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Generalized precursor prediction boosts
identification rates and accuracy in mass
spectrometry based proteomics
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Data independent acquisition mass spectrometry (DIA-MS) has recently emerged as an

important method for the identification of blood-based biomarkers. However, the large search

space required to identify novel biomarkers from the plasma proteome can introduce a high

rate of false positives that compromise the accuracy of false discovery rates (FDR) using

existing validation methods. We developed a generalized precursor scoring (GPS) method

trained on 2.75 million precursors that can confidently control FDR while increasing the

number of identified proteins in DIA-MS independent of the search space. We demonstrate

how GPS can generalize to new data, increase protein identification rates, and increase the

overall quantitative accuracy. Finally, we apply GPS to the identification of blood-based

biomarkers and identify a panel of proteins that are highly accurate in discriminating between

subphenotypes of septic acute kidney injury from undepleted plasma to showcase the utility

of GPS in discovery DIA-MS proteomics.
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Recent computational advances in the development of
fragment spectra prediction1–4, and the creation of full
proteome repository scale spectral libraries5–10 have

allowed for the exploration of DIA as a means for discovery
proteomics. Although these large libraries can help facilitate the
identification of novel proteins in a DIA experiment, they present
significant computational difficulties, particularly when attempt-
ing to control the false discovery rate (FDR) using the target-
decoy approach11. The increased search space of these libraries
can cause a decrease in sensitivity and statistical power as more
false positives are introduced into the library, leading to less true
positive precursors being correctly identified12–14. Attempts have
been made to filter down these massive libraries to sample-type-
specific libraries in a data-dependent fashion to create a more
manageable search space for statistical validation algorithms13,15.
However, if the library filtering is done too strictly potential true
peptides are eliminated unnecessarily from the analysis, and if
done too liberally many false positives can be left in the library for
consideration. In both cases, this can result in an unreliable
estimation of the FDR, so care must be taken when filtering large
spectral libraries for analysis.

In addition to the filtering and sub-setting of spectral libraries,
one area that has not been investigated with the same vigor is the
effect of the choice of statistical validation algorithms on their
ability to control the FDR in a stable manner. The method of
choice for the validation of DIA mass-spectrometry data is the
mProphet algorithm16, which is similar to the Percolator algo-
rithm commonly used in DDA proteomics17. The
mProphet algorithm, implemented in the python package
PyProphet18 for the use of validating DIA data extracted with the
OpenSWATH software19, uses a semi-supervised method to
combine all calculated subscores into a final classification score
used to control the FDR. This method works by selecting positive
training targets below a particular q-value cutoff (typically 0.01
or 1% FDR) in an iterative fashion until the number of identi-
fications passing the defined threshold is maximized. In most
cases, where the library closely matches the proteome of the
sample of interest, this method works exceedingly well. Apart
from the OpenSWATH tool chain, more modern approaches
such as DIA-NN20 utilize a modified version of the
mProphet algorithm, where positive targets are selected based on
an initial FDR cutoff and then an ensemble of neural networks
are trained to classify target and decoy precursors. In addition,
EncyclopeDIA21 directly uses Percolator17 to validate precursors,
while MaxDIA22 trains an XGBoost classifier for each experi-
ment to control the FDR. All of these common DIA analysis tools
utilize some aspects of the mProphet algorithm and rely on
training new classifiers for each subsequent analysis, which can
be a computationally heavy and nontrivial task.

In a typical blood-based discovery analysis, DIA-MS can be
used to detect low abundant and tissue-leakage proteins that have
not previously been detected using tissue-wide spectral libraries
and has emerged as an important method for the identification
and analysis of blood-based protein biomarkers. This type of
analysis creates a large search space where the majority of pre-
cursors in the library are likely not contained in the sample, as
blood plasma will not contain each of the tissue proteins included
in the library. A large search space is also prevalent in proteo-
genomic experiments (i.e., searching for single amino acid var-
iants) or the sequencing of antibodies from pull-down
experiments, where the variation in potential protein sequences
causes the search space to sky-rocket23. In these cases, “true”
target labels are outnumbered by the “false” targets effecting the
training of experiment and sample-specific classifiers and the
accuracy of the resulting FDR control. Research has been done to
develop methods that identify noisy labels and stabilize model

training24,25, but these are not implemented in common DIA
analysis pipelines. In addition, if these “true” targets are identified
they would represent a small fraction compared to the negative
decoys in the data, creating an overwhelming class imbalance,
which can destabilize the training of machine-learning algorithms
if not dealt with in an appropriate manner26.

In contrast to the established methods, we propose a general-
izable machine-learning framework (GPS) that can be applied to
any DIA-MS experiment to accurately predict precursors and
control the FDR without the need to train new classifiers. This
generalizable scoring approach has been demonstrated to work
using static Percolator models in the context of DDA proteomics17

but these models are trained on the sample types that they are used
to evaluate, so it is unclear if they would generalize to diverse and
unrelated data. We hypothesize that a good precursor is a good
precursor, no matter the sample type, and that statistical validation
models can be trained on unrelated external data if curated prop-
erly. These generalized models can be used to directly predict true
precursors and eliminate false precursors from contention, allow-
ing for stable FDR control regardless of the original search space.
To that end, we have trained a generalizable scoring model and
implemented a suite of algorithms to provide stable validation of
extracted precursors through the search space size agnostic Gen-
eralizable Precursor Scoring (GPS) package (https://github.com/
InfectionMedicineProteomics/gps).

Results
Overview of GPS. The overall goal of GPS is to provide accurate
FDR control regardless of the initial search space, while max-
imizing the number of proteins identified and providing high
quantitative accuracy. The basis of GPS is to train models on
curated data in an effort to maximize precision and then utilize
these models to predict and score precursors in order to control
the FDR (Fig. 1a). The high-precision classifiers can be directly
applied to new data to predict true precursors from a sample and
filter out low-confidence ones from analysis, allowing for stable
FDR control independent of the original search space.

We evaluated GPS in four different scenarios described in
detail in the sections below (Fig. 1b).

● First, we established a methodology for training GPS
classifiers and demonstrate how they generalize effectively
to new data, as described in “GPS effectively generalizes to
new data”.

● Second, we investigate how the predictive power of the
generalizable classifiers can boost identification rates
compared to existing methods while eliminating false
identifications through entrapment FDR analysis in the
section “Precursor prediction with GPS enhances identifi-
cation rates”.

● Third, we show how GPS can improve quantitative
accuracy compared to existing methods in the section
“Precursor validation with GPS improves quantitative
accuracy”.

● Fourth, we demonstrate the application of GPS through the
analysis of novel blood plasma samples from sepsis patients
with acute kidney injury (AKI) and use it to find potential
protein biomarkers to effectively stratify two established
AKI subphenotypes27. This analysis and results are
described in the section “The application of GPS to identify
potential protein biomarkers for sepsis-induced AKI”.

This 4-part evaluation was performed using four distinct
datasets (Fig. 1b).

● The first dataset, referred to as the yeast data, is a novel
dataset consisting of 128 yeast samples run with varying
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gradient lengths (30, 45, 60, 90, 120 min). This yeast data
provides a means to benchmark GPS using a simple and
well-defined proteome that competing methods should also
perform well on. The yeast data is used primarily to train
the GPS models and a held-out portion of the data, the
yeast test data, is used for evaluation in the section “GPS
effectively generalizes to new data” below.

● The second dataset, the mouse-kidney (MK) data, consists
of 31 mouse-kidney samples from a previous study28.
These data represent a more complex proteome and is used
to evaluate how the models generalize and how they
maximize the number of identifications while maintaining
a stable FDR in an entrapment FDR analysis. These data
are used in two sections, “GPS effectively generalizes to new
data.” and “Precursor prediction with GPS enhances
identification rates”.

● The third dataset, the spike-in data, is a novel dataset
consisting of tryptic Yeast peptides spiked into a constant

mouse-kidney proteome at known concentrations. These
spike-in samples consist of two groups where 4X the yeast
peptides are spiked-in to one group of samples so that we
can measure the quantitative accuracy of GPS based on the
expected ratios (0 log2 fold change for mouse precursors,
and 2 log2 fold change for yeast precursors). This data and
analysis is described in the section “Precursor scoring with
GPS improves quantitative accuracy”.

● The fourth dataset, the AKI data, is a novel dataset
consisting of 141 previously unpublished blood plasma
samples from a subcohort of sepsis patients with AKI from
the FINNAKI study27,29. These 141 AKI samples are
comprised of two established sepsis subphenotypes, based
on the severity of the illness, that were developed from a
combination of multiple clinical and molecular markers30.
The AKI data are used to test GPS in a large search space
where the proteins contained in the sample do not match
up against the spectral library being used. From the AKI

Fig. 1 Overview figure depicting GPS and the methods and data used for evaluation. GPS is first visualized in (a) and split into two groups. The first part
of (a) visualizes the training procedure for the GPS models. The data from Yeast samples were first acquired at different gradient lengths from two different
mass spectrometers and totaled 3.75 million precursors from 128 sample files. This data was then split into a train and test set. The training set was further
filtered using a k-fold (k= 10) self-denoising algorithm where an ensemble of logistic regression models are trained for each fold and vote on the held-out
data to determine the set of true precursors. This removal of false precursors results in a filtered training set of 2.8 million precursors. Two models, one
SVM and one XGBoost, were then trained on the filtered and unfiltered training data for a total of four models. These trained models are then applied to
new data to predict and score precursors to validate extracted signal in a DIA-MS experiment. b Visualizes the 4 separate methods used to validate GPS
and compare it to existing methods, along with the data that are used for each analysis. To directly evaluate how GPS generalizes to new data, we
measured the performance of the four classifiers on the yeast data, mouse-kidney data, and a subset of the human plasma data. We then measured and
compared the identification rates of GPS and PyProphet using the mouse-kidney data in an entrapment FDR analysis. We then evaluated the quantitative
accuracy of the validated identifications of GPS compared to PyProphet by analyzing a set of two-species mixture samples consisting of two groups and
comparing the number of identifications that fall within the expected ratios. Created with BioRender.com.
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data, we are able to identify more than 1300 proteins in
undepleted human plasma and pinpoint a panel of the
putative biomarkers to stratify subphenotypes of AKI using
explainable machine learning. In addition, a subset of these
samples are used to evaluate how GPS generalizes to
human plasma samples. An overview of the four evaluation
methods, and the sample sets used is visualized in Fig. 1b.
A portion of this data is used in the section “GPS effectively
generalizes to new data”, and the data are analyzed
completely in “The application of GPS to identify potential
protein biomarkers for sepsis-induced AKI” below.

GPS effectively generalizes to new data. The first step in eval-
uating GPS is to establish a method for training models that will
generalize effectively to new data. To that end, 129 samples of the
yeast data were randomly split into 102 training samples and 26
test samples set aside to be used for validation and to assure the
trained models are not overfitted. The combined data consists of
3,751,367 peak groups, while the 102 training samples consist of
2,988,116 peak groups (1,479,571 decoys and 1,508,545 targets),
and we will refer to this data as the unfiltered training data. The
test samples consist of 763,251 peak groups, and we will refer to
them as the yeast test data. The unfiltered training data was fil-
tered using a novel denoising algorithm to remove noisy false
target labels that destabilize model training. This denoising
algorithm takes a sample as input and initially splits the pre-
cursors in the sample into tenfolds. So that each held-out fold can
be scored using classifiers trained on separate data, the remaining
data is used to train an ensemble of ten logistic regression clas-
sifiers with bagging31. Each classifier in the ensemble will vote on
the held-out data, and only precursors where every classifier in
the ensemble votes it as a true target are kept in the training data.
This filtering resulted in a training set of 2,754,877 peak groups
(1,479,571 decoys and 1,275,306 targets) we will refer to as the
filtered training data. Linear SVM and non-linear XGBoost
models were trained using each training set to create four models
(XGB Filter, SVM Filter, XGB No Filter, SVM No Filter). In
addition, we trained a PyProphet XGB and a PyProphet LDA
model on the unfiltered training data as a comparison to the GPS
training method. These six models were applied to evaluate the
effects of the training set filtering and model type on model
precision, generalization to new data, and the ability to maximize
identifications. These models were evaluated on three distinct
datasets to confirm they generalize and to ensure that overfitting
of the models is not occurring. The yeast test data described
above was used as a first evaluation of the models. At a 1% FDR
cutoff, PyProphet XGBoost identified less than 1% more pre-
cursors per sample compared to GPS XGBoost Filter for the yeast
test data (0.45%) (Fig. 2a). The second dataset was 31 mouse-
kidney samples searched using a sample-specific spectral library.
Here, GPS identified 1.86% more precursors than PyProphet
(Fig. 2b). The third dataset was 20 randomly selected undepleted
plasma samples from a cohort of 141 patients with septic acute
kidney injury (AKI) using a repository scale human tissue spec-
tral library. This AKI test data is used to evaluate the applicability
of GPS in large search space scenarios where the proteins in the
sample do not closely match the number of proteins in the
spectral library. In this case, GPS also identified more precursors
than PyProphet (2.58%) (Fig. 2c). The score distributions for all
GPS classifiers on each of the test datasets are visualized in
Supplementary Fig. S2. In addition, we measured the precision of
each GPS classifier on the three test datasets and found GPS XGB
Filter to have the highest average precision (0.994) compared to
GPS SVM Filter, GPS XGB No Filter, and GPS SVM No Filter
(0.987, 0.809, 0.707) (Fig. 2d). Due to the superior number of

identifications passing 1% on the test data and the highest pre-
cision score among classifiers, the GPS XGB Filter classifier will
be used for the remainder of the study and referred to as GPS.
Based on the number of identifications that pass given FDR
threshold, these results suggest that GPS is able to generalize
more effectively to new data than PyProphet (MK and AKI data)
and provide comparable results when scoring data of the exact
same sample type (yeast data). The high average precision (0.994)
from all datasets, also suggest that GPS is extremely effective at
predicting which precursors are correct on a consistent and
reproducible basis. The confusion matrices used to calculate
precision and predictive performance for each GPS classifier on
the three test datasets are available in Supplementary Fig. S1.

Precursor prediction with GPS enhances identification rates.
Once we demonstrated how GPS could generalize to unrelated
data, we then investigated how the high-precision predictions
could be used to maximize the identified proteins in an experi-
ment. We analyzed 31 mouse-kidney samples from another
study28 using a spectral library built from 60 data-dependent
acquisition (DDA) samples consisting of a mouse-yeast species
mixture and compared the number of correct mouse identifica-
tions and the entrapment FDR (calculated by counting the
number of yeast identifications that pass at a given FDR thresh-
old) obtained using GPS or PyProphet18. The effects of peak
group predictions are evident in their removal of yeast identifi-
cations from consideration and the decrease in the false target
portion of the bimodal target distribution of GPS output scores
(Fig. 3a, b). In order to boost identification numbers, PyProphet
estimates the percent of incorrect targets (PIT or pi0) to down-
weight decoys when calculating q-values to allow more targets to
pass at the same FDR18,32. Alternatively, using peak group pre-
diction, GPS was able to increase the number of correct mouse
identifications while eliminating false yeast identifications, pro-
ducing lower entrapment FDR across all thresholds compared to
PyProphet (Fig. 3d). Over the 31 samples, GPS provides a 50.57%
increase compared to PyProphet in the mean number of true
mouse precursors that pass 1% FDR control (Fig. 3c).

Precursor scoring with GPS improves quantitative accuracy. To
establish the quantitative accuracy of identifications produced
using GPS, we performed an analysis on a two-species mixture of
yeast peptides spiked into a constant mouse-kidney proteome
background with two groups of ten technical replicates each. Each
group of samples contained the same concentration of Mouse-
Kidney proteins, while one group contained 4X more yeast
peptides. To verify that our method was validating correct peak
groups, we monitored the expected ratios to ensure accurate
quantification while still maintaining high levels of identification.
In this case, Mouse precursors should expect a 0 log2 fold change,
while the yeast precursors should expect a 2 log2 fold change
(4X). As a direct comparison, we used OpenSWATH19 to extract
signal followed by scoring with GPS or PyProphet18. Scatter plots
showing the distributions of log2 fold change between groups of
the spike-in data against the mean abundance of the higher-
abundance group are visualized in Fig. 4a, b. Horizontal lines in
the Fig. 4a, b outline, the area we define as ratio-validated pre-
cursors (±0.2 from the expected ratios), and the identifications
within these windows are counted at the precursor, peptide and
protein level in Fig. 4c. The precursors were considered ratio-
validated if their measured log2 fold change fell within the correct
window based on the mapped protein label within the ± 0.2
boundaries15,33. In comparison to PyProphet, GPS identified
18.97% more precursors, 17.96% more peptides, and 5.28% more
proteins in the ratio-validated regions. GPS also decreased the
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number of missing values in the overall data by 60.51% (43.73%
missing values with PyProphet, and 17.27% missing values with
GPS) (Fig. 4d). Based on these metrics, GPS identifies more
ratio-validated proteins, while substantially decreasing the
number of missing values in the data. To complement the
comparison of ratio-validated identifications, we additionally
measured the number of identified precursors at increasing
thresholds from the expected ratios (Fig. 4e) and the FDR at
these same thresholds (Fig. 4f). In Fig. 4e, GPS provides a greater
number of identified precursors across all measured thresholds
from the expected ratios. In addition, in Fig. 4f, GPS displays a
very slight increase in FDR at low thresholds, but a lower overall
FDR at the highest measured thresholds. At the ±0.2 threshold,
GPS identifies 48680 precursors compared to 40919 with
PyProphet (a 18.97% increase) at a 1.90% FDR compared to
1.82% FDR with PyProphet (Visualized by the red dashed lines
in Fig. 4e, f). Within the ratio-validated region, GPS identifies
almost 8000 more precursors at only a small increase in FDR
compared to PyProphet.

The application of GPS to identify potential protein bio-
markers for sepsis-induced AKI. In order to realize the potential
of biomarker discovery experiments using DIA, it can be useful to
search blood plasma samples with full human tissue spectral
libraries to reach the proteomic depth required to identify
interesting and low abundant proteins for further analysis. As an
application of GPS, and to evaluate performance in a large search
space, we analyzed 141 previously unpublished blood plasma
samples from a subcohort of sepsis patients with acute kidney
injury from the FINNAKI study27,29. These 141 samples are
comprised of two established subphenotypes, based on severity of
the illness (less severe (n= 60) and more severe (n= 81)), that
were developed from a combination of multiple clinical and
molecular markers30. We interrogated this data using an opti-
mized human tissue spectral library consisting of the Pan Human
Library5 and appended spectra from direct DIA identifications
using MSFragger (v3.5)34 to correct the retention time and aug-
ment the library with more identified precursors (10,952 proteins
overall). This analysis puts into context the benefits that GPS

Fig. 2 Generalization of GPS to three distinctly different sample types. As a first analysis, we directly evaluated the ability of GPS to generalize to new
data. a–c Show the average number of precursors identified with the four GPS models (GPS XGB Filter, GPS XGB No Filter, GPS SVM Filter, GPS SVM No
Filter) and two PyProphet models (Pyprophet XGB and PyProphet LDA). The dotted red lines represent a 1% FDR cutoff so the performance of each tool on
each of the three datasets can be visualized at the specific cutoff. The error bands are based on the 95% confidence intervals calculated at each FDR cutoff.
a Displays the number of precursors identified on the yeast data, which represents the most simple of the three tested sample types for generalization and
the number of proteins is lower, and the number of precursors in the sample directly match the spectral library used. b Displays the number of identified
precursors for the mouse-kidney data, which represents a more complex proteome. Here, PyProphet does not perform as well as the yeast data, which it
was trained on, suggesting that GPS generalizes to new data more effectively. c Displays the number of identified precursors at different thresholds for a
subset of human plasma samples. These samples were searched using a human tissue library and represent a large search space scenario where the
number of precursors does not match the precursors in the spectral library. Here, GPS provides the most identifications at a 1.0% FDR showing how
effectively it can generalize independent of the search space. d Contains box plots indicating the measured precision for each model at classifying only true
targets. The colors of each bar represent the three different datasets. The colors of the horizontal dotted lines correspond to the indicated models in (a–c)
and are placed at the mean precision for each model across all three datasets. The GPS XGB Filter model had the highest measured average precision
across all three sample types. GPS SVM Filter had a comparable measured average precision, indicating the importance of filtering the training data to
maximize precision in a precursor classifier.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04977-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:628 | https://doi.org/10.1038/s42003-023-04977-x | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


provides when querying a large search space and the benefit of
using extensive curated repository spectral libraries in discovery
DIA. We first compared the standard OpenSWATH/PyProphet
workflow with GPS to see the advantages provided when inter-
rogating a larger search space. In order to get PyProphet to run
without failure on this data, it was necessary to remove the pi0
estimation32 as this failed due to the large number of false target
identifications in the spectral library. Here, the estimated number
of false targets was greater than the number of decoys in the
analysis, so pi0 estimation must be disabled or manually set to
enable PyProphet to run through without error. Since the goal of
this analysis was to try to identify biological differences between
AKI subphenotypes, we focused on the number of comparable

proteins per group as a proxy for method performance. For this
metric, we counted the number of proteins quantified in at least
ten biological replicates per group and found GPS identified
24.35% more than PyProphet (771 vs. 620). Finally, we compared
the number of statistically significant differentially abundant
proteins (at least ten replicates per group) with a corrected P
value < 0.1 and found a 22.91% increase for GPS (338 vs. 275).
Volcano plots for both PyProphet (Fig. 5a) and GPS (Fig. 5b) are
visualized as well as the overall protein counts (Fig. 5c). Overall,
GPS quantified 1312 proteins, 53.81% more than PyProphet.
Using the increased analytical depth of GPS, we applied recursive
feature elimination (RFE) with cross-validation via explainable
artificial intelligence (SHAP35) and an XGBoost classifier to

Fig. 3 Entrapment FDR analysis and precursor identification benchmark. This figure displays the ability of GPS to eliminate false precursors (Yeast
precursors) from analysis using highly precise precursor prediction. On a first pass, precursors are predicted to remove false target precursors from FDR
analysis. The precursors that are predicted as true targets are re-extracted to adapt the search space and ensure that only true targets are considered
during distribution modeling and FDR calculation. a, b Display score distributions calculated by GPS for all extracted precursors in the mouse samples using
a mouse-yeast species mixture spectral library. a Displays the unfiltered score distributions from GPS for Mouse precursors in the library in orange, Yeast
precursors in the library as blue, and Decoys in the library as green. A large peak in the bimodal target distribution can be visualized as overlapping with the
yeast distribution and decoy distribution. b Displays a filtered score distribution after peak group predictions using GPS and the removal of false targets
from consideration. Here we can see that the yeast precursor peak is almost completely eliminated from contention, and the bimodality of the false target
(orange target distribution) is lessoned in the region overlapping with the decoy distribution. These two panels display how GPS can control the search
space so that the FDR can be controlled in a stable manner. c Displays the number of true mouse target precursor counts at increasing FDR thresholds for
GPS and PyProphet. The dotted red line indicates a 1% FDR to visualize the performance at that cutoff. The error bands are based on the 95% confidence
intervals calculated at each FDR cutoff. At all cutoffs GPS identifies more precursors than PyProphet. d Displays the Yeast FDR rates, defined as the number
of Yeast identifications divided by the total number of identifications, at increasing FDR thresholds. The red dotted line indicates a 1% FDR and the dotted
black line represents y= x, where the Yeast FDR should correspond directly to the measured FDR. The error bands are based on the 95% confidence
intervals calculated at each FDR cutoff. The measured Yeast FDR is lower using GPS at all thresholds compared to PyProphet, and is more strict at higher
thresholds than PyProphet while still identifying more precursors at the same thresholds.
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identify a panel of highly accurate predictive proteins in differ-
entiating between AKI subphenotypes. SHAP-RFE analysis
identified a group of 18 proteins as the most effective dis-
criminatory panel (Fig. 5d), with the CD44 antigen (CD44) as the
overall most important in classification. We evaluated the per-
formance of this classifier using cross-validation (tenfold) and
calculated an accuracy of 0.86 with a standard deviation of 0.11.
In addition, these proteins were able to accurately cluster AKI
subphenotypes in an unsupervised manner (Rand score 0.82),
further confirming their effectiveness in stratifying the two AKI
subphenotypes (Fig. 5e). The abundance profiles between groups
can be visualized in Fig. 5f, and their average fold change and
statistical significance can be visualized with green in Fig. 5b. A
few noteworthy proteins (Catalase (CATA), Clusterin (CLUS),
Collagen alpha-2(I) chain (CO1A2)) are not considered statisti-
cally significant, but are still considered important in the context
of differentiating between subphenotypes. The protein Cathepsin
Z (CATZ) from the panel was not considered for DE analysis as it

was not quantified in the minimum number of replicates for the
less severe subphenotype but consistently quantified in the more
severe.

Discussion
With the implementation of our new methods, we showed how
GPS can effectively generalize to new data, increase the number of
identifications, boost quantification accuracy, and be applied in a
discovery DIA analysis to investigate a complex biological ques-
tion. We were able to demonstrate how these established methods
can suffer when the spectral library search space is too large and
does not match the sample, while GPS is able to score data in this
scenario in a stable manner while increasing the number of
identifications and quantitative accuracy. These combined
improvements allow for the deep and in-depth analysis of plasma
proteome samples using repository scale spectral libraries to boost
the power of discovery DIA experiments using a completely
open-source tool chain.

Fig. 4 Quantification accuracy of GPS evaluated by a two-species mixture spike-in dataset. We evaluated the quantification accuracy of GPS by
analyzing a two-species mixture of yeast peptides spiked-in into a constant mouse-kidney proteome background with two groups of ten technical replicates
each. Each group of samples contained the same concentration of Mouse-Kidney proteins, while one group contained 4× more yeast peptides and we
measured the number of precursors that mapped correctly into the expected ratio of their species (0.0 ± 0.2 log2 fold change for Mouse precursors and
2.0 ± 0.2 log2 fold change for Yeast precursors. a displays the mean abundance of precursors identified using GPS against their log2 fold change and
colored by their mapped species. Histogram plots directly to the right of these scatter plots display the distribution of the species mixture on the log2 fold
change scale. The expected ratio regions are highlighted to display which precursors were considered as ratio-validated. b displays the same as (a) but for
PyProphet. c Displays the overall counts of ratio-validated precursors, peptides, and proteins, from the regions highlighted in (a, b) for GPS and PyProphet.
From these validated regions, GPS identifies more precursors, peptides, and proteins than PyProphet. d Shows the percentage of missingness in the
quantitative matrices for GPS and PyProphet. Here, GPS decreased the number of missing values by 60.51% compared to PyProphet. This is important in
context with (c), as GPS is able to provide a greater number of accurately quantified precursors and a substantially more complete data matrix as measured
by the % missing values. In order to provide an evaluation beyond the ratio-validated cutoff, we measured the number of identified precursors and the FDR
at increasing log2 fold change thresholds from the expected ratios of the species mixture in (e, f). e Displays the number of precursors identified and
quantified at increasing thresholds from the expected values. GPS identifies more precursors at every threshold compared to PyProphet. f Displays the the
FDR as a function of increasing thresholds from the expected ratios of each proteome in the mixture. Here, we can see at low thresholds, GPS displays a
slightly higher FDR, but the two tools even out over the measured thresholds, with GPS having a lower FDR further away from the expected ratios. GPS is
able to identify more precursors while maintaining a comparable FDR to PyProphet over the increasing thresholds measured. The dotted horizontal lines
visualize the number of precursors and measured FDR at the ±0.2 thresholds used for ratio-validated quantification.
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Our denoising method filters training data effectively to ensure
only true precursors are included when building the model
without overfitting on experiment-specific data. In our model
evaluation analysis, the performance of PyProphet decreased as it
was applied to new unrelated data while GPS remained consistent
suggesting that PyProphet may have slightly overfitted to the
training data. These performance improvements suggest that the

GPS training method produces classifiers that generalize more
effectively to diverse experiment types than the semi-supervised
approach used with PyProphet. In addition, there is no need to
optimize hyperparameters to squeeze the best performance out of
GPS, as the generalized model will predict and score new pre-
cursors accurately in a stable manner no matter the conditions of
the data. PyProphet can be optimized to train sample-specific

a b c

d e

f

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04977-x

8 COMMUNICATIONS BIOLOGY |           (2023) 6:628 | https://doi.org/10.1038/s42003-023-04977-x | www.nature.com/commsbio

www.nature.com/commsbio


classifiers in different conditions, but a meticulous process to find
optimal hyperparameters is required. This nontrivial and time-
consuming parameter optimization and model training can be
avoided completely by applying generalized models, such as GPS,
directly to new data as they have already been trained and
evaluated.

In standard proteomics experiments, the estimation of the
percent of incorrect targets (PIT) has become an established
method to boost the number of identifications that pass through
at a given FDR cutoff in mass-spectrometry proteomics18,32

However, predicting this percentage of false targets is computa-
tionally difficult, as it is unknown which targets are in fact false,
or where to split the target distribution to estimate the PIT (pi0).
Existing methods use certain heuristics to estimate pi0 by cal-
culating the difference between the decoy counts and target
counts at certain score cutoffs32, or provide naive counts based on
the number of targets below a 1.0% FDR, but this can lead to
inaccurate results depending on the shapes of the score dis-
tributions. In our analysis, we see that PyProphet, which by
default uses PIT estimation when calculating q-values, leads to an
increase in the number of decoys (and therefor false targets) that
pass at a given score threshold. Instead of using this method to
boost identifications, GPS can increase IDs and decrease the
number of false hits that pass FDR control by first predicting true
target peak groups and using those predictions to control the
FDR, which provides a distinct advantage over typical PIT esti-
mation while providing the same benefits.

The semi-supervised algorithm with pi0 estimation in PyPro-
phet can provide great results on individual experiments, parti-
cularly by increasing the number of identifications, as it
maximizes the local number of targets that are validated. How-
ever, this could potentially introduce false positives that are elu-
cidated only when analyzing the quantitative accuracy of known
spiked-in proteins. We demonstrate here that the optimized GPS
prediction model outperforms PyProphet based on the number of
ratio-validated identifications in the spike-in data, showing that a
pre-trained model can be used to increase the accuracy of
quantification without training new models that do not generalize
well to new data. Ideally, we would have liked to use the subscores
calculated by DIA-NN to train a GPS classifier and then apply the
GPS framework within the DIA-NN tool chain, but since DIA-
NN is closed source and does not expose or record the subscores
calculated to estimate precursor quality, this direct comparison
and integration was not possible. Given these improvements, we
were still able to bring GPS close to the performance of DIA-NN
on the spike-in data in terms of overall identifications, and even
surpass DIA-NN when it comes to decreasing the number of
missing values and higher quantitative accuracy closer to the
expected ratios of the spike-in data (Supplementary Fig. S3). We

believe that if DIA-NN implemented a strategy where a static
model was used to predict and score precursors, that some of the
same benefits we see in the OpenSWATH pipeline could be
realized to further improve identification and quantification with
DIA-NN.

In theory, it is particularly beneficial to search blood plasma
samples with full human tissue spectral libraries to delve deeper
into the proteome to identify potential disease markers missed in
standard analysis, especially low abundant proteins. These large
libraries create a search space imbalance where the true target
labels are extremely noisy, i.e., <5% of the targets extracted by the
library are true targets. Semi-supervised methods attempt to
eliminate noise in an iterative fashion using an algorithm where
new targets are selected based on q-value cutoffs17,18, but when
the true target-to-decoy ratio is small the selected targets may be
especially noisy, leading to a class imbalance. There are different
ways to try and correct training set imbalances, such as down-
sampling the majority class or upsampling the minority class26,
and it is possible to provide the class ratios to certain machine-
learning algorithms to ensure that over-represented classes do not
dominate the training loops. In the case of GPS, instead of
choosing to implement imbalanced learning methods with
sample-specific classifiers, we trained models on curated data that
generalize to unrelated samples, so that it does not matter if there
is a class imbalance or noisy labels in the data being predicted and
score. To ensure that the no class imbalance issues effect training,
we calculate the class ratios and pass them to our training algo-
rithms so that weights are adjusted accordingly and the imbalance
is taken into account during training.

Taking the described algorithmic benefits into consideration,
we applied GPS to analyze undepleted plasma AKI samples as an
example of a biological application. From the 1312 quantified
proteins, RFE-SHAP analysis was able to identify a panel of 18
with high accuracy and separating power that indicates they
would provide a good starting point for investigation as potential
protein biomarkers. In fact, many of these proteins have already
been identified and studied as potential sepsis markers or markers
for infection and inflammation36–45. The majority of the 18
proteins were higher in abundance in the more severe sub-
phenotype, such as CD44 antigen (CD44), Complement C1r
subcomponent-like protein (C1RL), Beta-1,4-galactosyltransfer-
ase 1 (B4GT1), and Lipopolysaccharide-binding protein (LBP).
Proteins that were lower abundant in the more severe sub-
phenotype were Insulin-like growth factor-binding protein
complex acid labile (ALS), Apolipoprotein C-I (APOC1), Alpha-
actinin-4 (ACTN4), and N-acetylmuramoyl-L-alanine amidase
(PGRP2). This panel could further be expanded to any protein
that has a significant weight in classifying the severity of AKI
based on a combination of SHAP values and differential

Fig. 5 The application of GPS for the identification of blood-based biomarkers in septic AKI. The analysis performed in this application serves two main
purposes. One, to evaluate GPS in a large search space and compare the number of potentially comparable proteins to PyProphet. Two, to apply GPS to
identify a group of biomarkers using machine learning with recursive feature elimination and explainable artificial intelligence (RFE-SHAP) that could be
useful in stratifying subphenotypes of septic AKI (total n= 141, less severe (n= 60), and more severe (n= 80)). a Displays a Volcano plot for differentially
abundant proteins identified using PyProphet. b Displays a Volcano plot for differentially abundant proteins identified using GPS with the 18 proteins
selected as potential biomarkers highlighted in green. c Displays the overall counts of the total proteins identified by each method (GPS and PyProphet),
the potential proteins (proteins found in minimum ten replicates per group), and the statistically significant differentially abundant proteins (corrected P
value < 0.1). At all levels, GPS identified more proteins than PyProphet for the measured data. To identify a group of proteins that could be important in
differentiating between subphenotypes of septic AKI, we employed machine learning and RFE-SHAP to pick the optimal set of proteins used for
classification. d Displays the 18 proteins selected using RFE-SHAP analysis and their mean importance calculated by SHAP in predicting AKI
subphenotypes. CD14 was found as largely the most important protein, with many other documented infection and inflammation markers included in the
list. e Shows a clustermap of the AKI samples using the 18 selected proteins. Colored by subphenotype on the y-axis, it is clear that the selected proteins
are accurate in stratifying the defined AKI subphenotypes. f Visuzlies the box and swarm plots for the abundance of the 18 selected proteins grouped by
AKI subphenotype. The boxes represent the interquartile range of the protein abundances with the swarm plot showing the individual measurements.
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expression analysis in an effort to identify novel disease bio-
markers. These findings suggest that it is possible to identify
potential sepsis markers in plasma samples and accurately
quantify them using repository scale spectral libraries and pre-
cursor prediction with GPS. These added benefits could sig-
nificantly aid in the stratification of sepsis subphenotypes by
allowing for a deeper exploratory investigation of the plasma
proteome on a systematic basis and the informed data-driven
selection of potential biomarkers for further validation. This
approach would also generalize to other biological conditions or
diseases easily, providing a systematic method towards discovery
DIA with GPS.

Overall, we have proposed GPS as a method for the statistical
validation of DIA mass-spectrometry data and provided evidence
that generalized scoring models can outperform dynamically
trained models especially in a large search space environment by
utilizing precursor prediction for stable FDR control for down-
stream quantification. Further, we provide evidence that sophis-
ticated generalized scoring models can be used in tandem with
massive-scale spectral libraries to support the development of
discovery proteomics in DIA mass spectrometry.

Methods
Datasets. An overview of all data used in the study, along with associated meta-
data, is completely summarized in Table 1.

In order to provide a chromatographically diverse set of training data, we used a
dataset comprised of 129 different samples of 500ng Yeast tryptic digest (Promega)
with varying gradient lengths (30, 45, 60, 90, 120 min) and acquired with DIA. This
dataset will be referred to as the yeast dataset. The mass-spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via the PRIDE46

partner repository with the dataset identifier PXD038367.
We generated a spike-in dataset of known concentrations of Yeast tryptic digest

peptides (Promega) spiked into a constant mouse-kidney background. The mouse-
kidney material was obtained from the previous project28. All animal use and
procedures were approved by the local Malmö/Lund Institutional Animal Care and
Use Committee, ethical permit number 03681-2019. Animals were treated in
accordance with the National Institutes of Health for the Care and Use for
Laboratory Animals. Nine-week-old Female C57BL/6 mice (Janvier, Le Genest-
Saint-Isle, France) were sacrificed, and kidneys were isolated into a tube containing
DPBS and silica beads (1 mm diameter, Techtum). The kidneys were then
homogenized using MagNAlyser (Roche) and stored at −80 °C. Homogenates were
then thawed and centrifuged at 10,000 × g for 10’ at 4 °C. The supernatant
containing the soluble proteins was collected, and protein content was estimated
using BCA (Pierce). In total, 25 µg of protein was taken for reduction, alkylation,
digestion, and C18 clean-up, as described below. A serial dilution series of yeast
peptides (1×, 2×, 4×, 8×, 16×, 32×) was performed, and ten technical replicates of
each concentration were sampled for a total of 60 samples. Internal retention time
peptides were also added to each sample. Each of the 60 samples were analyzed on
the Orbitrap HF-X using both DDA and DIA. The mass-spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via the PRIDE46

partner repository with the dataset identifier PXD038377.
In total, 31 mouse-kidney samples were selected from a previous study28 to

provide a base for the entrapment FDR analysis. The samples are from the same
study as the mouse-kidney material used to prepare the spike-in data, and follow
the same ethical considerations and approvals (ethical permit number 03681-2019),
as well as sample preparation methods described above.

AKI plasma samples used in the study belong to the FINNAKI study27, a
prospective, observational, multicenter study evaluating the development of AKI in
ICU patients with sepsis and septic shock, in accordance with the Helsinki
Declaration. The Ethics Committee of the Department of Surgery, Helsinki and
Uusimaa Hospital District, approved the study protocol, and each participant or

their proxy gave written informed consent. The Ethics Committee of the
Department of Surgery, Helsinki and Uusimaa Hospital District, also approved the
inclusion of participants for all centers involved as well as the use of deferred
consent (Reference Number 18/13/03/02/2010). Patient demographics, medical
history, severity scores, length of stay, physiologic data, and hospital mortality were
collected from the Finnish Intensive Care Consortium prospective database (Tieto
Ltd, Helsinki, Finland) with a study-specific case report form. AKI status was
screened at admission and during the first 5 days of ICU stay. All data collection
was blinded to the index test results. Plasma samples were collected immediately at
ICU admission or after 2 h at the latest and directly centrifuged, aliquoted, and
frozen to −80 °C. Samples were sent on dry ice from Helsinki, Finland, to Lund,
Sweden, for mass-spectrometry analysis. AKI was defined according to the Kidney
Disease: Improving Global Outcomes (KDIGO) criteria based on changes in serum
creatinine47. In total, 51% of the patients developed AKI within the first 5 days in
the ICU, with 30% diagnosed <12 h from admission. Approximately 100 patients
each developed stage 1, 2, and 3 AKI. 91 patients received RRT, and the 90-day
mortality for AKI patients was 33.7%. Overall, 141 samples were chosen for up to 5
time points from 23 acute kidney injury patients. The patients were from two
distinct subphenotypes that were previously defined using a panel of clinical
markers and latent class analysis30. No power analysis was performed, the 23
patients were selected on the basis of culture-positive sepsis. The mass-
spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE46 partner repository with the dataset identifier
PXD038394.

Mass-spectrometry sample preparation and data acquisition. All sample pre-
paration steps of the 141 AKI samples, including desalting and protein digestion,
used the Agilent AssayMAP Bravo Platform (Agilent Technologies, Inc.) per the
manufacturer’s protocol. Each plasma sample was diluted 1:10 (100-mM ammo-
nium bicarbonate (AmBic); Sigma-Aldrich Co, St Louis, MO, USA), and 10 L of
each diluted plasma sample were transferred to a 96-well plate (Greiner G650201)
where 40 μL of 4M urea (Sigma-Aldrich) in 100 mM AmBic was manually added
with a pipette for a final volume of 50 μL. The proteins were reduced with 10 μL of
60 mM dithiothreitol (DTT, final concentration of 10 mM, Sigma-Aldrich) for 1 h
at 37 °C followed by alkylation with 20 μL of 80 mM iodoacetamide (IAA, final
concentration of 20 mM, Sigma-Aldrich) for 30 min in the dark at room tem-
perature. The plasma samples were digested with 2 μg Lys-C (FUJIFILM Wako
Chemicals U.S.A. Corporation) for five hours at room temperature and further
digested with 2 μg trypsin (Sequencing Grade Modified, Promega, Madison, WI,
USA) overnight at room temperature48. The digestion was stopped by pipetting
20 μL of 10% trifluoroacetic acid (TFA, Sigma-Aldrich), and the digested peptides
were desalted on Bravo platform. To prime and equilibrate the AssayMAP C18
cartridges (Agilent, PN: 5190-6532), 90% acetonitrile (ACN, Sigma-Aldrich) with
0.1% TFA and 0.1% TFA were used, respectively. The samples were loaded into the
cartridges at the flow rate of 5 μL/min. The cartridges were washed with 0.1% TFA
before the peptides were eluted with 80% ACN/0.1% TFA. The eluted peptides
were dried in a SpeedVac (Concentrator plus Eppendorf) and resuspended in 25 μL
of 2% ACN/0.1% TFA. The peptide concentration was measured using the Pierce
Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, Rockford, IL,
USA). The samples, 10 μL, were diluted with 10 μL 2% ACN/0.1% TFA and spiked
with synthetic iRT peptides (JPT Peptide Technologies, GmbH, Berlin, Germany)
before liquid chromatography-mass-spectrometry (LC-MS/MS) analysis.

All additional protein samples (Yeast and spike-in samples) were denatured
with 8M urea and reduced with 5 mM Tris(2-carboxyethyl)phosphine
hydrochloride, pH 7.0 for 45 min at 37 °C, and alkylated with 25 mM
iodoacetamide (Sigma) for 30 min followed by dilution with 100 mM ammonium
bicarbonate to a final urea concentration below 1.5 M. Proteins were digested by
incubation with trypsin (1/100, w/w, Sequencing Grade Modified Trypsin, Porcine;
Promega) for at least 9 h at 37 °C. Digestion was stopped using 5% trifluoracetic
acid (Sigma) to pH 2–3. The peptides were cleaned up by C18 reversed-phase spin
columns as per the manufacturer’s instructions (Silica C18 300Å Columns;
Harvard Apparatus). Solvents were removed using a vacuum concentrator
(Genevac, miVac) and were resuspended in 50 μl HPLC-water (Fisher Chemical)
with 2% acetonitrile and 0.2% formic acid (Sigma).

Peptide analyses were performed on a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific) connected to an EASY-nLC 1200 ultra-HPLC system

Table 1 An overview of the data used in the study and their uses.

Dataset Acquisition Samples Replicates Usage PRIDE ID

Yeast DIA 129 All Generalizable model training PXD038367
Mouse-Yeast DDA 60 10 Spectral library generation PXD038377
Mouse-Yeast DIA 60 10 GPS Benchmark PXD038377
Mouse Kidney DIA 31 None Entrapment FDR Analysis
AKI DIA 141 None Large Search Space Comparison PXD038394

Optimized Library Analysis
ML Differential Expression
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(Thermo Fisher Scientific). Peptides were trapped on precolumn (PepMap100 C18
3 μl; 75 μl × 2 cm; Thermo Fisher Scientific) and separated on an EASY-Spray
column (ES903, column temperature 45 °C; Thermo Fisher Scientific).
Equilibrations of columns and sample loading were performed per the
manufacturer’s guidelines. Mobile phases of solvent A (0.1% formic acid), and
solvent B (0.1% formic acid, 80% acetonitrile) was used to run a linear gradient
from 5 to 38% over various gradient length times at a flow rate of 350 nl/min. The
44 variable windows DIA acquisition method is described in ref. 49. MS raw data
were stored and managed by openBIS (20.10.0)50 and converted to centroided
indexed mzML files with ThermoRawFileParser (1.3.1)51.

Spectral library creation. An experiment-specific library for the spike-in data was
built by analyzing the samples acquired using DDA using FragPipe (v18.0). First
the samples were searched using MSFragger (v3.5)52 with default parameters using
a FASTA file of Swiss-Prot reviewed Saccharomyces cerevisiae and Mus musculus
proteomes concatenated with reverse sequence decoy proteins. Peptide spectrum
matches (PSMs) were validated using Percolator17. The Philosopher toolkit (v4.4.0)
was used to perform protein level FDR control with ProteinProphet, generate
downstream reports, and filter the resulting identifications53. The Python package
easypqp was then used to convert and format the library for use by OpenSWATH,
and the OpenMS (3.0.0) tool chain was used to create decoys using the Open-
SwathDecoyGenerator command with default settings. 10 spiked-in retention time
peptides (iRT) were added for initial alignment and retention time correction for
each sample.

To augment the PHL5 with additional identifications and correct the retention
time to the experiment at hand, we first searched the 141 AKI plasma samples
using MSFragger-DIA (v3.5)34. Using the resulting set of identifications, shared
precursors between the PHL and direct search were selected for retention time
alignment. LOWESS was first used to smooth the correlation between the direct
search results and the PHL and then an interpolated univariate spline function was
fit on top of this to adjust the retention time in the direct search to the scale of the
PHL. The shared proteins between the two libraries were replaced in the PHL with
proteins, and associated precursors, from the direct search, and the proteins not
contained in the PHL were appended to the library. OpenSWATH and the
OpenMS (3.0.0) toolchain was used to create decoys using the
OpenSwathDecoyGenerator command with default settings. Ten spiked-in
retention time peptides (iRT) were used for initial alignment and retention time
correction for each sample.

GPS. GPS is a Python library and command line utility for the generalized sta-
tistical validation of precursors. The source can be found here (https://github.com/
InfectionMedicineProteomics/gps). GPS leverages the package numpy54 for effi-
cient processing of numerical data, scikit-learn, sklearn and xgboost for imple-
menting machine-learning algorithms, and numba55 for its just-in-time (JIT)
compilation that compiles Python to machine code for optimization in
performance-critical areas of the library.

The model details are available at https://github.com/InfectionMedicineProteomics/
gps. Input features for the training of the models are based on MS2 level subscores as
calculated by OpenSWATH19 and are as follows: var_bseries_score, var_dotprod_score,
var_intensity_score, var_isotope_correlation_score, var_isotope_overlap_score,
var_library_corr, var_library_dotprod, var_library_manhattan, var_library_rmsd,
var_library_rootmeansquare, var_library_sangle, var_log_sn_score,
var_manhattan_score, var_massdev_score, var_massdev_score_weighted,
var_mi_score, var_mi_weighted_score, var_norm_rt_score, var_xcorr_coelution,
var_xcorr_coelution_weighted, var_xcorr_shape_weighted, var_yseries_score.

The filter and no filter SVM models used in the study were trained using
stochastic gradient descent (SGD)56 using sklearn. We used hinge as the loss
function with l2 regularization, an alpha of 1e-5 with an adaptive learning rate and
early stopping. Class imbalance ratios were passed to the training function to
properly weight each sample. The implementation details are contained in the
source code on github.

The filter and no filter XGB models used in the study were trained using logloss
as the evaluation metric and “logitraw” as the objective. Class imbalance ratios were
passed to the training function to properly weight each sample. The
implementation details are contained in the source code on github. The XGB Filter
model is used through the study and is referred to as GPS.

The denoising algorithm used to filter the Yeast training set is based on the
concept of bagging from machine learning31. The data to be analyzed is first split
into k number of folds (default is 10, and what is used throughout the study). Each
fold is scored by training an ensemble of n logistic regression classifiers (default is
10, and what is used throughout the study) using stochastic gradient descent56) on
data that is randomly sampled with replacement from the data left out of the
selected k-fold. The ensemble of classifiers is then used to score the k-fold data,
providing an average target probability for each precursor in the fold, and voting
on each precursor to determine the vote percentage. A vote is considered a positive
vote if the predicted probability for the individual classifier in the ensemble exceeds
a threshold.

To remove the noisy labels from the training dataset, the denoising algorithm
described above was used to calculate a vote percentage for each precursor. If the
calculated vote percentage was 100% then the precursor was kept as a true target.

The probability to accept a positive vote was set at 0.75 to more strictly filter out
potential false positives at the risk of losing some true identifications in the dataset.
The negative training set, the decoy precursor, remained unfiltered.

The algorithm used to score each precursor in GPS is very straightforward. The
precursor and their associated subscores are read in and parsed into a data
structure that exposes the selected subscores for each peak group. For prediction,
the chosen GPS model is used to predict whether or not a precursor is a true
precursor or not, and the results along with the calculated GPS score (DScore) is
written to an output file. The same procedure is done when the GPS is used to
score a sample, except inference via prediction is not performed and only the
DScore is calculated for a precursor.

Q-values are calculated using an implementation of the qvality algorithm57,
where an interpolated spline is fit to the distributions of the target and decoy
scores. A q-value for a particular precursor is calculated by first integrating the area
under the curve of the decoy distribution from that particular score to the max to
get the decoy counts at a particular score threshold. The target counts are then
obtained by integrating the area under the curve of the target distribution from that
particular score to the max. Finally, the decoy counts are divided by the target
counts plus the decoy counts to calculate a q-value, which can be used to filter for a
given FDR. The highest-scoring precursor for each precursor and the
corresponding scores and q-value are written out to a file for downstream
processing. In addition, a more basic and faster q-value calculation method has
been implemented using decoy counting and is available from the CLI and Python
library API of GPS.

Global FDR control is implemented in a similar manner to PyProphet18, where
all scored samples in an experiment are aggregated and the highest-scoring
precursor is selected to represent either the peptide or the protein at the desired
level. Once the highest-scoring precursors are selected, q-values are estimated using
the method described above. The resulting scoring models are exported as
serialized Python objects that can then easily be used from the command line by
GPS to export an annotated quantitative matrix.

GPS can aggregate all scored samples, and the global peptide and protein
models, into a quantitative matrix for downstream analysis. Each sample is read
into a data structure that filters the samples in the precursor based on their
individual q-values. Once all samples have been parsed, they are annotated with
their global peptide and protein level q-values using the score distribution objects
that were previously built. The resulting annotated quantitative matrix is then
written out for downstream analysis by the tool of your choosing.

For the overall workflow, we adapted the previously published DIAnRT
workflow58 to optimize signal extraction at the sample level before combining the
analysis to control for the global FDR. To do this, a first iteration is performed where
sub-optimal retention time peptides are provided to align a sample to the spectral
library. GPS is used to then predict which extracted precursors are true precursors,
and then the highest-scoring precursors from a specified number of bins are selected
and written out to a sample-specific retention time library. The precursor predictions
are aggregated across all samples and combined into a second-pass spectral library
where the sample-specific retention time libraries are used to align and correct the
retention time and mass-to-charge ratios to the spectral library with more stringent
parameters in a second pass which is scored using GPS. These final validated
precursors are then used to calculate the peptide and protein level FDR using the
approach implemented in PyProphet18 to produce a quantitative matrix. Software to
perform the sample-specific retention time library extraction can be found in
combination with the GPS python package and complete snakemake workflows and
corresponding command line options for the different tools used can be found at
(https://github.com/InfectionMedicineProteomics/GPSWorkflows).

Statistics and reproducibility. All downstream analysis was performed using the
Data Processing Kitchen Sink (DPKS) Python package for general-purpose data
processing of mass-spectrometry proteomics data (https://github.com/
InfectionMedicineProteomics/DPKS).

For all datasets, a retention time-mean sliding window normalization method was
used based on the implementation in the NormalyzerDE R package59. Proteins were
quantified for the AKI analysis using an implementation of the iq relative
quantification algorithm60. Differential expression was performed using linear models,
at the precursor level for the spike-in analysis and protein level for the AKI analysis.
Multiple testing correction was performed using the Benjamini–Hochberg method61.
All of these methods, including other options, are available in the DPKS package.

In order to provide context and a ranking to the differentially expressed
proteins, we trained an XGBoost classifier using quantified proteins from GPS and
DPKS to classify between the subphenotypes in the AKI analysis. Missing values in
the quantitative matrix were first imputed with zero values, as it is assumed if the
protein was not quantified and identified that it is not in the sample. The protein
quantities are then scaled to remove the mean and scale to unit variance. The
model was evaluated using tenfold cross-validation to provide mean accuracy. We
used the SHAP35 python package to then calculate the relative importance of each
protein in differentiating between the subphenotypes of AKI and recursive feature
elimination as implemented in sklearn. It was then possible to rank the
differentially expressed proteins by their relative importance instead of setting
arbitrary P value and log2FC cutoffs to identify proteins and select a panel of 18
potential protein biomarkers.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass-spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE46 partner repository with the dataset identifiers PXD038367,
PXD038377, and PXD038394 for the Yeast, Mouse-Kideny, and AKI data respectively.
All results from the analysis are available in Supplementary Data 1. The GPS models
trained and used throughout the study, together with their associated scalers, are
available in Supplementary Data 2.

Code availability
All GPS code is open-source and freely available under the MIT license at https://github.
com/InfectionMedicineProteomics/gps. All DPKS code for downstream analysis is open-
source and freely available under the MIT license at https://github.com/
InfectionMedicineProteomics/DPKS.
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