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Maturational networks of human fetal brain activity
reveal emerging connectivity patterns prior to ex-
utero exposure
Vyacheslav R. Karolis 1,2✉, Sean P. Fitzgibbon2, Lucilio Cordero-Grande 3, Seyedeh-Rezvan Farahibozorg2,

Anthony N. Price1, Emer J. Hughes1, Ahmed E. Fetit4,5, Vanessa Kyriakopoulou 1, Maximilian Pietsch1,

Mary A. Rutherford1, Daniel Rueckert 4,6, Joseph V. Hajnal1, A. David Edwards 1,7,

Jonathan O’Muircheartaigh 1,7,8, Eugene P. Duff2,9,11 & Tomoki Arichi 1,7,10,11

A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous

brain activity. However, characterising this process in utero using functional MRI is inherently

challenging and requires analytical methods which can capture the constituent develop-

mental transformations. Here, we introduce a novel analytical framework, termed “matura-

tional networks” (matnets), that achieves this by modelling functional networks as an

emerging property of the developing brain. Compared to standard network analysis methods

that assume consistent patterns of connectivity across development, our method incorpo-

rates age-related changes in connectivity directly into network estimation. We test its per-

formance in a large neonatal sample, finding that the matnets approach characterises adult-

like features of functional network architecture with a greater specificity than a standard

group-ICA approach; for example, our approach is able to identify a nearly complete default

mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging

functional connections and the hierarchy of their maturational relationships with remarkable

anatomical specificity. We show that the associative areas play a central role within prenatal

functional architecture, therefore indicating that functional connections of high-level asso-

ciative areas start emerging prior to exposure to the extra-utero environment.
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Does a ‘thing’ possess invariant properties that define its
‘being’, or does its essence reveal itself in the process of a
perpetual change, i.e., in its ‘becoming’? This ancient

intellectual dilemma, conceived by an early Greek philosopher
Heraclitus, has been entwined in the centuries-long evolution of
human knowledge1,2. At its core, it reflects a fundamental pro-
blem of selecting an appropriate representational framework for
studying a phenomenon while offering a choice between two
extreme alternatives. On the one hand, a description of invariant
(canonical, typical) characteristics serves a purpose of giving a
phenomenon a concrete definition and thus differentiating it
from other things. On the other hand, representations that
characterise a phenomenon as a process are more fitting if the
phenomenon constitutes a sequence of superseding transient
states with ill-defined invariant characteristics.

The notion of functional networks in the fetal brain is a case in
point for the latter. Evidence from animal models suggests that
intrinsically generated neural activity in the prenatal brain first
begins with local direct propagation before progressing to larger
bursts of spontaneous activity which help to establish local
circuitry3. At around 26 weeks of gestation, ex-utero functional
MRI (fMRI) studies of very preterm infants4 show that spatially
distinct resting-state networks can be identified, initially con-
sisting of local patterns of connectivity with a lack of long range
interhemispheric or dorsocaudal connections. Towards term
equivalent age, these networks evolve into a set of spatially dis-
tributed (multi-nodal) co-activation patterns resembling those
seen in adults5,6, reflecting a generic drift of organic functions
towards forming increasingly complex systems7. Such rapid
developmental changes mean that functional networks in the
prenatal period possess the attributes of an intrinsically non-static
entity, a characteristic example of Heraclitian “becoming”.

Previous research has demonstrated that, despite enormous
technological challenges, functional connectivity in utero can also
be studied using resting-state fMRI8–12. This opens up an
opportunity for the use of standard approaches to group-level
fMRI network analyses13 such as group independent component
analysis (group-ICA)14–16. The latter describes functional net-
works as a collection of spatial maps17, each of them charting
areas linked together by the strength of covariation between the
timecourses of their fluctuating intrinsic activity. However, utility
of this method for application with fetal data remains an open
question, both conceptually and when considering the unique
signal properties of the data acquired in utero. Conceptually, an
assumption embedded into this method is that a group-level
spatial map characterises a canonical form of a functional net-
work with respect to its individual manifestations, thereby
downgrading developmental changes in its spatial layout to the
status of non-systematic, and likely underestimated18, inter-
subject variability. On a practical level, application of group-ICA
to fetal data typically renders maps of poorly localised and seg-
regated regions, lacking network-like features, such as the pre-
sence of spatially non-contingent brain areas13. This may be
explained by the weakness of long-distance connectivity in the
fetal brain but may also be a consequence of inherently high levels
of motion and low signal-to-noise ratio in this data, which
adversely affects the detection of long-distance connections19,20.
As a result, coherent developmental features that are fundamental
to both a definition and understanding of the neuroscientific basis
of functional networks in utero are likely lost using this standard
approach.

In this study, we hypothesised that a biologically-motivated
analytical framework, that conceptualises functional brain net-
work connectivity as a formative process, may provide a superior
modelling alternative to the group-ICA for in-utero data. To this
end, to capture the maturational transiency of connectivity states,

we introduce an alternative perspective on resting-state functional
networks, which we call “maturational networks”, or matnets for
conciseness. The key feature of this framework is that it incor-
porates age-related changes in connectivity into network esti-
mation, thereby characterising functional networks as an
emerging property of the brain. At its core, it builds on Flechsig’s
idea21, that functionally related areas mature together. In contrast
to the standard analytical approach of ICA, which utilises cor-
relational structure to factorise networks, our approach leverages
age-related changes in correlations in order to characterise
maturational modes of variation in the data. The utility of this
approach is demonstrated in in-utero fMRI data acquired as part
of the developing Human Connectome Project (dHCP)22,23, an
open science initiative aiming to map brain connectivity across
the perinatal period, that were reconstructed and preprocessed
using specially developed methodologies24–26. We show that our
approach overcomes inherent limitations of fMRI data acquired
in-utero for characterising mid- and long-distance connectivity,
and for inference about the developmental trajectory of the fetal
functional connectome. Moreover, it enables factorisation of
spatial patterns that fit better the concept of resting-state network
as we understand it from the studies of more mature brains, that
is, as spatially distributed configurations encompassing non-
adjacent brain areas27,28. Finally, we show that maturational
networks lead to new perspectives on the macro-scale develop-
mental relationships in the human brain, the “maturational
connectome” and “maturational hubs”.

Results
Resting state fMRI data from 144 healthy fetuses with an age
range between 25 and 38 weeks gestation (Supplementary Fig. 1)
were acquired over 12.8 mins on a 3 T Philips Achieva system
(Best, NL)29 as part of the developing Human Connectome
Project (dHCP). All of the fetal brain images were clinically
reported and showed appropriate appearances for their gesta-
tional age with no acquired lesions or congenital malformations.
The data underwent dynamic geometric correction for distor-
tions, slice-to-volume motion correction24,25 and temporal
denoising26, followed by their registration to a common space to
enable group-level analyses6.

The framework. In order to demonstrate the utility of our
approach, we note that developmental changes in a spatial layout
of functional networks can be modelled retrospectively within the
standard group-ICA approach using several post-processing
steps16, as shown in Fig. 1a. The results of this modelling can
therefore serve as a reference for comparison with the results of
matnets modelling. In brief, the conventional modelling approach
involves the estimation of group-level (“canonical”) spatial maps,
followed by the two steps of dual regression (DR)16, i.e., a
sequence of spatial and temporal regressions performed against
individual data, in order to obtain subject-specific variants of the
group maps, followed by a mass-univariate (i.e., voxelwise)
modelling of the latter using age as a covariate. The key step is the
dual regression step, that “permits the identification of between-
subject differences in resting functional connectivity based on
between-subject similarities”16, where a subject-specific map
represents the individualised manifestation of a group map.

In contrast, our matnets approach, shown in Fig. 1b, attempts
to derive maps of maturational modes of variation in a direct
manner, in essence by reversing the order of operations while
omitting the intermediate steps of dual regression; that is, we aim
to derive spatial maps which themselves are the manifestations of
age-related changes in functional connectivity. It runs as follows.
At the first step, a dense N voxels by N voxels connectome is
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computed for each subject separately. Each element of the
dense connectome is then fitted across subjects with age as
covariate and converted using t-statistics into a maturational
dense connectome, i.e., a matrix in which elements contain the
estimates of the age effect. An ICA factorisation of the
maturational dense connectome is then performed to obtain
spatially independent matnet maps, each of them associated with
a characteristic profile of emerging connectivity. In other words,
as much as temporal correlations between voxels determines their
participation in a particular group-ICA network, similarity in the
age-related changes in connectivity between voxels determines
their matnet participation.

Univariate spatial properties of group-average correlations and
age-related differences in correlations. The efficiency of either
method for network analysis, for instance in terms of their ability
to discover meaningful spatial relationships, is contingent on the
relevant signal properties of the data, which remain poorly
understood for the in-utero fMRI. A brief description of these
properties would assist subsequent interpretations and inform
analytical choices. Consequently, we provide a short summary of
the univariate spatial properties of the two metrics that are
expected to shape the results of the group-ICA and matnets
analyses: respectively, group-average correlations and the effect of
age (t-value) on the strength of correlations.

The generic spatial structure of the two metrics can be easily
appreciated by considering connectivity maps from seed regions to
the whole brain (“seed-to-brain” maps). The maps of the group-
average correlation for six cortical seeds (3 for each hemisphere;
estimated from the correlation between the mean timecourse of
voxels within a seed mask and timecourses of all voxels in the
brain, and then averaged across subjects) are shown in Fig. 2a (left
panel). The conspicuous feature of these maps is a presence of a
strong distance dependent gradient, indicating signal smearing
over the immediate neighbourhood of the seed. This effect
transgresses anatomical boundaries, as demonstrated in a context

of interhemispheric connectivity between homologous left and
right voxels where the anatomical and purely spatial distances can
be disentangled (Supplementary Fig. 2) and shows a spatially
indiscriminate character as it could equally be replicated for seeds
located in the white matter (Supplementary Fig. 3).

In comparison, the configuration of the spatial maps for the
age-related effect on correlation (that is, instead of being averaged
across subjects, the seed-to-brain correlation maps were fitted
voxel-wise with age as a covariate) for the same set of seeds
reveals two components of relevance: a negative local component
and a positive mid- and long-distance component (Fig. 2a, right
panel). The negative local component is revealed by a distribution
of high negative values in the proximity of the seed. This local
component, which implies that the strength of distance-
dependent gradients in connectivity structure is negatively
associated with age at a short distance, occurs in a spatially
indiscriminate manner, though less obviously in white matter
(Supplementary Fig. 4), possibly due to a greater signal blurring
within this tissue. Otherwise, the positive mid- and long-distance
component is characterised by an age-related increase in
correlation strength between seed and other grey matter regions.

Furthermore, Fig. 2b shows the relationship between the spatial
distance and the similarity (i.e., spatial correlation) between
44850 pairs of seed-to-brain maps, computed following the
parcellation of the cortex into 300 clusters. The relationship was
strong for group-average correlation maps (r=−0.80), which
suggests that spatial distance may become a dominant factor for
the fusion of the voxels into networks in analyses based on the
correlational structure of the data, such as group-ICA. Con-
versely, the similarity between age-effect maps was more robust to
the effect of distance between seeds used to produce these maps
(r=−0.42). This suggests that leveraging positive age-related
associations for the network construction can potentially reveal a
rich set of spatially distributed patterns with improved specificity.
In this view, matnets were derived using a factorisation of the
positively thresholded maturational dense connectome.

Fig. 1 Two approaches to maturational analysis of the functional networks. a Group-ICA + dual regression pipeline and its outputs. The pipeline allows
modelling maturational changes in the spatial layout of the networks using mass-univariate analysis of the subject-specific variants of the group maps. The
latter are derived using dual regression. b Pipeline for derivation of maturational networks. It directly leverages age-related changes to derive networks
instead of estimating subject-specific variants of the group-level maps. In the current study: M= 25 (Ref. 6), N= 53443, K= 144; se - standard error.
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Comparison of group-ICA and matnets in neonatal sample.
We first present evaluation of the performance of the matnet
framework in the neonatal sample, where the standard approa-
ches proved to be effective and hence meaningful comparisons
can be made. For this we constructed a sample of 311 neonates
(Supplementary Fig. 5) and obtained group-ICA and matnet
factorisations, Fig. 3a, b, respectively. The two methods show an
excellent agreement with each other, oftentimes replicating not
only the main network nodes but also agreeing on secondary
clusters composed of a smaller number of voxels. The following
differences can be distinguished qualitatively.

Firstly, in several cases matnets revealed more left-right
symmetrical maps than group ICA. The list includes: a bilateral
auditory network (matnet #12) compared to its predominantly
left- and right-lateralised group-ICA counterparts (gica #6 and
gica #8); matnet #6 (occipital pole) compared to gica #13 (right
hemisphere dominance) and gica #16 (left hemisphere

dominance); matnet #1 that for group-ICA fractionates into 3 -
predominantly medial (#0), predominantly right lateralised (#2)
and predominantly left lateralised (#3) - components; a bilateral
fronto-parietal matnet #2 (inferior parietal cortex + prefrontal +
inferior temporal cortex), that combines areas delineated using 3
group-ICA components, left-dominant gica #12, right-dominant
gica #9 and bilateral prefrontal gica #20.

Secondly, matnets provided two non-cortical components, one
in the cerebellum (#18) and the other in the brainstem extending
into cerebellum (#8). A group-ICA component (#22), spatially
similar to the latter, appears to be dominated by the signal
originating in CSF and is unlikely to represent an exact match to
its matnet counterpart.

Thirdly, matnet #10 provides the most complete delineation of
the default mode network in neonates, encompassing all of
its critical nodes, including a small cluster in the posterior
medial parietal cortex. These regions were contained within two

Fig. 2 Spatial properties of group-average correlations and age-related differences in correlations. a seed-to-brain maps of group-average correlations
(left) and it age-related changes (right). The two types of maps are shown as a mirror-like reflection of each other. Examples of 6 seeds are shown, 3 for
each. b Distance vs spatial similarity relationship for pairs of seed-to-brain maps.
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group-ICA components (#18 and #21), one of which (#21) is
likely to be contaminated by the signal originating in the CSF
and/or vasculature.

Finally, there was no exact match among matnets to gica #15
(superior medial occipital) and two pairs of matnets-gica
components differed on the localisation of their nodes. A
prefrontal matnet #9 is shifted anteriorly compared to gica #5
and lacks its posterior node; the (secondary) frontal nodes of
predominantly superior parietal matnet #5 are located dorsally
in superior frontal gyrus, anteriorly to pre-central sulcus

(supplementary motor area), whereas the frontal nodes of the
matching gica #9 are shifted anteriorly and inferiorly to the
middle frontal gyrus.

Group ICA maps and estimated age-related differences in their
layout. The results of the conventional group-ICA factorisation in
the in-utero sample are shown in Fig. 4a. The appearance of the
spatial maps suggest that they inherit certain signal properties
that had previously been revealed in the univariate analysis. Thus,

Fig. 3 Group-level network analyses in neonates. All spatial maps are shown in radiological orientation. a Group-ICA. b Matnets.
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their “blurry” appearance is reminiscent of the increased local
signal correlations observed in univariate maps of seed-to-brain
group-average correlations. In addition, the location of the peaks
in many group-ICA maps tended to be biased away from the
cortex towards the white matter and a local low-to-high ramp of
the component values could often be traced along the boundary
between grey and white matter tissues (Supplementary Fig. 6).
Despite the above characteristics, most components have anato-
mically plausible layouts, encompassing a diverse range of func-
tionally relevant areas. The components where peaks were most
firmly located within cortical ribbon, were found in sensorimotor
and pre-motor areas (e.g., components #16, 17, 23, 24).

Meanwhile, the analysis of age-related changes in the spatial
layout of the networks using the dual regression approach (mass-
univariate modelling step in Fig. 1a) appear to be affected by a
specific bias, as shown using the examples of the spatial maps of
the first 3 components and the corresponding maps of the age
effect in Fig. 4b, demonstrating a negative effect of age (i.e., a
decrease of connectivity with age) in the most representative

component voxels. This somewhat counter-intuitive pattern was
observed for all group-ICA components. As Fig. 4c shows, there
was a high negative spatial correlation between component
group-lCA component spatial maps and corresponding t-maps of
the age effect. This pattern appears to be a direct consequence of
the signal properties, intrinsic to these data and earlier high-
lighted in the context of the univariate analyses, showing that
there is a negative association between age and strength of
correlations for voxels surrounding a seed.

Maturational networks (matnets). The above analysis demon-
strates an inability to reconstruct coherent maturational rela-
tionships in the fetal fMRI data using tools that are widely used in
standard network analysis in pediatric and adult populations. In
the current and the following sections, we will show that the
matnet analysis, built around dense connectomes as an input, is
able to overcome this issue and demonstrate comprehensive
features of the emerging brain connectivity.

Fig. 4 Results of group-ICA analysis. All spatial maps are shown in radiological orientation. a Z-scored group-level spatial maps. b Spatial maps of the first
3 components (upper row) and corresponding t-maps of age-related changes (lower row), corresponding to the output of the mass-univariate modelling
step in Fig. 1a. A negative effect of age can be observed in the most representative component voxels. c Distribution of spatial correlations between
component spatial maps and corresponding t-maps of age-related changes. The outlier is the component with likely vascular origin (component #5).
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Thus, results from the maturational network factorization,
presented in Fig. 5a, reveal spatial configurations of a high
anatomical validity, including locality within the grey matter
(Supplementary Fig. 7). In order to ascertain the robustness of the
method, we repeated the analysis in approximately age-matched
split-half samples, computing matnets in each sample indepen-
dently, and found a good replicability of the component spatial
properties (Supplementary Fig. 8–11).

A qualitative comparison to the paired group-ICA components
(for the complete set - Supplementary Fig. 12) demonstrates both
the increased spatial specificity of the matnets approach and the
differing sensitivity to interhemispheric and distal patterns of
network participation. For instance (Fig. 5b), the main node of
matnet #11 spatially overlapped with that of group-ICA #24 but
in addition encompassed areas in lateral central and pre-motor
cortices. Another example is the bilateral matnet component #7,
in which the left-hemisphere sub-division overlapped with a
spatially compact group-ICA component #16. The more
anatomically specific local variations of intensity compared to

the group-ICA maps are reminiscent of the spatial specificity in
the age-effect seed-to-brain maps from the univariate analyses.
For instance, the matnet map #7 in Fig. 5b has multiple poles,
distributed across the somatosensory, motor and premotor
cortices, which suggests an early integration of local circuits
supporting different functions. In contrast, group-ICA compo-
nents were typically characterised by a tendency to have only one
centre-of-gravity.

Whole-brain maturational relationships. Earlier we noted a
distinction between (1) matnets proper (i.e., spatially independent
maps, obtained by factorisation of the dense maturational con-
nectome) and (2) their emerging connectivity profiles (i.e., age-
related changes in connectivity between matnets and all voxels in
the brain), which differentiation effectively determines matnets
partitioning.

From a biological perspective, matnets delineate areas which
have similar targets for their emerging functional connections.

Fig. 5 Results of maturational network analysis. All spatial maps are shown in radiological orientation. a Z-scored spatial maps, thresholded at abs(z)= 3.
b Examples of components from maturational and group-ICA analyses, showing that the former tends to show more anatomically specific variation in
intensity than the latter. See Supplementary Fig. 12 for all pairs of group-ICA and matnet components.
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Alternatively formulated, matnets can be viewed as independent
“sources” of emerging connectivity, where their linear mixture
determines age-related changes in connectivity of each voxel in
the brain. The dichotomy between matnets and their connectivity
profiles gives rise to a dual view on the maturation of functional
connections which we now consider in detail.

In an analogy to the computation of component temporal
courses in the standard-approach using the DR1 step (Fig. 1a),

emerging connectivity profiles associated with matnets are
computed as a matrix (here M= 25 components by N= 53,443
voxels) of regression slope coefficients by regressing matnet maps
against columns of the thresholded maturational dense con-
nectome (Fig. 6a). This matrix can be treated in two ways.

Firstly, a matrix of pairwise correlations between rows of the
connectivity profile matrix summarises a similarity between
matnets emerging connectivity profiles, in a similar way as a

Fig. 6 Maturational connectome. a Pipelines for derivation of emerging connectivity profiles associated with matnets and (shown with arrows) the analysis
of maturational connectome. b Maturational connectome embedding and their split into groups, based on hierarchical clustering. c Hierarchical
clustering tree.
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matrix of correlations between component timecourses outputted
by DR1 (so called “netmats”30) characterises functional con-
nectivity between brain networks within the standard group-
ICA+DR approach. This provides a whole-brain characterisa-
tion of the emerging functional architecture of the in-utero brain,
which we call “maturational connectome” for conciseness
(Fig. 6a). A three-dimensional embedding of the maturational
connectome (Fig. 6b), allows one to appreciate its generic
structure. Here a point in space indicates a relative location of
a network with respect to other networks, with a shorter distance
between networks being indicative of a greater similarity between
their emerging connectivity profiles. Several groups of networks,
based on the networks’ location in the embedded space, can be
identified using hierarchical clustering (Fig. 6c). In further
analyses we used a 5-group partitioning which was the finest
partitioning that did not produce single-network groups. The first
group (coded brown) consisted of networks that combined the
posterior and anterior peri-insular areas with occipital, auditory
and ventral sensorimotor areas. The second group (coded green)
consisted of two smaller sub-groups: one comprising dorsolateral
pre-motor, dorsolateral prefrontal and medial pre- and supple-
mentary motor areas; the other combining frontal anterior
cingulate with inferior parietal and superior lateral occipital
cortices, extending into medial posterior areas (precuneus).
Adjacent to this group, there was a two-network group (coded
blue), comprising dorsal sensorimotor areas. The fourth group
(coded violet) comprised ventral frontal and orbitofrontal areas.
Finally, the last group (coded purple) combined ventral occipito-
temporal areas with dorsal parietal and sensorimotor areas.

Secondly, the alternative view on the matrix of the connectivity
profiles associated with matnets is made possible by the fact that
one dimension of the estimated regression coefficient matrix is
equal to the number of voxels and therefore this matrix represents
a collection of complementary spatial maps, that depict targets to
which corresponding matnets tend to develop connections to in
an age-related manner, or to put it simply, the maps of the targets
for their emerging connectivity. From this perspective, clustering
matnets into 5 groups is determined by a spatial similarity of their
complementary maps. This fact permits an identification of
“maturational hubs” for each group as maps that characterise
shared connectivity profiles within each group of matnets, for
instance, by means of principle component analysis.

Figure 7a summarises these results by showing pairs of matnet-
complimentary maps as well as the first principal component
maps of complementary maps in each groups. Thus, one can
observe a likely vascular contribution in group 1 and 2, evident by
the fact that the maps contain areas overlapping with the circle of
Willis. In parallel, both maps also contain brain areas which are
spatially distinct from the areas reflecting vascular development.
For group 1, these areas are bilateral dorsal somatosensory and
adjacent parietal cortices and bilateral cerebellum. For the group
2, prefrontal group, the hubs are located in bilateral IFG and
superior bank of anterior STG, bilateral insula, bilateral STS. For
the sensorimotor (3rd) group, the hubs are not expressed well but
some preferential connectivity to right insula and (predominantly
right) striatum and thalamus can be observed. For the 4th
(ventral frontal and orbitofrontal) group, the hubs were located in
the bilateral SFG and MFG. Finally, for group 5 (ventral visual
stream areas), the hubs were located in (predominantly right)
lateral parietal and dorsal parieto-occipital cortices and right
posterior perisylvian cortices.

Furthermore, as a proof-of-principle that maturational rela-
tionships are determined by an age-related increase of con-
nectivity and as well as a demonstration of the potential
application of the method to the study individual variability
and inter-regional trajectories, the following result can be

presented. Here, we estimated the temporal coupling between
matnets and their complementary maps as a function of age. For
this, both the matnets and their complementary maps were
thresholded at z > 5 in order to reduce a degree of potential spatial
overlap between the two and their time courses were computed as
weighted averages of the above-threshold voxels. Figure 7b shows
the results for two maturational groups, with differing age-related
trajectories, whereas age-related trajectories for all 25 components
are shown in Supplementary Fig. 13.

Discussion
In this paper, we presented an analytical framework that char-
acterises functional networks as an emerging property of the
brain. Within this framework, the fusion of voxels into a network
is determined by the similarity of their maturational profiles with
respect to the rest of the brain. In effect, this represents a com-
putational implementation of Flechsig’s principle21 that states
that concordant maturation characterises functionally related
areas. In an implicit form, Flechsig’s principle has been previously
utilised in the studies of structural covariance31 in developmental
cohorts32,33, including fetuses34. Here we apply the principle
explicitly to the study of emerging functional organisation in the
in-utero brain.

We also tested the performance of the framework in the neo-
natal dHCP sample. Overall, matnets showed excellent agreement
with group-ICA analysis of the same data. Furthermore, matnets
revealed features characteristic of more mature brains with a
greater specificity, such as more symmetrically distributed pat-
terns across the two hemispheres and a nearly complete default
mode network. Conceptually, a greater fractionation of group-
ICA neonatal networks is not surprising, because compared to the
“connectivity-as-present” representation ICA provides, matnets
reconstruct maps of “connectivity-in-making”.

Further fractionation of the networks into separate areas was
observed in the analysis of the fetal brain connectivity. Here the
difference between a group-ICA and matnet approaches becomes
even more prominent. We have showed that maturational net-
works (Fig. 5) permit identification of spatially distributed pat-
terns of connections with a remarkable anatomical specificity for
the in-utero data, owing to their reliance on the benign signal
properties that reveal an age-dependent increase of mid- and
long-distance connectivity in a spatially selective manner. We
have also showed that maturational networks represent a coher-
ent way of characterising maturational patterns in the context of
fetal fMRI, compared to inference using the standard approach
(Fig. 4), in which results appear to be affected by specific biases
(we will discuss this below).

Compared to ex-utero data, in-utero fMRI data inherently
suffers from decreased signal-to-noise ratio and greater artefacts
which contribute to difficulties identifying distributed networks in
the fetal brain. Nevertheless, the matnet results indicate that
fundamental features of neonatal and even adult-like functional
architecture occur prior to the exposure to extrauterine envir-
onmental influences. This is reflected in a range of motifs char-
acteristic of the neonatal brain connectivity, which can be viewed
as the eventual target for maturational processes in utero. Thus,
several networks revealed a non-negligible bilateral component,
that agrees with the studies of pre-term and term born babies4–6,
as well as in-utero seed-based connectivity fMRI studies8, sug-
gesting that interhemispheric coupling becomes established dur-
ing this period. The maturational networks also characterised a
range of non-trivial functional relationships that are similarly
observed in neonatal data6, such as functional associations
between the inferior parietal regions and precuneus; between the
anterior cingulate cortex and lateral orbito-frontal cortex,
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between the medial and lateral (pre)-motor cortices; between the
central sulcus and posterior insular cortex; or between the dorsal
and ventral stream regions. This demonstrates that these emer-
ging functional relationships across spatially distinct regions are
an intrinsic property of the brain and provides crucial validation
of the findings of neonatal studies where the complementary role
of environmental influences had been unclear.

An additional level of insight into the developmental sequelae
of the fetal functional brain and the shaping of future network
architecture is provided by considering matnets in association
with their complementary maps, with the latter characterising the
matnets’ emerging connectivity profiles. This leads towards two
novel constructs: the maturational connectome, that summarises
similarity of emerging connectivity profiles between pairs of
matnets (Fig. 6), and maturational hubs, that represent common
targets for the matnets’s maturing connections (Fig. 7). Together,
their analyses allow us to characterise macroscopic patterns of

connectivity that emerge during this critical stage of human
development.

A conspicuous generic feature of the maturational connectome,
revealed by its low-dimensional embedding, is the tendency for
homologous contralateral networks to cluster together. Overall,
the clustering analysis identifies two larger groups that occupy the
central location in the embedded space and three smaller, more
peripheral, groups. Based on the areas that dominate their ana-
tomical layout, the three smaller clusters of networks can be
labelled as orbitofrontal, ventral visual and sensorimotor groups.
Of the larger groups, one was dominated by the cortical nodes of
perception and bodily sensation (occipital, auditory and soma-
tosensory limbic areas) but also included nodes in the motor and
motor limbic35 (anterior cingulate and anterior insular) cortices.
The other larger group was dominated by the functional nodes
responsible for an environmental interaction through action
(dorsolateral and medial pre-motor cortex and pre-frontal areas),

Fig. 7 Matnets and their complementary maps. a Spatial maps of matnets (top), their complementary maps (bottom), and the 1st PC of the
complementary maps (right) in each matnet group. b Examples of temporal correlations between time courses of matnets and their complementary map
for two matnet groups (see Supplementary Fig. 13 for all maturational components). Lines represent the best-fitting polynomial models and shaded regions
are confidence intervals (alpha= 0.05).
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but also included a sub-group of networks which spatially overlap
with nodes of the future default mode networks27,36, such as
precuneus, anterior cingulate and angular gyrus. Notably, the
location of the latter within the embedding space was midway
between the notional perception group and the remaining net-
works of the notional action group, hinting both towards hub
connectivity patterns and their apparent role in modulating
internal and external inputs whilst mind-wandering or per-
forming cognitively demanding tasks later in life37.

The framework also allowed us to describe maturational hubs of
the in-utero connectome, characterised as regions in which net-
works within a matnet group form preferential connectivity in an
age-related manner. Areas in the dorsal somatosensory and adja-
cent parietal cortex which process sensation and spatial informa-
tion, as well as the cerebellum, were identified as hubs for the first
group of matnets, combining perception, bodily sensation and
motor limbic areas located outside sensorimotor cortices, sug-
gesting integration of information across different perceptual and
limbic domains towards a central cortical processing unit. The
analysis also reveals an important role of high-level associative
areas within the brain connectome from the onset of the brain
functional development. Thus, the hub for ventral occipital and
temporal areas, which in the adult brain encodes representations of
abstract visual information, is found in the posterior parietal cor-
tex, including the right IPS and the posterior node of ventral
attentional network (VAN)38. This supports evidence, similarly
observed at the level of individual matnets (e.g., matnet #6), of an
ongoing integration of the ventral and dorsal stream representa-
tions. We also observed an emergence of links between ventral
action-related limbic areas, representing internal motives and
drives in the adult brain39, and areas associated with encoding
representations of abstract rules for goal-directed behavior and
with executive control. This is made evident by the fact that the
major hubs for the action group, which among others included
networks in lateral prefrontal cortex, were located in the anterior
perisylvian and insular cortices, posterior ventral orbitofrontal and
anterior temporal cortices, overlapping with limbic and motor
limbic cortices and the prefrontal hub of the adult VAN. Reci-
procally, the dorsal prefrontal areas implemented in the adult
dorsal attentional network (including frontal eye field), working
memory and executive control were identified as a hub for ventral
orbitofrontal matnet group, which in the adult brain are known to
project feedback pathways to the dorsolateral prefrontal cortex,
providing the latter with information on internal environment40.
These findings indicate that the neural machinery for linking
decisions and actions to internal wishes and motives start emerging
as early as the fetal period in human life.

These results challenge the view that the transition from fetal to
a more mature functional architecture is manifested by the shift
of functional hubs from primary to associative areas41,42 and
aligns with earlier studies of structural connectivity in full-term
and preterm neonates showing that adult-like features of the
structural connectome can already be observed at this early
period43. They also align with a recent study showing an early
patterning of deep projection neurons in the frontal lobe, which
could provide a structural infrastructure for the functional con-
nectivity of high-level associative areas44. The distinction between
more mature and in-utero functional connectome features appear
to be signified by a relative disconnection along posterior-anterior
axis, such as between nodes of fronto-parietal networks which are
considered responsible for the integration of information across
behavioral domains in the adult brain. Similarly, consistent with
previous findings in preterm neonates4, no strong evidence of the
links between medial posterior and anterior nodes of the default
mode network were observed, which at this period appear to be
integrated, respectively, within parietal and frontal networks and

lack a prominent role in the observed whole brain functional
architecture. Interestingly, a nearly complete default mode net-
work identified with matnets in neonates contained only a small
cluster of voxels in the medial parietal cortex, supporting the
evidence that a fully functional DMN may emerge only as late as
at the age of 345.

In-utero maturation is associated with competing physiological
processes which may potentially leave a footprint on the prop-
erties of the fMRI signal46,47, thereby raising a question about the
biological underpinnings of the age-related signal changes
implicated in the derivation of maturational networks. For
instance, one cannot exclude the possibility that changes in the
long-distance connectivity, in the absence of a mature structural
connectome, are in part due to the coordinated development of
the brain’s vasculature48. De-confounding the latter from the
estimates of neural connectivity is a contentious issue even in
the context of adult resting-state imaging49,50. In the fetal brain,
the problem may be further exacerbated as the development of
brain neural systems goes hand in hand with the development of
other organ functions including the vasculature and thus are
likely collinear to the degree that the two are indistinguishable at
a level visible to fMRI.

The effect of tissue composition on the T2* relaxation rate may
also represent an intrinsic confound for our analysis. The dHCP
acquisition utilises a substantially longer TE (60 ms) compared to
a benchmark adult acquisition (e.g., HCP protocol: 33 ms51 in
order to align with longer relaxation rates in the developing brain.
However, assuming T2*= 100 ms for neonates52 and that
matching TE and T2* may (theoretically) provide higher SNR,
the current TE may be a more “optimal” choice for the older
fetuses, therefore, potentially biasing estimates of the age-effects.
However, this is not supported by the observed tendency of
white matter seeds/voxels to show a negative association with age
compared to the cortical regions, given that age-related tissue
changes are likely to be more pronounced in the white matter
than in the cortex, as white matter maturation occurs throughout
gestation and myelination does not commence in many regions
until the early neonatal period53. One would then expect greater
positive age-related changes for the white matter if the effect was
due to the SNR-TE relationship.

Another potential confound is that fetuses tend to change
position from pointing upwards to head-down position later in
the gestation, potentially affecting the signal. However, this factor
cannot explain age-related increases in connectivity leveraged by
the matnet analysis, as the head-down position would result in a
decrease in SNR and consequently decreased estimates of con-
nectivity strength, due to the effects of the surroundings such as
the adjacent bones and air-filled bowels.

Finally, the registration accuracy represents a fundamental
issue, that can never be completely resolved by nature of the
changing fetal brain. To ameliorate this issue, we used a very
comprehensive approach to the group-space registration, pre-
viously exploited for the neonatal data6, which avoids a necessity
of computing large – and potentially error-prone – deformations
and at the same time achieving a remarkable alignment even for
morphologically distant brains (see Methods for the description).
In general, we expect that inaccuracy in registration will to some
degree be balanced out between ages by diverging factors: in
younger a cause of misregistration is likely to be a simple brain
morphology that lacks distinct landmarks; in older fetuses it is the
unique complexity of gyrified brain that makes it difficult to fit a
standard space. However, further work is needed to fully assess
the effects of the template choices and registration procedures for
this challenging type of data.

Compared to maturational networks, group-ICA components
identified with a standard group-ICA approach had diminished
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spatial complexity and anatomical specificity and were biased
towards the white matter. Notably, the results of dual regression
modeling showed that local connectivity within group-ICA net-
works diminishes with age. Such characteristics fit well those of
the functional nodes described in the fetal animal studies, which
center on the cortical subplate and act as local amplifiers of the
thalamic activity with spread that does not conform to anatomical
boundaries3,54. This may suggest that group-ICA and matura-
tional networks truthfully reflect two different states of the fetal
functional brain: a truly “fetal” subplate-centered55 and locally
active state depicted by the group-ICA, that gives way to the
adult-like cortex-centered and spatially distributed state of
maturational networks. Against this intriguing interpretation,
though not necessary incompatible with it, are the results of the
univariate analysis of the connectivity metrics. The latter
demonstrates that the correlational structure of the data, that
underlies the derivation of the group-ICA components, is
dominated by a spatially smooth and non-linear distance-
dependent gradient, which scales negatively with age. The factors
that make biologically-motivated interpretation of this gradient
unlikely is the spatially indiscriminate character of these phe-
nomena combined with a violation of anatomical boundaries,
including the large connectivity distance between the two brain
hemispheres which in reality are separated by a CSF filled inter-
hemispheric fissure.

An initial hypothesis to explain the origins of distance-
dependent gradients and its interaction with age can be based on
the potential contribution of two factors: motion and effective
resolution. The role of motion on connectivity estimates has been
demonstrated in adult imaging, where it has been shown to
decrease long-range connectivity and overestimate local
connectivity19,20. Although we used a comprehensive image
processing pipeline to account for head motion during data
acquisition, fetal imaging data is still especially susceptible to this
effect as fetuses have virtually no motion-free periods. Even if the
fetus stays still, maternal breathing cycles and endogenous
motion in the non-rigid tissues surrounding the fetal head con-
tinue to cause a constant change of position. Under these cir-
cumstances, effective resolution naturally leads to age-related
differences in the effect, which likely explains the dual regression
result showing a decrease in connectivity with age within the
most representative component voxels. The brain undergoes a
3-fold growth in size over the studied period, which implies that
real-world separation between pairs of voxels in a standard space
is smaller for younger subjects than for older ones and thus a
greater effect of distance as measured in the common space. In
light of the differences in signal properties between the grey and
white matter and their modulation by age, the possible con-
tribution of other factors such as modulation of the BOLD signal
itself and/or the role of age-related changes in tissue content also
should not be disregarded.

Below we outline several limitations of the study. First, the
current study has the well-known limitations of cross-sectional
analyses whereby between-subject variability can be confounded
with aging effects. Nevertheless, cross-sectional data are expected
to dominate fetal research for a foreseeable future, as scanning
mothers during pregnancy on multiple occasions presents both
ethical and practical challenges. In the meantime, one can strive
for better estimates of cross-sectional trajectories, using improved
modelling and larger data samples. Our results are based on one
of the largest fetal fMRI data sets both in terms of the number of
subjects and the number of volumes per subject. However, further
improvements in modelling can be achieved when data for the
full fetal dHCP cohort will be made openly available to the
neuroscientific community in the coming year. This would
increase the current data sample by a factor of nearly 2.

The second limitation concerns generalization of our conclu-
sions to other data samples, especially in the context of fetal fMRI
as a novel field, where norms of data acquisition are yet to be
established. Unfortunately, fetal fMRI has not as yet stepped in
into the age of normative open-access big data56 which has
enabled recent progress in the study of ex-utero connectivity,
(e.g.51,). However, the qualitative comparison of our results with
the results drawn from other studies gives us a certain confidence
that our results are not specific to our sample. For instance, there
was a remarkable similarity between our group-ICA results and
the group-ICA results reported in a recent paper13, despite con-
siderable differences in the acquisition sequence (multi- vs single-
band), spatial image corrections (dynamic distortion and slice-to-
volume corrections vs volumetric alignment only) and de-noising
pipelines (predominantly motion parameter-based vs. ICA-
based). Furthermore, the qualitative characteristics of group-ICA
components as well as the dominance of distance-dependent
gradient over the correlational structure also appear to be
reproducible across the studies13.

In conclusion, we describe a novel framework that delineates
the emergence of resting state networks in the fetal human brain
with remarkable spatial specificity and provides a comprehensive
model of inter-areal maturational relationships, assigning a cen-
tral role to the brain regions associated with active environmental
interaction through perceptual and motor-planning mechanisms.
A discerning feature of this maturational network framework is a
prospective incorporation of the variable-of-interest (here, age)
into network estimation. This can potentially make the method
adaptable to other applications, such as studying early human
development through childhood, network maturation in neuro-
developmental disorders such as autism, ageing and exploring the
connectivity underpinnings of changing patterns of behavior
across the lifespan.

Methods
Data. Participants were prospectively recruited as part of the developing Human
Connectome Project, a cross-sectional Open Science initiative approved by the UK
National Research Ethics Authority (14/LO/1169). Written informed consent was
obtained from all participating families prior to imaging. At the time of the study
initiation, resting-state fMRI data were acquired in 151 fetuses older than 25 weeks
of gestation (62 females, 77 males, 5 unknown), median age= 29.5w, range= [25
38], with Philips Achieva 3 T system (Best, NL) and a 32-channel cardiac coil using
a single-shot EPI (TR/TE= 2200/60) sequence consisting of 350 volumes of
48 slices each, slice grid 144 × 144, isotropic resolution= 2.2 mm, multi-band (MB)
factor= 3 and SENSE factor= 1.429. All fetal brain images were reported by a
neuroradiologist as showing appropriate appearances for their gestational age with
no acquired lesions or congenital malformations of clinical significance. Data from
7 fetuses did not pass visual quality assessment due to excessive motion and failure
in image reconstruction.

The data of the remaining 144 fetuses were preprocessed using a dedicated
pipeline24–26. In brief, the data underwent MB-SENSE image reconstruction, dynamic
shot-by-shot B0 field correction by phase unwrapping and slice-to-volume (S2V)
motion correction24. The data were then temporally denoised using several sets of
confound regressors, aiming to address various types of artefacts. The denoising
model combined volume censoring regressors, aiming to reject volumes (at a
heuristically selected threshold) (Supplementary Fig. 14), highpass (1/150 Hz) filtering
regressors of direct cosine transform matrix in order to remove slow frequency drift in
the data, 6 white matter and cerebrospinal fluid component timecourses (obtained
using subject-level ICA within a combined white matter + CSF mask, (e.g.57), and 3
variants of voxelwise 4d denoising maps in order to account for the local artefacts in
the data: (1) folding maps (N= 2) which aggregate time courses of voxels linked in
multiband acquisition to voxels in the original data, aiming at filtering out leakage
artefacts; (2) density maps, representing temporal evolution of an operator that
compensates for the volume alterations a result of distortion in phase encoding
direction, and aiming to filter out residual effects of distortion correction on the voxel
timecourses; and (3) motion-parameter-based regressors, expanded to include first
and second order volume-to-volume and slice-to-slice differentials as well as their
square terms, aiming to remove motion-related artefacts58,59.

Neonatal sample and data. The characteristics of the scanning sequence for the
neonatal data, which were acquired using the same hardware as the fetal data, are
described elsewhere5,6. The data were preprocessed using dHCP neonatal pipeline6.
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For the current analyses we created a sample which ages were symmetrically dis-
tributed around 37.5 gestation weeks, i.e., approximately the age of the oldest
subjects in the fetal sample (mean age 37.27, sd= 3.98). The complete dHCP
cohort is not symmetrical (Supplementary Fig. 5) and heavily skewed to the older
ages. To compensate for this, we included all participants that were younger than
37 gestation week old and then randomly sampled participants of older ages to
create a near-symmetrical distribution. 311 participants were selected for the
analysis.

Registration to the group space. A 4D atlas of the developing brain (available at
https://brain-development.org/brain- 594 atlases/fetal-brain-atlases/)60 was used as
a template space for data registration. A schematic depiction of the registration to a
common template space is shown in Supplementary Fig. 15a. The mapping
between a functional native space and the common template space is constructed
as the concatenation of several intermediate transformations, which ascertain a
gradual alignment between spaces to minimise risks of gross misalignment as a
result of the substantial differences in the brain topology across the range of
gestation ages (Supplementary Fig. 15b)6: (1) rigid alignment between mean
functional and anatomical scans calculated using FLIRT boundary-based
registration61; (2) a non-linear transformation between an anatomical T2 scan and
an age-matched template calculated using dual-channel (T2w and cortex) ANTs62;
(3) a sequence of non-linear transformations between templates of adjacent ages
(e.g., 24 and 25, 25 and 26, etc.), also calculated by ANTs. These transformations
were concatenated to create a one-step mapping between functional and group
template space, that allows us to project between native and template spaces with a
single interpolation. The template corresponding to GA= 37 weeks was selected as
a common space for group analysis based on the considerations that it has a
greatest effective resolution and topological complexity. An additional group space
was created by symmetrizing the GA= 37 week template with respect to the brain
midline, with appropriate adjustment of the mapping from native spaces, that
included an additional non-linear transform from non-symmetrical-to-
symmetrical template spaces. After registering the functional MRI data to the
template space, they were smoothed using 3 mm Gaussian kernel. No lowpass
filtering was applied in the temporal dimension.

Univariate data analyses. For the illustrative analyses, presented in Fig. 2a and
Supplementary Fig. 3 & 4, the seeds for the seed-to-brain analysis were determined
empirically using the results of modelling age-related changes in interhemispheric
connectivity between pairs of homologous voxels (Supplementary Fig. 16), per-
formed in the symmetrical template space63. The subject-specific maps of homo-
logous voxel connectivity were obtained by calculating the correlation between
timecourses of homologous voxels in the two hemispheres. The age-effect map was
obtained via a voxel-wise regression with age as a covariate. The seeds for grey
matter were created by thresholding the age-effect map from the above analysis at
z > 3, which rendered 3 sizable clusters of voxels (14, 32, and 45 voxels). Given the
absence of positive age-related increase in connectivity between homologous voxels
for white matter areas, the white matter seeds were created by thresholding the age-
effect map of interhemispheric connectivity negatively at z <−3, and then
manually adjusting clusters to fit the size of the grey matter clusters. Because the
seeds were defined in the symmetrical template space, the seed-to-brain con-
nectivity analysis was also performed in this space. The seed-to-brain group-
average correlation map was calculated by first calculating individual maps of
correlations between time course of a seed and time courses of all voxels in the
brain and then averaging these maps across subjects. The age-effect map was
obtained by fitting individual maps voxelwise using age as a covariate.

For the analysis of the relationship between similarity of seed-to-brain maps and
the distance between them, cortical mask was parcellated into 300 clusters with
k-means algorithm using voxel coordinates as input. The seed-to-brain group-average
correlation and age-effect maps were calculated as above. Spatial distance between a
pair of parcels was computed as a distance between their centres-of-gravity.

Group-ICA. The derivation of group-average modes-of-variation and their subject-
specific variants was performed using the protocol of FSL MELODIC for group-
ICA analyses17, including FSL MELODIC’s Incremental Group Principal compo-
nent analysis (MIGP step)14, and the standard procedure of dual regression,
implemented in FSL64. The number of derived components was set to 25, in
accordance with the published research in neonates6.

Maturational modes of variation. The pipeline for derivation of maturational
modes of variation is shown in Fig. 1b. First, a symmetrical matrix of correlations
between each pair of voxels in the brain mask was calculated, aka “dense con-
nectome”, for each subject separately. Each element of the dense connectome was
fitted across subjects with age as covariate, rendering a voxel-by-voxel matrix of
age-effect beta coefficients. The matrix was then converted into t-values, rendering
maturational dense connectome, subsequently thresholded at 0 in order to leverage
the age-dependent increases in correlations in network estimation. The rationale
for positive thresholding is described in the Results section. In order to perform
connectome factorisation, an intermediate step of dimensionality reduction, ana-
logous to the MIGP14 step of the group-ICA, was applied. For this, the

maturational dense connectome (size: N voxels by N voxels) was split column-wise
into 200 blocks (size: N voxels by N voxels/200. At the initial step, a matrix
consisting of the first two blocks was formed and subsequently reduced to 500
components using singular value decomposition. An iterative procedure was then
run that consisted of concatenating the current matrix of 500 components with a
following block and subsequent reduction to 500 components by SVD, until all
blocks were exhausted. The output of this procedure was used to obtain the final
factorisation of 25 components using FSL MELODIC.

We also considered whether a measure of a global motion (framewise
displacement (FD)) needs to be included as a covariate, given that the motion of
older fetuses may be constrained by their own size and upside-down position. For
this, a global measure of frame-wise displacement (FD) was calculated in the
following steps. First, a mean of absolute FD for each motion parameter was
calculated across time (altogether 96 values: 6 rotations + translations times 16
multiband stacks) in each subject. These means were collected into a 144 (number
of subjects) x 96 matrix, which was then z-scored across rows (subjects). Finally,
the first principal component was computed and used as a measure of global
between-subject variation in motion.

We found that a small-effect correlation between age and FD, r=−0.25.
Consequently, we analysed whether a potential confounding effect of FD alters age-
effect statistics in a spatially varying manner, to which, unlike to a global effect, the
ICA factorisation would be sensitive. An alternative hypothesis is that FD is not an
independent factor but alters age-related statistics only because it is collinear with
age. For this we considered age-related changes in interhemispheric connectivity
between homologous left and right voxels.

First, we found that the maps of age-effect statistics computed with and without
global FD as a covariate are highly correlated, r= 0.98. Furthermore, the inclusion
of FD as a covariate resulted in a graded decrease of estimates of age-effect statistics
with respect to the magnitude of the estimated age-effect (spatial correlation
between age-effect t-map calculated without FD as a covariate and the difference
between maps calculated with and without FD as a covariate: r=−0.49). In other
words, the FD inclusion makes negatively values less negative and vice versa for
positively values. Finally, we note the age effects tend to be tissue specific, i.e.,
tended to be more positive in the cortex and more negative in the white matter
(Supplementary Fig. 16), which is not expected if the source of association was
motion. Taking together, the above observations can be explained based on the
hypothesis of FD-age collinearity, whereas an alternative interpretation presuming
an independent effect of FD entails a complex interaction between tissues, age and
motion, for which we do not have substantial evidence. These considerations serve
as a justification for not inclusion of FD in the downstream modelling.

Maturational connectome analysis. The pipeline for derivation of the matura-
tional connectome is shown in Fig. 5a. It consists of the regression of the
maturational networks against the maturational dense connectome in order to
obtain #networks by #voxels matrix of regression coefficients. Correlations between
each pair of rows of the matrix were then estimated, collected into a matrix which
constitutes the maturational connectome. In order to reveal a structure of the
whole-brain maturational relationships, the maturational connectome matrix was
embedded into 3-dimensional space using an eigendecomposition of a graph
normalised Laplacian. A point in the embedding space indicates a relative location
of a network with respect to other networks (i.e., a shorter distance means closer
maturational ties). A partition of networks into groups of networks was performed
using the Ward method of hierarchical clustering65, based on the network coor-
dinates in the embedding 3D space.

Statistics and reproducibility. In order to ascertain the robust performance of
matnets factorisation, the analysis was performed in the neonatal sample, com-
paring the results to the results of group-ICA. In fetuses, we ran additional analyses
in approximately age-matched (mean age: 30.50 (3.23) and 30.42 (3.50), t
(142)= 0.14, p= 0.89, two-tailed) split-half samples.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The minimum dataset that contain input files necessary to reproduce the results of
group-level analyses reported in the manuscript are available at https://gin.g-node.org/
slavakarolis/matnet_paper. Source and preprocessed individual data, with recent
improvements implemented during ongoing pipeline development, is/will be made
available in the forthcoming release of the dHCP fetal cohort data (anticipated date of
release is June 2023).

Code availability
The code pertaining to the derivation of the matnets is available at https://gin.g-node.org/
slavakarolis/matnet_paper.
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