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Super-enhancer-associated gene CAPG promotes
AML progression
Qian Ma1, Minyi Zhao2, Bing Long3 & Haixia Li 1✉

Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of

refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene

expression and epigenetic changes play an important role in pathogenesis and treatment. A

super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance

by activating oncogene transcription. Multi-omics integrative analysis identifies the super-

enhancer-associated gene CAPG and its high expression level was correlated with poor

prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here

we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic

and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted

AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can

contributes to AML progression through NF-κB.
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Acute myeloid leukemia (AML) is an aggressive hemato-
logic malignancy that is caused mainly by the accumu-
lation of genetic mutations and malignant proliferation of

hematopoietic stem cells (HSCs)1–5. The high rates of drug
resistance and recurrence are the current challenge in clinical
trials6. AML can occur and progress as a result of random genetic
mutations and epigenetic alterations7–10.

Recent years have highlighted significant progress in under-
standing the underlying abnormal epigenetic patterns of several
cancers. Epigenetic abnormalities activate proto-oncogenes11 and
cause chromosomal instability12,13, while transcriptional silence
of tumor suppressor genes14,15. Detection of epigenetic molecular
events during the development and progression of AML could be
valuable for the development of more effective treatments.

Super-enhancer (SE) is essentially a cluster of active typical
enhancers (TE)16. Compared with TEs, SEs have a larger size and
an increased capability to activate transcription. During devel-
opment, SEs play critical roles in regulating cell fate and deter-
mining genes16. Cancer cells acquire SEs at oncogene regions
such as MYC, BCL2, and their cancerous phenotype relies on
abnormal transcription16,17. Epigenetic modifications such as
DNA methylation, histone acetylation can regulate downstream
effectors’ abnormal activation through SEs18–20. SEs were also
found to mediate tumor-related genes21,22, immune checkpoint23,
inflammatory cytokines24 transcription25,26. These suggest that
SEs are involved in the occurrence and development of tumor
and drug resistance recurrence.

Capping actin protein, gelsolin-like (CAPG) is an actin-
binding protein of the gelsolin superfamily that serves a crucial
role in the organization of the actin cytoskeleton27. Evidence
suggests that proteins belonging to the gelsolin superfamily may
be involved in other processes, including gene expression
regulation28,29. Unlike other gelsolin superfamily members,
CAPG is mostly found in the nucleus rather than cytoplasm30.
Previous studies have demonstrated that CAPG is a breast cancer
biomarker for bone metastasis development and treatment31.
However, the expression pattern and function of CAPG in AML
remain to be investigated.

In this study, we identified an AML-specific super-enhancer-
associated gene CAPG. and verified that CAPG can regulate the
progression of AML through NF-κB signaling pathway.

Result
CAPG is an AML-specific super-enhancer-associated gene. In-
depth understanding the pathogenesis of AML, conferred a new
treatment target for AML therapy, we first identified AML-
specific super-enhancers and SEs-associated genes. Super-
enhancers are important for controlling and defining the
expression of cell-specific genes16. To identify AML-specific SEs
and related genes, we integrated multi-omics data to characterize
the AML-specific super-enhancer-associated gene with the aim of
providing new targets for AML therapy. We identified acute
myeloid leukemia-specific SEs and SEs-associated genes by ana-
lyzing AML H3K27ac chromatin immunoprecipitation sequen-
cing (ChIP-seq) data. Meanwhile, SEs associate genes of normal
blood cells, including neutrophils (NEs), monocytes (MOs), and
hematopoietic stem cell progenitor cells (HSPCs) were identified
(Supplementary Fig. 1). Furthermore, we analyzed publicly
available RNA-seq dataset (GSE128910) from previous study,
calculated differentially expressed genes between health volun-
teers and AML patients, picked out the genes that were expressed
in AML (RPKM > 1) and were 3 times higher than normal
(Fig. 1a)32–35.

According to the above analysis, we screened out 6 AML-
specific SEs-associated genes (CAPG, CD207, GPR132, SLC7A11,

HIPK3, and FCER1G) that have a significantly high expression
(Fig. 1b). These gene regions are enriched for SEs and highly
expressed in AML (Fig. 2a, Supplementary Fig. 2a). We selected
the CAPG as the object of our research, which has been reported
to high expression in AML.

CAPG is highly expressed in MLL-AF9-induced murine AML
cells. We analyzed The Cancer Genome Atlas (TCGA) database
and found that CAPG expression level was positively associated
with poor prognosis in AML (Fig. 2b). In parallel, the expression
of other SEs-associated genes was also correlated with prognosis
in varying degrees (Supplementary Fig. 3). In addition, an
investigation by TCGA database revealed that CAPG was statis-
tically significantly highly expressed in a variety of tumor tissues
compared to normal tissues (Fig. 2c). This implies that CAPG is
closely related with tumor development.

To further validate whether SEs-associated genes are differen-
tially expressed in the disease and affect the AML prognosis, the
expression levels in the collected peripheral blood samples of
patients and bone marrow samples of mouse models were
subsequently compared (Fig. 2d). We observed that CAPG
expression in MLL-AF9-induced murine AML cells was sig-
nificantly elevated compared to the normal murine bone marrow
cells (Fig. 2e, f and Supplementary Fig. 2b).

In general, the oncogenes in AML can be accurately screened
by super-enhancers-associated genes, and the super-enhancer-
associated gene CAPG is related to the progression of AML.

Identification of CAPG interactomes. CAPG is known as a
member of the gelsolin superfamily of proteins, which regulates
actin filament length by capping or severing filaments36. CAPG is
located in the cellular cytoplasm and nucleus, unlike other
members of this family37. CAPG has been linked to a poor
prognosis in pancreatic38 and breast Cancer31,39, but no research
in AML has been conducted. In AML, there is an upregulation
trend in the expression of actin (Supplementary Fig. 2c). To
examine how CAPG contributes to AML progression, we purified
and characterized CAPG protein complexes in the human AML
cell line THP-1 to construct CAPG interactomes by immuno-
precipitation with mass spectrometry (IP-MS) (Fig. 3a and Sup-
plementary Data 3).

We identified 79 CAPG-interacting proteins in THP-1
(Supplementary Material). Moreover, enrichment analysis via
gene ontology and conclusion with graph-based visualization of
interactomes were employed for cellular biological functions
determined. Gene Ontology was utilized for selecting the
functional annotation clusters. The functional analysis revealed
that, as an actin-binding protein, CAPG protein partners from
total protein extracts are intimately associated with nuclear acid
and actin filament binding and are also involved in cellular
molecular activities. GO categories were involved in processes
related to cellular metabolism, localization, and stability of
biomolecules. It is also involved with RNA splicing and can
influence gene expression, engaged in epigenetic control, related
to chromatin remodeling, and histone modification. CAPG was
found in the ribosome, nuclear, and nucleoplasm, particularly in
the actin cytoskeleton, according to cellular component analysis.
CAPG also associated with epigenetic modification complex. The
result indicated that CAPG as a gelsolin protein not only
constitutes the cytoskeleton, but also plays a critical function in
cellular growth processes (Supplementary Fig. 4a).

CAPG links to NF-κB signaling pathway in AML. To further
interpret the potential functional role of CAPG, interactome
results were subjected to protein-protein interactions (PPI)
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Fig. 1 Identification of super-enhancers and associated genes. a Experimental scheme to search for specific and highly expressed super-enhancer-
associated genes in AML cells. Neutrophils (NEs), monocytes (MOs), and hematopoietic stem cell progenitor cells (HSPCs) represent normal blood cells.
Blue circle represent Super-enhancer associated genes in normal hematopoietic cells. Green circle represents upregulated genes in AML patients. Gray
circle represents super-enhancer-associated genes in AML cells. b The ChIP-seq tracks show the representative H3K27ac signal in healthy volunteers and
AML patients. The super-enhancers are shown as gray boxes.
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network analysis (Fig. 3b). Notably, we observed that CAPG
physically interacts with multiple cytoskeletal protein complexes
involving myosin complex, troponin complex, tubulin complex,
and actin complex. This result is consistent with the function of
CAPG as a gelsolin protein.

Furthermore, analyzing the characteristics of the interactome
revealed that CAPG is associated with multiple epigenetic

regulatory complexes, which have not been reported previously.
Of note, three interacting proteins (CCAR2, RPL4, ZFP91) have
been reported as the nuclear factor-κB (NF-κB) signaling pathway
activators40–42 (Fig. 3c). In addition, SNW1 complex has been
identified as a novel transcriptional regulator of the NF-κB
pathway43 (Supplementary Fig. 4b). Researches show that NF-κB
activity imbalance causes inflammation-related diseases such as
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cancers, so that NF-κB is considered a potential target for cancer
therapy44. Activation of NF-κB pathways contributes to the
leukemic transformation initiated by some crucial oncogenic
kinases45. We detected the characterized CAPG interacts with
NF-κB signaling pathway complex in AML cells, so we
hypothesized that CAPG has potential as a target to regulate
the disease process of AML.

CAPG regulates AML progression through NF-κB signaling
pathway. To elucidate the connection between CAPG and NF-κB
during AML development, we collected bone marrow cells from
normal and AML mice. We performed CAPG ChIP-seq assays to
identify the gene regulatory network and evaluated the data to
select AML-specific peaks enriched in gene regions (Fig. 4a).

GO analysis showed that CAPG-regulated genes were sub-
stantially related to the NF-κB pathway in terms of cellular
component and molecular function (Fig. 4b). We also assessed
transcription factor targets and downstream genes, identified
CAPG as a potential gene involved in regulating the transcrip-
tional activity of the NF-κB pathway (Supplementary Fig. 5a, b).
All this evidence implies that CAPG is related to the activation of
the NF-κB pathway.

To further demonstrate our conclusion, we investigated the
enrichment of CAPG in the genome of THP-1 cells. ChIP-qPCR
analysis showed that CAPG was significantly enriched in the
transcription factors region of NF-κB in THP-1 cells (Supple-
mentary Fig. 5c).

Additionally, we downregulated CAPG expression in THP-1
cells (Fig. 4c and Supplementary Fig. 5d)) and assessed the
expression levels of downstream genes of NF-κB (Fig. 4d).
Notably, CAPG knockdown led to a marked reduction in the
expression of several apoptotic and immune response genes that
have been associated with AML progression (Fig. 4d)46,47. We
also collected RNA-seq data after knocking down CAPG and
performed KEGG analysis, which revealed that the down-
regulated genes were significantly enriched in the NF-κB pathway
(Fig. 4e and Supplementary Data 4).

To demonstrate the direct regulation of NF-κB pathway by
CAPG, we activated the pathway by stimulating THP-1 cells with
TNF-α and observed a significant rescue of downstream genes
expression (Fig. 4d). Moreover, when CAPG is depleted, the
expression level of leukemogenesis is significantly reduced
(Fig. 4f). These observations imply that CAPG can directly
modulate the NF-κB pathway, which in turn affects the
progression of AML.

Capg knockdown inhibits AML progression in vivo. To deter-
mine whether CAPG is associated with AML progression, we
conducted CAPG knockdown experiments to verify its function.
Knockdown of CAPG can inhibit the growth of AML cells
(Supplementary Fig. 6a). To further explore the potential pro-
tumor role of CAPG in AML, equal numbers of control (Ctrl) or

Capg knockdown (shCapg) murine AML cells were transplanted
into syngeneic wild-type (WT) recipients (Fig. 5a).

To assess the effects of Capg reduction, we first sorted green
fluorescent protein (GFP)+ leukemia cells from Vector and
shCapg AML mice and proved that the expression levels of
shCapg group were reduced by RT-qPCR and western blot
(Fig. 5b, c).

We found that deficiency of Capg significantly exhausted AML
cells in the peripheral blood (PB) (Fig. 5e) and reduced disease
burden in the bone marrow (Fig. 5d).

Furthermore, the spleen and liver of AML mice were
significantly enlarged, whereas Capg knockdown significantly
relieved these symptoms (Fig. 5f). Consistently, histological
analysis showed that AML mice in shCapg group had fewer
leukemia cell infiltration in peripheral blood (Fig. 5g). Impor-
tantly, Capg knockdown significantly prolonged the survival of
AML mice, median overall survival (MOS) expended to 83 days
in shCapg group compared to 51 days in the control group
(Fig. 5h). These results indicate that Capg knockdown suppresses
the progression of MLL-AF9-induced AML in mice, which
supports our hypothesis that Capg is oncogenic in AML.

Further, summarize the pattern, CAPG acts on the NF-κB
signaling pathway by protein interactomes to activate the
expression of downstream genes. It can accelerate the progression
of AML by directly binding to NF-κB family transcription factors
regions and turning on the regulation of downstream gene
expression.

Taken together, the data shows that CAPG plays an important
role in AML progression by regulating the NF-κB signaling
pathway. Our study identified a super-enhancer-associated gene
CAPG as an oncogene in AML, which conferred a new treatment
target for AML therapy.

Discussion
Epigenetic modifications often play a key role in the occurrence
and development of various tumors, and super-enhancers (SEs)
are an epigenetic element that can regulate cell-type-specific gene
expression and play a crucial role in cell fate decisions, including
the transcription of tumor cell immune checkpoint molecules23,
immune escape25,26, and the expression of inflammatory
cytokines24. RNA-seq analysis at the transcriptome level can
generate a large number of differentially expressed genes, making
it difficult to identify genes that significantly impact disease
progression. In contrast, super-enhancers are highly cell-type
specific and have powerful gene expression regulatory functions,
which can drive the expression of genes that control and define
cell identity16. By integrating super-enhancer data with tran-
scriptomic data, we can narrow the target range and improve
accuracy. It remains to be verified and explored whether com-
bining cell-type-specific SEs and transcriptomics can achieve a
more accurate and efficient screening of pro-tumor genes.

In this study, we identified SE-associated genes by integrating
cell-specific SEs with RNA-seq data and found six genes (CAPG,

Fig. 2 CAPG is an AML-specific super-enhancer-associated gene. a RNA-seq data (GSE128910) shows CAPG is highly expressed in AML patients. Healthy
volunteers (n= 4) or AML patients (n= 7). b The Kaplan–Meier survival curves of CAPG in The Cancer Genome Atlas (TCGA)-LAML database. Dot lines
represent 95% Confidence bound. c Compare the expression level of CAPG in breast invasive carcinoma (BRCA), kidney renal papillary cell carcinoma
(KIPR), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma (READ) and testicular germ cell tumors
(TGCT) from tumor and normal tissue. Wilcoxon Rank Sum and Signed Rank Test were used to analyze the significance of differences. The median is
shown by the line inside the box. d Experimental scheme for MLL-AF9-induced AML mice established. e RT-qPCR showing that CAPG expression was
increased in murine leukemic cells from primary transplant mice compared with normal mice bone marrow cells (n= 5 mice). Each dot represents a
mouse. Data are presented as means ± SD. *p < 0.05 compared with control group. f Western blot showing that CAPG expression was increased in
leukemic cells from primary transplant mice compared with normal mouse bone marrow cells. GAPDH was used to show equal loading. Each band
represents an individual mouse.
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CD207, GPR132, SLC7A11, HIPK3 and FCER1G) that are corre-
lated with poor prognosis in acute myeloid leukemia (AML)
patients according to the TCGA-LAML database. CD207 is a
glycosylated receptor that acts as a specific receptor of Langerhans
cells, processing of antigen for presentation to T cells48. GPR132
is a leukemia orphan receptor that has the potential to trigger

myeloid differentiation49. In acute myeloid leukemia patients,
high expression of SLC7A11 is associated with poor
prognosis50,51. HIPK3 is involved in the apoptosis process and is
associated with poor prognosis in various types of cancer52.
FCER1G, as a component of the high-affinity immunoglobulin E
(IgE) receptor, is associated with the immune response in various
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types of cancer53,54. CAPG has been reported to be closely
associated with protein-tyrosine kinases in AML, linked to drug
resistance in ALL55,56, and is associated with poor prognosis in
pancreatic38 and breast Cancer31,39. CAPG has been reported to
be closely associated with protein-tyrosine kinases in AML and
linked to drug resistance in ALL55,56. Next, we verified the
function of Capg in AML in a mouse model and found that
reduced Capg expression can hinder the progression of AML
disease. Taken together, these data suggest super-enhancer-
associated gene CAPG is a potential therapeutic target for AML,
and the reliability of the integrate analysis approach based on
super-enhancer, also a promising tool for predicting biomarkers
of diseases.

Super-enhancers play an important role in tumorigenesis and
tumor progression. In this study, we found the related gene CAPG
through the super-enhancer, and verified its role in AML. The
fundamental biological mechanism is the promotion of AML
through the activation of downstream leukemogenesis expression
through epigenetic element SE, is a classic event of cell fate
transition through dynamic epigenetic alterations. Our study
demonstrates at the genomic level that CAPG knockdown
impeded AML disease progression. Gene editing technology
permits precise molecular alterations at the genome level for the
treatment of many diseases57. In recent years, the application of
CRISPR technology to epigenetic molecular modification has
been fruitful58. The use of CRISPR-dCas9 combined with histone
deacetylase to erase histone modifications and decrease SE
activity will have the potential to restrict SE-related gene
expression and hamper the disease progression59. We speculate
that at the epigenetic level, the proto-oncogene CAPG expression
will be reduced by inhibitory activity of SE, which will limiting the
progression of AML.

Genomic instability and epigenetic abnormality can directly
facilitate disease occurrence. Epigenetic alterations, including
DNA methylation, histone modification, chromatin accessibility
have been reported to play a major role in gene expression reg-
ulation. According to “genetic central dogma” of molecular
biology, genetic information is transmitted by way of DNA-RNA-
protein. As the last link of this process, proteins function as the
main undertaker of vital movement by forming macromolecular
complexes. There is increasing evidence depicting the essentiality
of protein-protein interactions (PPIs) governing a wide array of
cellular processes.

CAPG was reported to be an actin-binding protein of the
gelsolin superfamily, associated with the cytoskeleton organi-
zation. Increased CAPG expression has been found in several
metastatic cancers, suggesting its role in cancer cell invasion
and metastasis60–62. Therefore, we identified the CAPG inter-
actomes by immunoprecipitation with mass spectrometry
(IP-MS). We uncovered in the CAPG interactome components
of regulatory protein complexes such as chromatin-remodeling
protein NSL complex, SNW1 complex, MLL1-WDR5 complex,

and modification enzyme protein involving WMM complex.
Multiple independent studies have found a physical link
between cancer aggressiveness and these epigenetic regulatory
complexes. It is well established that NSL complex is correlate
with cancer aggressiveness63 and poor survival64,65. Moreover,
disrupting the MLL1-WDR5 interaction is considered a ther-
apeutic approach for leukemia66. Indicating the importance of
these epigenetic regulatory pathways and factors for AML
progression. Next, we analyzed the molecular function of the
interaction partners and found three of them (CCAR2, RPL4,
ZFP91) have been reported as the activator of NF-κB signaling
pathway. CCAR2, as known as DBC1, can regulate anoikis
through NF-κB pathway40,67. CCAR2 stimulates the phos-
phorylation of nuclear relA (RelA), enhancing the transcrip-
tional activity of NF-κB and up-regulating target genes which
are associated with anoikis resistance40,67. Meanwhile, RPL4
and ZFP91 as the activators of NF-κB pathway, induce the
proliferation and promote the process of cancer41,68,69. ZFP91
promotes cancer cell proliferation and carcinogenesis by acti-
vating the transcriptional coregulatory protein HIF-1 via
NF-κB68. RPL4 involved in a ribosomal protein complex that
activates NF-κB via CD4041. SWNI is likewise linked to the NF-
κB pathway in the CAPG interactome, its involvement entails
binding to the NF-κB to facilitate transcriptional elongation of
target genes43. Above results indicate that CAPG participates in
regulating NF-κB signal transductions which have not been
reported before.

Furthermore, we utilized CAPG ChIP-seq data to confirm the
aforementioned findings. In addition to the well-known roles in
molecular binding and cytoskeleton structure, GO and motif
analysis showed that CAPG-regulated genes were strongly linked
to the NF-κB pathway. CAPG knockdown significantly reduced
NF-κB downstream genes expression. All of this support the
assertion made above that CAPG is involved in the regulation of
the NF-κB signaling pathway. This indicates that the identifica-
tion of protein interactomes can provide a basis for studying
protein functions, and is an important way and future trend to
study the potential functions of encoding genes.

Taken together, the expression of super-enhancer-associated
gene CAPG corresponds with progression in AML and is con-
nected with NF-κB pathway activation. We further postulated
that CAPG could be a viable therapeutic target for AML, and the
reliability of the comprehensive analytic algorithm relies on
super-enhancer, also a potential tool for predicting biomarkers of
pathologies.

Methods
Cell culture. The human monocytic cell line THP-1 cells were purchased from
Solarbio (China), were cultured in RPMI media (Corning, 10-040-CV) supple-
mented with 10% FBS and 1% penicillin and streptomycin and regularly tested
negative for mycoplasma contamination using PCR. Cells were stimulated with
TNF-α (10 ng/ml) in re-activating the NF-κB pathway experiment.

Fig. 5 Capg knockdown inhibits AML progression in vivo. a Experimental scheme for Capg knockdown in vivo. b Western blot analysis showing Capg
knockdown in sorted AML cells from AML mice bone marrow. c RT-qPCR analysis showing Capg knockdown in sorted AML cells from bone marrow of
scramble control (Ctrl) and Capg knockdown (shCapg) AML mice at day 45 post-transplantation. Data are presented as means ± SD. **p < 0.01 compared
with the control group. The results are from three biological replicates. d Representative cytometric flow plots, the percentage of GFP+AML cells in bone
marrow (BM) at day 45 post-transplantation (n= 5 mice). Each dot represents a mouse. ***p < 0.001 compared with control group. e Representative
cytometric flow plots and statistic results show that Capg knockdown decreases leukemia burden in peripheral blood (PB) at day 28 and day 45 post-
transplantation (n= 5 mice). Each dot represents a mouse. *p < 0.05, ***p < 0.001 compared with control group. f Representative image of the spleen
(upper left), liver (bottom left), and quantitative analysis of spleen weight (middle) and liver weight (right) from scramble control and Capg knockdown
AML mice (n= 5 mice). Each dot represents a mouse. **p < 0.01, ***p < 0.001 compared with control group. g Wright–Giemsa staining of a blood smear
from control and Capg knockdown AML mice. Scale bar 20 µm. h Survival analysis of mice transplanted with scramble control or Capg knockdown AML
cells. Data shown are combined from two independent transplants (n= 5 mice). p= 0.0018, log-rank test.
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Definition of super-enhancers and SE-associated genes. To identify typical
enhancers, we initially stitched the public H3K27ac ChIP-seq database (NE
SRR1915572, MO SRR787551, HSPC SRR2094192, AML1# SRR3503794, AML2#
SRR3503797, AML2# SRR3503801) peaks along 500 bp away, but re-split them if
the gaps coverage is above 0.4. Then the stitched raw enhancer together with
aligned H3K27ac and input reads were used to run the ROSE algorithm. Briefly,
constituent enhancers were stitched together if they are within a certain distance
and ranked by their input-subtracted signal of H3K27ac. And then, we separated
super-enhancers from typical enhancers by identifying an inflection point of
H3K27ac signal; the slope here was 1. Finally, we classified the genes as SE-
associated genes by Rose GeneMapper to annotate the genes within the 50-kb
range of the super-enhancers.

Survival analysis of the genes in the cancer genome Atlas dataset. AML data
were used to perform validation with the database (http://gibk21.bse.kyutech.ac.jp/
PrognoScan/index.html)70 and Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn)71. The overall survival (OS) was
estimated using the log-rank test, and p value < 0.05 was considered to denote
statistically significant data.

Quantitative RT-PCR. Total RNA was extracted from sorted GFP+ cells using
TRIzol reagent (15596026, Invitrogen) and cDNA was synthesized using Prime-
Script™ RT Master Mix (RR036A, Takara). Real-time qPCR was performed using
SYBR® Premix Ex Taq™ II (RR820A, Takara) on Applied Biosystems™
7500(Thermo Scientific) system. The exhibited data represents the fold change
(FC) of the experimental group versus control group. In brief, ΔCt was calculated
as ΔCt= Ct (test gene) - Ct (Ref. gene). ΔΔCt was calculated as ΔΔCt = ΔCt
(experimental group) - ΔCt (control group). The FC of a test gene in the experi-
mental group versus control group was calculated as FC= 2(−ΔΔCt). Each gene
tested in triplicates in every independent experiment, and all experiments were
triplicated.

Acute myeloid leukemia mouse model. The 293 T cells were transfected with
retroviral plasmids MSCVMLL-AF9-IRES-GFP containing MLL-AF9 and GFP
cDNA sequences. Bone marrow cells from C57 mice treated with 5-fluorouracil (5-
FU) for 5 days were infected with retrovirus twice with 24 h interval. The 400 K
infected cells were mixed with 100 K protective cells to intravenously inject into
WT recipient mice irradiated with a 9-Gy lethal dose. The number of animals used
per experiment is shown in the figure legends. Capg knockdown and control
lentivirus were prepared by HEK293T transfected by pLKO.1-puro together with
psPAX2, pMD2.G packaging vectors. MLL-AF9-GFP+ bone marrow cells were
harvested from AML mice at 35 days after transplantation. These cells were
infected with Capg knockdown or control lentivirus and further selected by 1 mg/
ml puromycin for 72 h. The 200 K GFP+ cells screened by puromycin were mixed
with 100 K protective cells to intravenously inject into CD45.2+ recipient mice
irradiated with a 4.5-Gy sublethal dose.

IP-MS. To identify CAPG partners in human AML cells, we pulled down CAPG
protein complexes from nuclear extraction in THP-1 by CAPG antibody
(ab181092, abcam). The THP-1 cells were expanded to 10 of 150 mm diameter
dishes for the preparation of total protein. Protein was pre-cleared with 0.5 mL of
Protein A+G Agarose beads (P2055, Beyotime) in 16 mL IP DNP buffer(20 mM
HEPES, pH 7.9, 20% Glycerol, 100 mM KCl, 1.5 mMMgCl2, 0.2 mM EDTA, 0.02%
NP-40, 0.5 mM DTT, 0.2 mM PMSF, 0.1% Protease inhibitor cocktail) overnight at
4 °C. At the same time, 25 μg CAPG antibody or IgG(12-370, Millipore) conjugated
Protein G agarose beads by incubating in IP DNP buffer overnight at 4 °C. The pre-
cleared nuclear extracts were combined with the antibody-conjugated beads, and
rotated for 5 h at 4 °C. After five washes in Buffer D (20 mM HEPES pH = 7.6,
0.2 mM EDTA, 1.5 mM MgCl2, 100 mM KCl, 20% glycerol) supplemented with
0.02% NP-40, the bound material was eluted by boiling for 5 min in 2xSDS loading
buffer. Put the solution into the concentration columns, centrifuge 14,000 × g
30 min at 20 °C. Centrifuge until the solution near 40 μl, Samples were then frac-
tionated on Omni-PAGE™Hepes-Tris Gels (LK206, Epizyme) and stained with
InstantBlue Protein Stain (AQ211, Analysis Quiz). The products from a single
purification were subjected to whole lane LC-MS/MS sequencing and data analysis.
Two biological replicates were performed for each antibody.

The raw MS files were analyzed and searched against protein database based on
the species of the samples using MaxQuant (1.6.2.10)72.

Data analysis. According to the intensity of each protein in the sample, with the
control IgG as the denominator and the CAPG experimental group as the
numerator, the fold change value was calculated. We select proteins with FC > 2 as
the interactome of CAPG.

The protein interaction and complex data were access directly from the:
STRING Version11.5 (https://cn.string-db.org/)73,
CORUM Version3.0 (https://mips.helmholtz-muenchen.de/corum/#)74,
UniProt (https://www.uniprot.org/)75.
The final confirmed PPI network was assessed by the STRING database, and the

recognized individuals were interacted by Cytoscape Version 3.9.1 software.

ChIP. 1% formaldehyde in PBS was used to crosslink the cells for 10 min, followed
by quenched with 125 mM glycine on ice. Cells were collected and flash-frozen in
liquid nitrogen, then stored at −80 °C for use. Frozen crosslinked cells were thawed
on ice and then resuspended in lysis buffer I (50 mM HEPES-KOH, pH 7.5,
140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100,
protease inhibitors). After rotated for 10 min at 4 °C, the cells were collected, and
resuspended in lysis buffer II (10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, protease inhibitors). After rotated for 10 min at 4 °C, the
cells were collected, and resuspended in sonication buffer (20 mM Tris-HCl pH 8.0,
150 mM NaCl, 2 mM EDTA pH 8.0, 0.1% SDS, and 1% Triton X-100, protease
inhibitors) for sonication. Sonicated lysates were cleared once by centrifugation at
16,000 × g for 10 min at 4 °C. Input material was reserved. The remainder was
incubated with magnetic beads bound with CAPG antibody (ab181092, abcam) to
enrich for DNA fragments overnight at 4 °C. Beads were washed with wash buffer
(50 mM HEPES-KOH pH 7.5, 500 mM LiCl, 1 mM EDTA pH 8.0, 0.7% Na-
Deoxycholate, 1% NP-40) and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA,
50 mM NaCl) in order. Beads were removed by incubation at 65 °C for 30 min in
elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS). Cross-links were
reversed overnight at 65 °C. To purify eluted DNA, 200 mL TE was added and then
RNA was degraded by incubation in 8 μl 10 mg/mL RNase A at 37 °C for 2 h.
Protein was degraded by addition of 4 μl 20 mg/mL proteinase K and incubation at
55 °C for 2 h. Phenol: chloroform: isoamyl alcohol extraction was performed fol-
lowed by ethanol precipitation. The DNA has then resuspended in 50 ml TE.
Library preparation was performed with a DNA Library Prep Kit (Vazyme,
#TD501), libraries were amplified for seven cycles, and were size-selected with
Beckman AMPure XP beads.

RNA-seq data analysis. For read alignment and expression quantification, we first
removed low-quality reads, and trimmed the adaptor sequence with Trim Galore.
Then we mapped the remaining pair-end reads to the reference genome using
STAR with ENCODE option bundles. Using HTSeq-count, we counted the
uniquely mapped reads, and normalized the read count by trimmed mean of M
values (TMM), and transformed it to reads per kilobases per million reads (RPKM)
by edgeR. With an expression cutoff of RPKM R 1 in at least one sample group, we
removed low abundant genes, and detected the differentially expressed genes using
edgeR. Genes were considered differentially expressed when the overall false dis-
covery rate (FDR) < 0.01 and fold change is above 2.0.

ChIP-seq analysis. Fastq files were trimmed adaptors by TrimGalore (version
0.6.4, https://github.com/FelixKrueger/TrimGalore) and aligned to mm9 refer-
ence genome using Bowtie2 (version 2.2.5, http://bowtie-bio.sourceforge.net/
bowtie2/) with default parameters. Reads with a map score <30 and PCR
duplications were filtered out by using Samtools76 (version 1.9, http://samtools.
sourceforge.net). Reads aligned to the regions in ENCODE blacklist (http://mitra.
stanford.edu/kundaje/akundaje/release/ blacklists/) were discarded through
bedtools77 (version 2.29.1, https://bedtools.readthedocs.io/en/latest/). Peaks were
called with macs278 (version 2.1.2, parameters: ‘-g mm -q 0.05 -m 5 50’) using
input as control. DiffBind (version 2.10.0) was used to analyze differential
binding sites.

Flow cytometry. Take 20–30 μL of peripheral blood through the tail vein of the
mouse and add it to the anticoagulation tube. Take the bone marrow cells from the
femur and tibia of the sacrificed mice. The red blood cells were lysed, and the bone
marrow cells were filtered using a 100-mm cell strainer. Monoclonal antibodies to
Mac-1 (M1/70, Biolegend), Gr-1 (RB6-8C5, Biolegend), c-Kit (2B8, Biolegend), Lin
mix (Gr1, CD4, CD3, CD8a, Ter119, B220, IgM) (Biolegend), CD34 (MEC14.7,
Biolegend), Sca1 (D7, Biolegend), FcgRII/III (93, Biolegend), IL-7Ra (A7R34,
Biolegend) (all used 50 ng per million cells) were used where indicated. After
incubation with antibodies, the samples were analyzed using the Attune NxT flow
cytometer (Thermo), and the results were analyzed using FlowJo software. Here,
7-aminoactinomycin D (7-AAD) (A1310, Life Technologies) was used to exclude
dead cells.

Gene ontology analysis. Enriched ontology terms for CAPG interactome proteins
were identified using STRING. GO Biological Process, GO Molecular Function,
and GO Cellular Component were referenced to identify ontology terms with the
adjusted p value < 0.05.

Statistics and reproducibility. Data are expressed as means ± SEM. For all
experiments, except the determination of survival, data were analyzed by Student’s
t tests, and differences were considered statistically significant if p < 0.05. The
survival of the two groups was analyzed using a log-rank test, and differences were
considered statistically significant if p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets presented in this study can be found in online repositories. The names of
the repository/repositories and accession number can be found below: NCBI BioProject
PRJNA876046. Antibody and oligo information can be found in Supplementary Data 1
and 2. Source data for the IP-MS are provided as Supplementary Data 3. CAPG KD
RNA-seq data can be found in Supplementary Data 4. Uncropped scans of the blots were
shown in Supplementary Fig. 7. Additional data supporting the findings of this study are
available from the corresponding author upon request.
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