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Competitive hierarchies in bryozoan assemblages
mitigate network instability by keeping short and
long feedback loops weak
Franziska Koch 1,2,5✉, Anje-Margriet Neutel3,5, David K. A. Barnes 3, Katja Tielbӧrger1, Christiane Zarfl 1 &

Korinna T. Allhoff 1,2,4✉

Competitive hierarchies in diverse ecological communities have long been thought to lead to

instability and prevent coexistence. However, system stability has never been tested, and the

relation between hierarchy and instability has never been explained in complex competition

networks parameterised with data from direct observation. Here we test model stability of 30

multispecies bryozoan assemblages, using estimates of energy loss from observed inter-

ference competition to parameterise both the inter- and intraspecific interactions in the

competition networks. We find that all competition networks are unstable. However,

instability is mitigated considerably by asymmetries in the energy loss rates brought about by

hierarchies of strong and weak competitors. This asymmetric organisation results in asym-

metries in the interaction strengths, which reduces instability by keeping the weight of short

(positive) and longer (positive and negative) feedback loops low. Our results support the idea

that interference competition leads to instability and exclusion but demonstrate that this is

not because of, but despite, competitive hierarchy.
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The coexistence of many competing species is a fundamental
challenge for ecological theory. Classic coexistence theory
of interference competition explains that two species will

be able to return to their steady state after a small perturbation if
intraspecific competition outweighs interspecific competition:
aiiajj > aijaji

1–3, where aij is the effect of species j on i, and all aij
are negative. This can be understood in terms of a balance in
dynamic forces: The interaction between two species generates a
self-reinforcing feedback loop whose strength is quantified as the
product aijaji. This positive feedback must be counteracted by at
least an equally strong self-damping feedback from intraspecific
competition (aiiajj) in order to obtain stability. In complex
competition networks, there are many more feedback loops,
positive and negative.

It has been suggested that dense “intransitive” networks of inter-
actions between many competing species can prevent competitive
exclusion and enable coexistence4. The claim is that a strict hierarchy
has a destabilising effect5–7 but see ref. 8, while “competitive
reversals”9 enhance the stability of competitive communities10–12

through negative feedback loops13. This is analogous to a rock-
paper-scissors game, where there is no superior competitor14.

However, many multispecies natural systems show a clear
ranking from strongest to weakest competitor, in contrast to what
intransitivity theory would suggest8,15–18. Furthermore, theoretical
studies on the relation between intransitive competition and sta-
bility have largely been based on very simple “tournament-style”
competition models7,9,19. Also, the strengths of intraspecific
competition have been largely ignored19. As for empirical studies,
these are usually done with pairwise experiments, where pairs of
species are grown in isolation to determine competitive dom-
inance (see, for example, refs. 8,17,20). The relation between
competitive hierarchy or intransitivity and instability has thus not
been explained in complex dynamic-system models parameterised
from whole-community observations of interference competition.

For a two-species interference-competition system, it is easy to
demonstrate how the dominance of one species over the other
translates into an asymmetry in interaction strengths, which
affects the stability of the system. The more asymmetric the
division in strength between the two competitors, the weaker the
positive feedback will be, and thus the less intraspecific interac-
tion will be needed for system stability (Fig. 1). Also, in larger
systems self-damping feedback must, at least, compensate for the
total positive 2-link feedback from the interacting pairs21. A
strong hierarchy and hence asymmetry in pairwise interactions
will keep the 2-link feedback loops relatively weak, which would
suggest that relatively little self-damping is needed to make
asymmetric networks stable.

This raises two questions: Are such natural interference-
competition systems stable, that is, does intraspecific competition
outweigh interspecific competition? And second, how does the
hierarchical organisation of competitive strengths affect system
stability?

Here, we model the stability of 30 assemblages of shallow
coastal bryozoans from the Arctic and Antarctic regions. These
regions are known for their destructive environmental dis-
turbance events, such as ice scour, which have been shown to
cause hierarchical patterns of competition in benthic
communities15. Bryozoans are sessile, aquatic, colonial,
suspension-feeding animals (Fig. 2A). If bryozoan colonies grow
into each other, it leads to overgrowth of one colony by the other
(win/loss outcome) or mutual overgrowth or cessation of growth
at the boundary (draw). Competition leads to energy loss for each
competitor, whatever the outcome.

We observed the spatial contests between the colonies in the
assemblages and estimated the energy loss rates resulting from

each contest, constructing “energy loss webs” in analogy to energy
flow webs in food-web theory22. We used these webs to calculate
the species’ per-capita interaction strengths sensu May23

(Fig. 2B). The interaction strengths are the elements of the
Jacobian matrix, the partial derivatives of the species’ growth
equations at steady state. We made the steady state assumption to
be able to test the stability of the networks since, in order for a
system to be stable, the growth and loss rates of each species in a
community must be in balance. Note that the concept of stability
in our study is that of local system stability and does not refer to
the stability of the environment nor to the ability of the system to
deal with any specific substantial outside disturbance. Local sta-
bility refers to the internal balance in the dynamic forces in the
network and is the ability of the system to return to the steady
state after an infinitesimal perturbance of this state23.

With our dynamic-system analysis of the 30 observed bryozoan
assemblages, we aimed not only to test whether the competition
networks are stable but also to provide a fundamental understanding
of the relation between hierarchy and stability. We did this by
quantifying the system’s feedback structures which allowed us to
compare and explain the stability results. Finally, we synthesised our
findings on interference-competition (−/− interactions) with stability
analyses of trophic networks (+/− interactions)23–26 and discuss a
general organising feedback principle for ecological networks.

Results
Hierarchy and asymmetry in observed competition networks.
The species’ competition networks, ranging in size from 5 to 11
species, were highly connected, with most connectance values
around 0.9 (“Methods”, Supplementary Table 1). In all networks,
for almost all pairs of interacting species, we found that compe-
tition was characterised by a clear dominance of the stronger
competitor over the weaker competitor in terms of the relative
number of contests won by colonies of the species. This dom-
inance could be described by Tanaka and Nandakumar’s win
index27, which ranged from 0.63 to 0.96 (Supplementary Table 1).
Furthermore, for all networks, species could be ranked into
perfect or almost perfect competitive hierarchies, with each

Fig. 1 Asymmetry, feedback and stability in a 2-species system.
Competition creates a positive feedback loop (aijaji), where aij and aji are
both negative. For a 2-species competition system to be stable, this positive
feedback must be counterbalanced by the same amount of negative
feedback caused by the two self-regulation effects aiiajj. Asymmetry
between the two competitors reduces the product of aijaji and with that the
amount of self-regulation that is needed to obtain stability.
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competitor outcompeting all or most species below it (Supple-
mentary Fig. 1). This is in line with Gallien’s intransitivity
index28, which resulted in values ranging from −0.3 to about 0.1
when applied to our data, demonstrating that our networks were
indeed very transitive (Supplementary Table 1).

We then calculated energy loss rates fij from observations of
interference competition (“Methods”). When we did this, the
competitive hierarchy translated into two asymmetric patterns in
energy loss. First, for each pair of competitors, one clearly

dominated over the other so that each interaction consisted of a
relatively low loss rate coupled with a relatively high loss rate.
Second, the relatively strict ranking from strongest to weakest
competitor translated into a second, additional asymmetry at the
community level with high “top-down” loss rates (losses of lower
ranked species caused by competition with a higher ranked
species) versus low “bottom-up” rates (Fig. 2C). We quantified
both pairwise and community asymmetry (see “Methods”) and
applied both asymmetry measures to the energy loss rates fij and

Fig. 2 Translating observations of competitive interactions into interaction strengths. A Examples of bryozoan assemblages (photos by: British Antarctic
Survey, Cambridge, UK). B Schematic overview of our data processing routine. Species-contact matrices summarise observed competitive outcomes
between the colonies of pairs of species (number of draws (D), wins (W) and total number of confrontations (N) between colonies). These are translated
into species’ energy loss rates fij (biomass per time) by weighing the cost of winning, losing and drawing. Per-capita interaction strengths, the elements of
the Jacobian matrix, are calculated by combining energy loss rates with abundance data (see “Methods”). C Example energy loss web from Signy Island,
Antarctica, containing eight species (B= Beania erecta, Ar = Arachnopusia inchoate, M = Micropora brevissima, E = Escharoides tridens, I = Inversiula nutrix, C
= Celleporella bougainvillea, H = Hippadanella inerma and Ai = Aimulosia antarctica). Node size indicates the observed abundance of each species. The
thickness of an arrow pointing from species j to species i indicates the amount of energy that species i loses per time due to interference competition with
species j. The species are organised hierarchically, from the strongest to weakest competitor in terms of energy loss, with red arrows representing “top-
down” losses and blue arrows representing “bottom-up” losses. The hierarchy causes pairwise asymmetry in each coupled pair of interaction strengths, as
well as community asymmetry with strong “top-down” and much weaker “bottom-up” loss rates. D The observed asymmetric patterns are even more
pronounced in the interaction strengths (Supplementary Table 1). The community pattern appears here as a clear above-below diagonal asymmetry.
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to the interaction strengths aij. Both asymmetries were even
stronger in the interaction strengths, compared to the energy loss
matrices, due to the incorporation of population densities
(Fig. 2D, Supplementary Table 1).

Asymmetry and stability in theoretical competition systems.
We tested the effect of asymmetry on stability in theoretical
random networks by arranging randomly drawn interaction
strengths to form symmetric or asymmetric pairwise interactions
(see “Methods”). While all random networks became more
unstable as the number of species S and connectance C were
increased, we found that for a given combination of S and C,
pairwise asymmetry made the networks more likely to be stable,
while pairwise symmetry made them less likely to be stable
(Fig. 3).

Instability of observed competition networks. We calculated the
stability of the observed systems and found that all empirical
bryozoan competition networks were unstable; that is, all
empirical matrices had dominant eigenvalues with a positive real
part (Supplementary Table 1). This meant that intraspecific
competition of the species did not provide enough self-damping
feedback to counteract the destabilising feedback generated by
interspecific competition. We performed a sensitivity analysis to
test how extreme scenarios for possible relationships between
parameter values affected the stability of the systems. In parti-
cular, we varied the energy loss that was allocated to each type of
competitive outcome (win/loss/draw). We found that all
empirical systems remained unstable in all scenarios and that
their relative stability remained unchanged (Supplementary
Note 1, Supplementary Figs. 2 and 3).

Relation between strongest 2-link feedback and comparative
instability of observed competition networks. We then com-
pared the relative instability of the 30 observed networks. In order
to enable a meaningful comparison between the different
empirical matrices, all with different diagonal values, we deter-
mined the critical level (relative to the observed values) of self-

regulation s* that was needed for stability (following ref. 26, see
“Methods” for details). To analyse the stability results, we cal-
culated the “weight” of the feedback loops, following Neutel and
co-authors (refs. 24,26, see “Methods”).

We found a very strong correlation between the heaviest 2-link
positive feedback loop in a competition network, w(2)

max, and the
critical level of self-regulation s* of the system (see “Methods”,
Fig. 4). This is interesting, because in 2-species competition
systems, w(2), which is called niche overlap by Chesson29, fully
determines system stability. Thus we show that even in more
complex systems, stability is governed by the 2-link loops. It is
noteworthy that there was no clear correlation between species
richness or network complexity and s* of the observed systems
(Supplementary Fig. 4). We also did not find a relation between
any of the asymmetry metrics (the transitivity index of ref. 27,
pairwise asymmetry or community asymmetry) and s* of the
observed systems (Supplementary Fig. 4).

Effect of randomised interaction strengths on critical self-
regulation. When we destroyed the asymmetric organisation by
randomising the observed patterns of interaction strengths, the
systems became even less stable (“Methods”, Supplementary
Fig. 5). We then normalised the matrices, following Neutel and
Thorne25, in order to enable transparent manipulation experi-
ments with the off-diagonal patterns of interaction strengths,
without affecting at the same time the diagonal structure. This
preserved the feedback structure and stability properties of the
systems (“Methods” and Supplementary Tables 2 and 3, ref. 30).

In our first manipulation of the normalised community
matrices, we randomised all non-zero off-diagonal elements
(“Methods”) and found again that the systems became less stable.
This disruption of patterning tended to weaken the asymmetry
within pairs of interacting species, thus causing an increase in the
strength of the positive 2-link feedback loops (Supplementary
Table 4). We found that pairwise asymmetry was correlated
negatively and the strongest 2-link loop w(2)

max was correlated
positively with critical self-regulation s* (Fig. 5a, b).

Relation between hierarchy, feedback structure and stability.
The question remained whether at all, or to what extent, the
competitive hierarchies in the networks affected system stability.
We examined how the hierarchical structure affected the stability

Fig. 3 Asymmetry and stability in random competition matrices. In
multispecies competition systems, pairwise asymmetry enhances the
probability of stability, while symmetry reduces it. For each combination of
number of species S and connectance C, we calculated an ensemble of 100
random matrices. Results show the threshold at which less than 5% of the
matrices were stable. The data points thus represent systems on the
threshold between stability and instability. For a given parametrisation, the
stable region is below the curve, and the unstable region is above the curve.
All interspecific interaction strengths were drawn from the same normal
distribution. Pairwise asymmetry was obtained by coupling strong and weak
links to each other, symmetry by coupling strong links to other strong links
(see “Methods”).
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Fig. 4 Relation between maximum 2-link loop weight wð2Þ
max and critical

level of self-regulation s* in empirical systems. The critical level of self-
regulation s* represents the factor by which observed intraspecific
interaction strength has to be multiplied to obtain stability; s* > 1 means
that a system is unstable, and s* = 1 represents the threshold between
stability and instability. The maximum weight of 2-link loops is denoted as

w(2)
max, where w2 ¼

ffiffiffiffiffiffiffiffiffi
aijaji
aiiajjj j

q

. Regression analysis: n= 30 bryozoan

assemblages, R2= 0.95, y=−0.11+ 1.13x, p < 0.001.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05060-1

4 COMMUNICATIONS BIOLOGY |           (2023) 6:690 | https://doi.org/10.1038/s42003-023-05060-1 | www.nature.com/commsbio

www.nature.com/commsbio


properties of the observed systems by performing a weaker dis-
ruption of the patterns in which pairs of non-zero elements were
randomly permuted (see “Methods”). This allowed us to separate
the effect of pairwise asymmetry from the effect of community
asymmetry since all pairwise relationships and their respective
asymmetries were preserved in this randomisation.

We found that this weaker disruption also increased s*, be it
not as much as with the full randomisation. Higher s* values in
the weakly randomised networks were correlated with lower
values of community asymmetry, suggesting a stabilising effect of
the hierarchical structure on stability (Fig. 6). However, there was
more to the destabilising effect of weak randomisation on s* than
the loss of community asymmetry. This became clear when we
performed an even weaker (“minimal”) randomisation, where we
preserved the pairs of interaction strengths as well as the location
above or below the diagonal. This did not affect the community
asymmetry but nevertheless disrupted the patterning and also led
to an increase in s*.

The effect of weak and minimal randomisation on s* could be
explained by looking at the full spectrum of loop weights (Fig. 7a).

Empirical networks were characterised by a relatively low overall
loop weight. Both the weak and the minimal randomisation did
not affect 2-link loop weights but increased the weight of all
longer—positive and negative—loops, giving an increase in s*.
With full randomisation, the 2-link loops also became heavier,
which increased s* even further (Fig. 7b).

To further test this causal relationship between hierarchy and
stability, we artificially restored hierarchy in the randomised
systems (“Methods”). First, applying an artificial pairwise
asymmetry reduced the weight of 2-link loops, leading to a
decrease of s*. Adding community asymmetry on top of pairwise
asymmetry reduced the weight of longer loops, causing s* to
decrease even further. Thus, hierarchy reduced relative instability
through both pairwise and community asymmetry by keeping the
overall loop weight low (Fig. 7, see Supplementary Table 4 for the
effects of manipulations on stability for all webs).

Discussion
Interference competition in natural communities is not about
winning or losing; it is about losing only. It is a dynamic “loss-loss
game” with players interacting in densely, highly connected
networks. It has long been thought that competitive hierarchies in
such systems are destabilising and that the presence of intransi-
tive loops in competitive networks enables many species to
coexist, even with fierce competition between the
species4,7,10,14,31, but see ref. 8. By modelling loss rates from
whole-network observations, we show that, on the contrary,
hierarchy reduces instability.

Intransitivity has typically been studied separately from clas-
sical coexistence or dynamic-systems frameworks19. Theoretical
research focuses mostly on game-theoretical tournaments, where
interspecific competition is assumed to act in the absence of
stabilising mechanisms like intraspecific competition. Further-
more, it is assumed that competitive outcomes are strictly
deterministic and that two species cannot be equally strong7,9.
This makes it challenging to apply traditional hierarchy ideas to
empirical systems, which contain interactions of various
strengths. We therefore introduced two separate indices of pair-
wise and community asymmetry to quantify hierarchical patterns
of energy loss and interaction strengths in bryozoan assemblages.
By distinguishing these two types of asymmetry, we were able to
explain the relation between hierarchy, feedback structure and
stability.

Although the natural hierarchical organisation of link strengths
in the bryozoan networks kept the weight of feedback loops

Fig. 5 Effect of full randomisation on pairwise asymmetry and stability. Full randomisation destroys the empirical organisation of interaction strengths by
reshuffling all non-zero off-diagonal elements within the normalised community matrix. Network topology, complexity and mean interaction strengths are
preserved. The randomisation destroys the asymmetry of pairwise interactions (a) and increases the maximum weight of 2-link loops w(2)

max. (b). Both
panels show the relationship with stability, quantified as the critical level of self-regulation s*. Data are shown for the web from Signy 1 (Fig. 2C, D) as a
representative example. Regression analysis: n for (a) and (b) = 1001 (1 empirical dataset, 1000 randomised versions) a R2= 0.15, p < 0.001,
y= 8.41− 0.168x; b R2= 0.45, p < 0.001, y= 1.95+ 0.77x.

Fig. 6 Effect of weak randomisation on community asymmetry and
stability. In the weak randomisation, all pairwise interactions are kept
intact, but their location is reshuffled within the community matrix. Thus,
pairwise asymmetry and all 2-link loops of the empirical matrix are
preserved. However, as the location of pairs within the matrix is
randomised, community asymmetry is destroyed. Network topology,
complexity and mean interaction strength are preserved. Stability is
quantified as the critical amount of self-regulation s*. Data are shown for
the web from Signy 1 (Fig. 2C, D) as a representative example. Regression
analysis: N= 1001 (1 empirical dataset, 1000 randomised versions), R2=
0.05, p < 0.001, y= 4.7− 0.22x.
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relatively low, measuring intra- as well as interspecific interaction
strengths allowed us to show that the bryozoan systems were
nevertheless unstable. This is in line with previous findings based
on a competitive lawn community8 and suggests that the systems
could be on a trajectory of change. Direct empirical observation32

indicates that high-latitude bryozoan assemblages are indeed
unstable and, if undisturbed, are experiencing competitive
exclusion33,34. Species richness is maintained by destructive
environmental disturbance, e.g., from ice scour, which opens up
gaps for recolonisation35,36. In our systems, it was the combina-
tion of opportunistic colonisers, who dominated in biomass but
tended to lose contests, and strong competitors, who won most
contests, which caused the hierarchies and provided the asym-
metries in interaction strengths37.

We found that instability was not correlated with system size,
in contrast to what is predicted by random matrix theory23,38.
The same has been shown for empirically parameterised trophic
networks24,25,39, but see ref. 40. It thus further supports the evi-
dence that the stability of real ecological networks is not deter-
mined by their topological structure but by specific non-random
patterns in interaction strengths24–26,39,41–43.

We furthermore found that the relative instability of empirical
competition networks was correlated with the maximum strength
of the shortest positive feedback loops. This is in line with insights
from trophic networks24,25 and points to a general organising
principle for ecological networks. Where in trophic networks
these shortest positive loops are 3-link loops24–26 representing
key functional consumer-resource relationships such as intraguild
predation44, in competition networks, these are 2-link loops.

However, to fully understand the effect of hierarchy on the
stability of competition networks, we need to go beyond these
2-link loops. We found that community asymmetry, caused by
competitive hierarchy, was key in mitigating instability because it
kept the negative 3-link and longer loop weight very low. It has
indeed long been known that excessive negative feedback from
longer loops can destabilise systems via oscillations if it becomes
too strong compared to feedback from shorter loops21.

In conclusion, we found that in all 30 bryozoan assemblages,
intraspecific competition did not outweigh interspecific

competition; that is, the systems were not stable. We showed that
the maximum 2-link positive feedback in the systems governed
the relative instability of the systems. Furthermore, we explained
how competitive hierarchy translates into pairwise and commu-
nity asymmetry in energy loss rates and interaction strengths. As
they lead to weak overall feedback, these asymmetries reduce
system instability. Our findings on the relation between hierarchy
and stability may be of relevance not only for ecological research
but for network science in general, given that interference com-
petition and hierarchy are common features in many human
interaction networks as well45–47.

Methods
Data collection. Our dataset contains records of overgrowth competition in 30
high-latitude bryozoan assemblages: three from Rothera station on Adelaide Island,
West Antarctic Peninsula (67° 34.5’ S, 68° 07.0’ W, collected between 1997 and
2006)16, four from Signy Island in the maritime Antarctic (60°43’S, 45°36’W,
collected between 1992 and 2006)48, and 23 from in Spitsbergen, Svalbard in the
Arctic (Kongsfjord: (1) 79° 01.8’ N, 11° 49.8’ E, (2) 78° 59.5’ N, 11° 58.9’ E, (3) 78°
58.5’ N, 11° 29.8’ E; Hornsund: (1) 77° 00.8’ N, 15° 33.3’ E, (2) 76° 56.8’ N,
15° 48.4’ E, (3) 76° 57.4’ N, 15° 55.6’ E, collected in 2002)49. Analysed communities
were limited to bryozoans, and other encrusting species were removed from the
dataset. Of the 30 networks, eight have appeared in previous publications (see
Supplementary Table 1), while the other 22 have not been published before.

Rocks were collected by hand using SCUBA from shallow subtidal (6–12 m
depth) coastal locations. On each rock, all living bryozoan species were identified to
species (or morphotype) and individual colonies were counted to give abundance
in terms of the number of colonies per species.

Translating empirical observations into win/loss/draw matrices. All pairwise
contests between colonies were classified as a win, draw or loss. A win for species A
and a loss for species B were scored when a colony of species A overgrew 5% of a
colony of species B (following ref. 16). A draw (tie) was scored when two contesting
colonies of species A and B showed either cessation of growth along the contact
boundary or had equal amounts of mutual overgrowth. The results were compiled
in species-contact matrices. The method of data collection is described in more
detail in ref. 49.

Estimating energy loss rates from win/loss/draw observations. We introduce
the concept of “energy loss webs” in analogy to energy flow webs in food-web
theory22. Energy loss webs describe negative material flow rates fij (measured as
biomass loss per time) for each species i as a result of interaction with species j. In
our models, we calculated these loss rates as a weighted sum of all the outcomes of
observed competitive contests between colonies of species i and j. The total energy

Fig. 7 Effect of patterns in interaction strengths on relative instability. The manipulations of the patterns in interaction strengths affect the weight of

feedback loops (a) and stability (b). Loop weights are defined as w kð Þ ¼ ai1 i2 ai2 i3 :::aik i1
a11a22 :::akk

�
�
�

�
�
�

1
kð Þ
, where k is the length of the loop24. As all links are negative, loops

with an odd number of links are negative (self-dampening), while loops with an even number of links are positive (self-reinforcing). Empirical competition
networks are characterised by strong hierarchies in interaction strengths, relatively low s* and low overall loop weight. Weak randomisation preserves the
pairs of interaction strengths and hence keeps the weight of 2-link loops intact but destroys the feedback structure at higher levels of organisation, causing
the weight of longer loops to increase and correspondingly causing an increase in s*. Full randomisation is obtained by random permutation of all non-zero
off-diagonal interaction strengths. This destroys both pairwise as well as community asymmetry, causing the weight of loops of all lengths to increase,
leading to a further increase in s*. Rearranging the randomised matrix to maximise pairwise asymmetry causes 2-link loop weights to decrease strongly,
leading to a decrease in s*. Maximising community asymmetry by rearranging the pairs reduces the weight of the longer loops, leading to a further
decrease of s*. Boxplots in (b) show data from 1000 randomisations with median (centre line), upper and lower quartiles (box limits), 1.5x quartile range
(whiskers) and outliers as points. Data are shown for the web from Signy 1 (Fig. 2C, D) as a representative example.
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loss rate [biomass/time] fij of species i due to interference competition with species
j was calculated as:

f ij ¼ pWWij þ pLLij þ pDDij ð1Þ
whereWij is the number of wins by colonies of species i over colonies of species j, Lij
the number of colony losses of species i to species j and Dij the number of tied
outcomes. The parameters pW, pL, and pD are constants, representing fixed pro-
portions of energy loss per colony per time for a win, a loss and a draw, respectively.
In our study, we assumed that each colony has the same biomass, set as 1, and:

● losing a contest by being overgrown results in an energy loss of pL=−0.9
● winning a contest by overgrowing another colony results in an energy loss

of pW=−0.1
● a draw results in an energy loss of pD= 0.2 for both colonies.

In the case of a draw in an intraspecific contest, the number of tied outcomes Dij

was doubled as two colonies are affected, but only one contest is recorded in the
species-contact matrix. We found that varying the cost values did not have an effect
on the qualitative results (see Supplementary Note 1).

Calculation of interaction strengths. We modelled the dynamics of n-species
networks using classic Lotka-Volterra type differential equations: dXi

dt ¼ riXi �
∑n

j¼1cijXiXj where Xi is the population density of species i, ri its intrinsic growth
rate and functional responses are linear, represented by the coefficient cij, a con-
stant that describes the intensity of competition between species i and j.

The dynamics around the equilibrium state X*, where growth and loss terms
cancel each other out, are described by the Jacobian matrix A, which contains
the partial derivatives of the system, evaluated at X*. The elements aij of A are
called interaction strengths, describing the per-capita effect [dimension 1/t] of a
change in the biomass of species j on the biomass of species i23. Interspecific
interaction strengths are aij ¼ �cijX

�
i . Intraspecific interaction strengths are

aii ¼ ri �∑n
j¼1cijX

�
j � ciiX

�
i . Since at equilibrium ri �∑n

j¼1cijX
�
j is 0, this simplifies

to aii ¼ �ciiX
�
i .

In order to test the potential stability of our observed networks, for
analytical purposes, we assumed that the observed systems were at or near a
steady state. This meant that we could equate the energy loss rate for each
species interaction fij (see above) to the competition term in the differential
equation at equilibrium, so that f ij � �cijX

�
i X

�
j . The observed abundances Bi,

which capture the number of colonies of species i in a given assemblage, were
equated with the equilibrium density X*. The elements of the Jacobian matrix
could thus be calculated as

aij ¼ �cijX
�
i ¼

�cijX
�
i X

�
j

X�
j

¼
f ij
Bj

ð2Þ

Constructing asymmetric and symmetric theoretical matrices. Following
ref. 23, we constructed competitive community matrices with random topology and
interaction strengths, varying the number of species S and connectance C. Diagonal
values were set to −1. Interaction strengths aij were drawn from a normal dis-
tribution centred on 0 and a standard deviation of σ=−0.8. To ensure that all
interactions represented interference competition, the negative of the absolute
value of each random number was used.

We manipulated the degree of asymmetry of pairwise interactions in the
random networks by sorting the randomly drawn interaction strengths into pairs.
For the random distribution, the value of each link was drawn independently. For
asymmetric pairs, we first determined the number of links n and then drew a list
of 2n random interaction strengths. After ordering the list from largest to weakest
interaction strength, we sorted them into the matrix by pairing the strongest link to
the weakest, the second strongest to the second weakest, etc. In symmetric matrices,
we did the opposite and assigned the values as they were ordered in the list. Thus,
the strongest link was paired with the second strongest, the third with the
fourth, etc.

Calculating stability. The stability of a system is the ability to return to its original
state after a disturbance. For a system represented by Jacobian matrix A, it is
calculated by determining the eigenvalues λ of the matrix A23. The real parts of the
eigenvalues, Re(λ), describe the rate of exponential growth or decay with which a
small perturbation would increase (if the rate is positive) or decrease (if it is
negative). An equilibrium is only considered stable if all eigenvalues have negative
real parts, meaning that all perturbations decay over time. The so-called dominant
eigenvalue λd (that is, the eigenvalue with the largest real part) is thus an indicator
of system stability: If the real part of λd is negative, the system is stable since the real
parts of all other eigenvalues must be negative as well.

Re(λd) of the Jacobian has the dimension per time. This means that it is not
suitable to compare the stability properties of different systems encompassing
different time scales. To be able to make this comparison and in order to assess
how far the systems are from stability, we use the dimensionless metric s*, the
critical level of self-regulation, following previous work on food webs26. s*
represents the factor by which observed intraspecific interaction strength has to be

multiplied to obtain stability. The metric s* thus describes how far the system is
from stability, as a multiplier of the actual amount of self-regulation, in the case of
an unstable system (s* > 1). In the case of a stable system (s* < 1), it indicates how
much ‘buffering capacity’ a system has, giving the fraction of observed self-
regulation that is enough to provide stability. Determining s* can be done
numerically by multiplying the diagonal of the Jacobian matrix with a control
parameter s and adjusting s until the matrix is right at the threshold between
stability and instability.

Our empirical data did not always contain estimates of the strength of self-
regulation for all species. This was because intraspecific competition is often rare in
species with low abundances, and therefore no contests could be observed during
data collection. This does not mean that those populations are not self-regulated at
all, just that the area of collection was not big enough to observe it. For our relative
stability analysis, diagonal elements that could not be estimated from observational
data were set to a value that was proportional to the mean of all Jacobian elements
in the matrix. Replacing the zero self-regulation terms in the original Jacobian
matrices with small non-zero negative values did not change the result that all
systems were unstable. The exact proportionality factor affected the absolute values
of both s* and w(2)

max, but it did not affect the resulting stability pattern
(Supplementary Figs. 6 and 7). The results in the main analysis were carried out
using a proportionality factor of 0.1.

Normalisation procedure. For our manipulation experiments with the observed
systems, we normalised the Jacobian matrices, following ref. 25. The normalisation
procedure translated the diagonal structure of matrix A onto the off-diagonal
structure. This meant that manipulations of the off-diagonal elements could be
carried out without affecting the diagonal structure, making the feedback- and
stability analysis more transparent.

The Jacobian matrices were normalised by dividing each row in the matrix by
the absolute value of its corresponding diagonal term. The resulting matrix �A,
which we call “community matrix”, has the dimensionless elements �aij ¼

aij
aiij j and a

uniform diagonal of −1. We could then calculate s* of this matrix �A directly by
setting the diagonals of �A at 0, obtaining �A0, and calculating the maximum real part
of the eigenvalues of the matrix �A0. Under certain conditions, this maximum real
part, the critical level of self-regulation s* of a normalised matrix, equals the s* of
the original Jacobian30. We found that for all our observed systems, the numerically
determined s* of the original Jacobian matrix A was the same as or was
approximated very closely by the real part of the dominant eigenvalue of the
normalised community matrix with diagonals set at zero (Supplementary Table 2).
This meant that normalising our observed systems maintained the feedback
structure and essential stability properties.

Calculating loop weight. Feedback loops are closed chains of interactions. They
are quantified as the product of all link strengths within them. Thus, in competition
networks, where all aij < 0, all loops with an even number of links are positive,
while those with an odd number of links are negative. Isolated positive feedback
loops amplify perturbations and are thus generally seen as destabilising, while
isolated negative loops are seen as stabilising as they dampen perturbations21.
Together, the positive and negative feedback loops regulate a whole system.

Whether a complex system is stable is determined by the multitude of
strengths of negative and positive feedback loops, and the relation between
individual feedback loops and system stability is not straightforward21. Systems
of n components comprise feedback loops of various lengths: 2-link, 3-link,
4-link and so on, up to length n. The total feedback at any given level k is a
summation of the strengths of all the feedback loops of length k and that of all
the combinations of disjunct (non-overlapping) feedback loops of shorter
length containing k elements. A necessary (but not sufficient) condition for
stability states that in a system of n variables, the total feedback Fk for each level
k in the system must be negative21.

We used the quantity loop weight w(k), the geometric mean of all links in a
feedback loop of length k24, scaled to their respective self-regulation terms:

w kð Þ ¼ ai1 i2ai2 i3 ¼ aiki1
ai1ai2 � � � aik

�
�
�
�
�

�
�
�
�
�

1=k

;

to be able to compare feedback strength with s* and compare loops of different
lengths.

Calculation of transitivity indices and asymmetry measures. We calculated two
known indices that are applicable to our dataset:

● Gallien’s intransitivity index28 allows the inclusion of reciprocal links, but
its calculation is not straightforward for larger networks, as the index values
of all intransitive structures have to be summed up. The index is designed
for competition coefficients. As we do not have those, we calculated the
index using the elements of the Jacobian matrix.

● Tanaka and Nandakumar’s transitivity index27 can be directly calculated
from the species-contact matrices. However, this index only measures the
asymmetry (or polarisation) of pairwise interactions.
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To quantify the patterns in interaction strengths that emerge from the
hierarchical structure, we used two new indices to characterise the structure of
competition networks. They can be applied to any matrix and were used to
determine asymmetries in energy loss rates, interaction strengths as well as
normalised interaction strengths

1. We quantified pairwise asymmetry as the ratio of the stronger and the
weaker value for each pair of interaction strengths aijaji. These ratios were
then averaged over all pairs of interaction strengths to get the pairwise
asymmetry of the whole network:

pairwise asymmetry ¼ 1
n
∑n

i;j¼1

aij
aji

ð3Þ

with n = number of pairwise interactions and aij > aji
2. The hierarchical ranking of the species causes what we call community

asymmetry—strong differences between strong “top-down” effects from
higher-ranked species to lower-ranked species and weak “bottom-up” effects
from lower-ranked species to higher-ranked ones. If the species in the
community matrix A are ordered according to their hierarchical ranking, all
strong values are located below the diagonal, in the lower triangle, while all
weaker values are located in the upper triangle. We defined community
asymmetry of a matrix as the highest ratio, given any ordering of species, of
the mean of all non-zero interaction strengths located below the diagonal
and the mean of all non-zero interaction strengths below the diagonal

community asymmetry ¼ meanðaijÞ
meanðajiÞ

ð4Þ

with i > j. To determine community asymmetries of our systems, we simply
determined this ratio for all possible orders of species and then chose the
one that maximised the ratio.

Manipulating empirical network structure. We manipulated the internal orga-
nisation of the raw and normalised empirical systems in order to destroy or add
specific structures of interest. During each manipulation, the non-zero off-diagonal
elements were reshuffled within the matrix. The manipulations meant that both the
complexity and the qualitative structure of the network remained intact, and all
interaction strength values (hence also mean interaction strength) were preserved.
For the normalised matrices, the relation between diagonal and off-diagonal values
was not affected by the manipulations since all diagonal values of the normalised
matrices had the value −1.

We used three types of randomisation procedures to destroy the observed
structure:

● full randomisation: all non-zero interspecific interaction strengths were
randomly reshuffled within the network. This procedure destroyed the
loop-weight structure of all feedback loops of length >1.

● weak randomisation: non-zero pairs of interaction strengths were
reshuffled within the network. Thus, the 2-link loops were kept intact
but their location within the network was randomised. This disrupted
patterns associated with feedback loops of length >2.

● minimal randomisation: identical to weak randomisation but with
preserved above/below diagonal orientation of the pairs of matrix elements.

Additionally, we used two types of manipulations on the fully randomised
matrices to artificially restore the observed structure:

● Adding pairwise asymmetry: the pairwise asymmetry of interactions was
maximised by pairing the strongest element of the matrix with the weakest,
the second strongest with the second weakest (following the same
procedure that was used for the theoretical matrices). The location of the
pairs was randomised in the system so that strong links could appear on
either side of the diagonal.

● Adding community asymmetry on top of pairwise asymmetry: with a
pairwise asymmetry back in place, the pairs were placed so that a stronger
value of each interaction was put below the matrix diagonal. This maximised
the community asymmetry for the given set of interaction strengths.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All empirical data used in this study have been deposited at the public repository Zenodo
(https://doi.org/10.5281/zenodo.8010451)50 and can be accessed under the following
URL: https://zenodo.org/record/8010451.

Code availability
The analysis was performed in R (version 4.3.0) and Python 3. All script files needed to
reproduce the analysis, including all figures and tables, are available in the public

repository Zenodo (https://doi.org/10.5281/zenodo.8010451)50 and can be accessed
under the following URL: https://zenodo.org/record/8010451.
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