioural data, fMRI acquisition, and image preprocessing in the HCP Young-
Adult (HCP-YA) project37,38,62 as well as the HCP Aging (HCP-A) project39,40

have been described elsewhere. Here, we aim to give a quick overview. The scan-
ning protocol for both HCP-YA and HCP-A was approved by the local Institu-
tional Review Board at Washington University in St. Louis. Retrospective analysis
of these datasets was further approved by the local Ethics Committee at the Faculty
of Medicine at Heinrich-Heine-University in Düsseldorf.

HCP young-adult (HCP-YA). We used data obtained from four resting-state fMRI
(rs-fMRI) sessions taken from the HCP-YA S1200 release38. Subjects were selected
if data was available for all four resting state sessions and 25 predefined behavioural
variables of interest. This resulted in a dataset consisting of 771 subjects (384
female, 387 male). Participants’ age ranged from 22 to 37 (M= 28.41, SD= 3.74).
The four sessions of rs-fMRI were obtained on two separate days (each lasted ca.
15 min; ~60 minutes across all four sessions). On each day, two sessions were
recorded for different phase encoding directions (left-right [LR] and right-left
[RL]) providing four overall rs-fMRI datasets. Scans were acquired using a 3T
Siemens connectome-Skyra scanner with a gradient-echo EPI sequence (TE=

33.1 ms, TR= 720 ms, flip angle= 52∘, 2.0 mm isotropic voxels, 72 slices, multi-
band factor of 8).

HCP aging (HCP-A). We used a subset of the HCP-A dataset as validation data to
replicate our main findings from the exploratory HCP-YA dataset. Similar to the
HCP-YA, in the HCP-A two sessions of rs-fMRI were acquired on two separate
days with a 2D multiband (MB) gradient-recalled echo (GRE) echo-planar imaging
(EPI) sequence (MB8, TR/TE = 800/37 ms, flip angle = 52∘) and 2.0 mm isotropic
voxels covering the whole brain (72 oblique-axial slices) using a Siemens 3T Prisma
scanner. For each session, functional scans were acquired in two separate runs with
opposite phase encoding polarity (anterior-to-posterior [AP] and posterior-to-
anterior [PA]). Subjects who did not have data for all four of these runs were
excluded. Further we only included subjects that had data for all four selected
behavioural targets and confounding variables. This resulted in a sample of
558 subjects (316 female, 242 male) with ages ranging between 36 and 100 years
(M= 59.87, SD= 15.03).

Data from rs-fMRI sessions in both of these datasets (HCP-YA and HCP-A) had
also already undergone the HCP’s minimal preprocessing pipeline37, including
motion correction and registration to standard space. In addition, the ICA-FIX
procedure (independent component analysis and FMRIB’s ICA-based X-noiseifier58)
was applied to remove structured artefacts. Lastly, the 6 rigid-body parameters, their
temporal derivatives and the squares of the 12 previous terms were regressed out,
resulting in 24 parameters. Any further confound removal and preprocessing was
applied to this denoised data.

Image pre-processing. For both datasets, we regressed out confounds, linearly
detrended and bandpass filtered the signal at 0.008–0.08 Hz using “nilearn.ima-
ge.clean_img”. For the main analysis, this included mean time courses of the white
matter (WM), cerebro-spinal fluid (CSF), and global signal (GS), as well as their
squared terms, and the temporal derivatives of the mean signals as well as their
squared terms as confounds, resulting in 12 parameters (4 for each noise com-
ponent). In the supplementary we also provide results without global signal
regression. A binary spike regressor was further added for each fMRI frame
exceeding a motion threshold (i.e. 1 where root mean squared framewise dis-
placement [FD] > 0.25 mm, and 0 where FD < 0.25 mm). The resulting voxel-wise
images were then aggregated into the Schaefer 200 parcellation41. In the supple-
mentary information, we also provide results using the Schaefer 300 and 400
parcellation, and without the use of global signal regression. In addition, in the
HCP-A dataset time series were cut by excluding the first 20 and the last 18
volumes of the scan, so that the resulting time series consisted of 440 volumes that
could be divided into 8 bins of 55 volumes. This was done to ensure that bins were
of comparable size in both datasets, since the time series in the HCP-YA dataset
(1200 volumes each) were divided into 20 bins of 60 volumes each.

Edge time series construction and functional connectivity estimation. Edge
time series were computed as described in ref. 18. The parcellated BOLD time series
were z-scored. Then, the element-wise product between the z-scored timeseries of
each pair of parcels was computed as an estimate of co-fluctuation between parcels
over time. The magnitude of co-fluctuation was quantified using the root sum of
squares at each time point (RSS) resulting in a co-fluctuation time series for each
subject. Afterwards, the time points in the BOLD time series were ordered
according to their corresponding RSS (from high to low) for every subject.

To test whether HACF moments capture more meaningful information about
individual subjects than LACF moments, we sampled time points using three
separate strategies. For every subject and every resting-state session in the HCP
dataset, the BOLD time series was ordered according to co-fluctuation magnitude.
Each strategy differs in selection of time points used to construct the FC. In strategy
(1) (individual bins sampling) the ranked BOLD time series was divided into
twenty bins each containing 5% of the time series (60 time points) in the case of the
HCP-YA dataset. From these twenty bins, five bins were sampled to be used in
prediction. We did not consider all twenty bins in the HCP-YA in the prediction
analysis, because running the pipeline for every bin and each of the targets would
incur unnecessarily high and impractical computational cost. For each of the
selected bins, FC was estimated using pairwise Pearson’s correlation coefficients. In
the case of the HCP-A, the ranked BOLD time series was divided into 8 bins, each
containing 12.5% of the timeseries (55 time points). All 8 bins were used in
prediction. In strategy (2) (combined bins sampling), we sampled every possible
combination of two bins out of the defined individual bins used in strategy (1) and
concatenated these bins to estimate FC. In strategy (3) (sequential sampling), we
used HACF and LACF time points, but applied sequentially increasing thresholds
to include varying numbers of time points on either side. In each sampling strategy,
FC estimates of corresponding co-fluctuation bins were first averaged across the
phase encoding directions, resulting in two FC matrices per subject per co-
fluctuation bin, to be used in identification. These two FC matrices were further
averaged resulting in one FC matrix per subject per co-fluctuation bin to be used in
prediction.

Each sampling strategy was chosen with a specific goal in mind: The first
strategy, which we referred to as the sequential strategy, was used to replicate and
extend the findings of a previous study18. The second strategy, which we called the
individual bins strategy, was designed to investigate the intermediate bins that were
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not examined in the previous study18. The third strategy that we employed in this
study was to combine individual bins to test whether combining bins from very
different co-fluctuation levels also provides additional information, or whether
behavioural information is maximised by any one level of co-fluctuation. This
strategy was selected to examine the potential for shared information between co-
fluctuation levels.

Structural connectivity extraction. Diffusion-weighted magnetic resonance
imaging (dMRI) data had already been processed using the HCP diffusion minimal
preprocessing pipeline37. This included normalisation of the b0 image intensity
across runs as well as removing EPI distortions, eddy-current-induced distortions
and subject motion. It further corrected for gradient-nonlinearities and diffusion
data was registered to the structural T1w scan. Structural connectivity (SC)
matrices were extracted from these preprocessed dMRI data using a workflow
developed in-house63. Ten million total streamlines of the whole-brain probabil-
istic tractography (WBT) were calculated using MRtrix3. Response functions were
estimated using a three-tissue constrained spherical deconvolution algorithm64.
Fibre oriented distributions (FOD) were estimated from the dMRI data using
spherical deconvolution, and the WBT was created through the fibre tracking by
the second-order integration over the FOD by a probabilistic algorithm65. The
tracking parameters were set as default values of the tckgen function from MRtrix
documentation (https://mrtrix.readthedocs.io), where the following values were
used: step size = 0.625 mm, angle = 45 degrees, minimal length = 2.5 mm,
maximal length = 250 mm, FOD amplitude for terminating tract = 0.06, max-
imum attempts per seed = 1000, maximum number of sampling trials = 1000, and
downsampling = 3. In the atlas transformation, labels were annotated using a
classifier to parcel cortical regions in the native T1w space using Freesurfer66

according to the Schaefer atlas with 200-area parcellation41. The pipeline then
transformed the labelled image from the T1w to dMRI native space. After the
transformation, the labelled voxels in the grey matter mask were selected for a seed
and a target region. Consequently, the tck2connectome function of MRtrix3
reconstructed SC. From the original sample of 771 subjects in the identification and
prediction analyses, 3 subjects had to be excluded because they lacked dMRI data.
Another 6 subjects were excluded due to software errors during structural pre-
processing, resulting in a sample of 762 subjects (383 female, 379 male) with ages
ranging from 22 to 37 (M= 28.41, SD= 3.73) for all analyses involving structural
connectivity.

Subject specificity: differential identifiability and identification accuracy. To
assess identifiability of FC for subjects across different sessions, we used both
identification accuracy (Iacc)4 and the differential identifiability quality function
Idiff5. Identification refers to the paradigm by which an individual’s FC profile
obtained in an fMRI scanning session is used to identify them from a database of
FC profiles obtained in a second fMRI scanning session4. While identification
accuracy is defined as the proportion of correctly identified participants, differential
identifiability is defined as the difference between mean within-subject correlations
(Iself) and mean between-subject correlations (Iother): Idiff= (Iself− Iother) � 1005,7.
Higher levels of differential identifiability indicate a stronger individual fingerprint.

Prediction of behavioural and demographic measures. Prediction was per-
formed with FC matrices obtained using the three distinct strategies outlined above
and averaged across all four HCP resting state sessions with unique edges serving
as features. We selected phenotypes used in ref. 42 from the categories Cognition,
In-scanner task performance, and Personality (see Table S1) as targets, resulting in
25 targets overall. In the HCP-A dataset we used four cognitive targets. We selected
Language/Vocabulary Comprehension and Cognitive Flexibility since these mea-
sures were also available in the HCP-YA sample and showed reasonable prediction
accuracy. As there was no direct test of fluid intelligence in the HCP-A sample, we
also included composite measures of fluid and crystallised cognition (see Table S2).
Detailed descriptions of these targets can be found elsewhere40,62.

To control for confounding influences, age at scan, sex at birth and framewise
displacement (FD) of resting state fMRI recordings were regressed out from the
targets in a CV-consistent fashion as these have been found to correlate with
behavioural variables12,55. In this context, CV-consistency means training the
confound regression model on the training partition of a split only, and applying
this model to the test data subsequently, to avoid test-to-train leakage. In addition
to prediction of behavioural targets we also predicted age and sex. In the prediction
of age, only sex and FD were removed as confounds. In the prediction of sex, we
removed age, brain volume (FS_BrainSeg_Vol), educational status (SSAGA_Educ),
and FD as confounds. In the HCP-YA dataset, one subject (male) had to be
excluded from sex prediction due to missing information on confounds
(SSAGA_Educ).

For all regression tasks, we used ridge regression with a Pearson kernel. This
model has been recommended as an efficient way to benchmark predictive utility
of FC representations, and it performs well even compared to sophisticated deep
learning algorithms specifically designed for connectivity-based features12,21,22. We
further validated our main findings using CBPM9. In sex classification, we used a
ridge classifier as well as support vector classifiers (SVC) with a linear kernel or a

radial basis function (RBF) kernel, to see whether results are robust across different
models.

To assess out-of-sample prediction accuracy in the HCP-YA dataset, a 10-fold
nested cross-validation (CV) was performed for each FC representation. The folds
were split such that family members were always within the same fold, so that
independence between folds was maintained. To select the l2-regularisation
strength for ridge regression and classification as well as the C parameter for the
support vector classifiers in CV-consistent fashion, we used a 5-fold inner CV on
the training folds. Candidate values for the l2-regularisation strength used in
hyperparameter tuning were: {0, 0.00001, 0.0001, 0.001, 0.004, 0.007, 0.01, 0.04,
0.07, 0.1, 0.4, 0.7, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 100, 150,
200, 300, 500, 700, 1000, 10,000, 100,000, 1,000,000}. Candidate values for the C
parameter of the support vector classifiers were 50 numbers between 0.01 and 100
evenly spaced on the log scale generated by the “numpy.geomspace” function.

The model with the best parameters was fitted on the training folds and then
tested on the outer CV test fold. In the HCP-A dataset we used a 5-fold nested CV
with five repetitions, since we only included unrelated subjects, and therefore had
no grouping constraint. In addition, the number of samples was lower, so a 5-fold
CV could ensure that test folds have sufficient samples. To evaluate prediction
accuracy, we report Pearson’s r and the coefficient of determination (R2) for
regression tasks as well as the mean absolute error (MAE) in the case of age
prediction. For predicted values ŷ and corresponding observed values y over n
samples with a sample mean of the observed values �y, these metrics are defined as:

Pearson’s r
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i¼1 yiŷi �∑n
i¼1 yi ∑

n
i¼1 ŷi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑n
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2
i � ð∑n
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Unlike Pearson’s r and R2, the MAE is not scale invariant and therefore more

difficult to interpret when predicting psychometric variables on different scales. In
sex classification we used accuracy in the HCP-YA dataset:

Accuracy

Accðy; ŷÞ ¼ 1
n
∑
n

i¼1
1ðŷi ¼ yiÞ: ð4Þ

Due to imbalanced distribution of the class labels (316 female, 242 male),
balanced accuracy was used in the HCP-A dataset to avoid inflated performance
estimates:

Balanced accuracy

Accbalancedðy; ŷÞ ¼
1
2

TP
TP þ FN

þ TN
TN þ FP

� �

ð5Þ

where TP, FP, TN, and FN denote true positives, false positives, true negatives, and
false negatives respectively46.

Bayesian region-of-practical-equivalence (ROPE) approach. To compare pre-
diction accuracy between individual or combined bins and the full FC, we used a
Bayesian ‘region of practical equivalence’ (ROPE) approach43. In this approach one
defines two models as practically equivalent if differences between accuracy scores
do not exceed a pre-defined percentage. It is a statistical approach used in Bayesian
inference to determine a region around a null value (our predefined percentage) in
which the posterior probabilities of a given parameter falling within this region can
be determined using Bayesian estimation67. Specifically, the Bayesian estimation
starts with a prior distribution. Typically, a reasonable assumption as a prior
distribution would be that the algorithms perform equally well. Here, we adopt as
prior the normal distribution as suggested in ref. 43. Using the prior and the results
of the experiment (the observed data), a posterior distribution can then be used
estimated. We can then estimate three different probabilities regarding differences
in model accuracies (i.e. in relation to our hypotheses). Assuming that differences
(x− y) are obtained between two models x and y:

1. P(x < y): the posterior probability that model y performs better than x; this is
the integral of the distribution to the left of the region of practical
equivalence (i.e. where differences are negative)

2. P(x= y): the posterior probability that model x and y are practically
equivalent; this is the integral of the distribution inside the region of
practical equivalence

3. P(x > y): the posterior probability that model x performs better than y; this is
the integral to the right of the region of practical equivalence (i.e. where
differences are positive)

That is, the posterior probabilities represent the degree of belief in a given
hypothesis after taking into account the observed data. One advantage of Bayesian
estimation is that it does not rely on a point-wise null hypothesis but rather on a
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range of potential values within the ROPE. This ROPE can be specified to reflect
the practical context. For example, if even a small difference in accuracy can incur
cost that is considered practically meaningful within a given context one may go for
a ROPE of 1% (i.e. any two models that differ by less than 1% would be considered
practically different). In our study, we used a 5% ROPE, so that even 5% differences
in model accuracy would be considered practically equivalent.

Statistics and reproducibility. In the HCP-YA dataset, the identification analyses
were conducted using a sample of 771 subjects (384 female, 387 male). Participants’
age ranged from 22 to 37 (M= 28.41, SD= 3.74). In the HCP-A dataset, the
identification analyses were conducted using a sample of 558 subjects (316 female,
242 male) with ages ranging between 36 and 100 years (M= 59.87, SD= 15.03). In
both datasets, identification was performed between rs-fMRI data from day 1 and
day 2 of data collection and for each day FC was averaged across phase encoding
directions. Identification was performed with day 1 data as a source and day 2 data
as a target, and vice versa resulting in two identification accuracy scores per co-
fluctuation bin. These two scores were averaged to obtain one overall identification
accuracy. Differential identifiability was also estimated between rs-fMRI data from
day 1 and day 2. In order to obtain an estimate of the variance, and to assess
whether differences in identification accuracy and differential identifiability are
statistically significant, we performed a bootstrapping procedure via resampling the
original samples with replacement 1000 times. In each resampling run only unique
subjects from the resampled subject list were chosen to perform the identification
experiment, resulting in 1000 identification accuracy scores as well as 1000 dif-
ferential identifiability scores per co-fluctuation bin. For each co-fluctuation bin,
scores for HACF- and LACF-derived FC were compared with two-tailed
Wilcoxon-signed-rank tests (n= 1000), resulting in one p-value per co-fluctuation
bin. To account for multiple comparisons, a Bonferroni correction at the alpha
level of significance of 0.05 was applied.

In both datasets, the exact same samples were also used for machine-learning-
based prediction analyses. In the HCP-YA, for every co-fluctuation bin, a grouped
10-fold cross-validation was used to estimate the generalisation error of each model
to account for the dependent family structure of this dataset. In the HCP-A dataset,
only unrelated subjects were included in the sample. In addition, the HCP-A
sample was slightly smaller, so we used a 5-fold cross-validation with five
repetitions to make sure that each fold had sufficient samples. In the combined bins
sampling strategy, we used a Bayesian ROPE approach to compare each model
train on a given co-fluctuation bin to a model trained on all of the data available to
estimate whether specific subsets of all time points can meaningfully improve
predictive capacity.

Analyses conducted on structural connectivity were only performed for the
HCP-YA dataset. From the original sample of 771 subjects in the identification and
prediction analyses, three subjects had to be excluded because they lacked dMRI
data. Another six subjects were excluded due to software errors during structural
preprocessing, resulting in a sample of 762 subjects (383 female, 379 male) with
ages ranging from 22 to 37 (M= 28.41, SD= 3.73) for all analyses involving
structural connectivity. Similarity between structural connectivity and functional
connectivity was assessed using Pearson’s correlation coefficient.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Further information on how to obtain the HCP-YA and the HCP-A datasets can be
obtained at https://www.humanconnectome.org/. Data and/or research tools used in the
preparation of this manuscript were obtained from the National Institute of Mental
Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics system created
by the National Institutes of Health to provide a national resource to support and
accelerate research in mental health. Dataset identifier: [https://doi.org/10.15154/
1527952]. This manuscript reflects the views of the authors and may not reflect the
opinions or views of the NIH or of the Submitters submitting original data to NDA.
Source data for the plots in the figures are available in supplementary data files.
Moreover, we provide a supplementary information file containing results for additional
robustness checks and analyses. Any remaining information can be obtained from the
corresponding author upon reasonable request.

Code availability
Code used to generate edge time series, connectomes, and perform prediction and other
analyses on these data can be found in a public GitHub repository (https://github.com/
juaml/etspredict). The code used to obtain SC is available at https://jugit.fz-juelich.de/
inm7/public/vbc-mri-pipeline.
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