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Individual-specific functional connectivity improves
prediction of Alzheimer’s disease’s symptoms in
elderly people regardless of APOE ε4 genotype
Lin Hua1,2, Fei Gao3, Xiaoluan Xia1,2, Qiwei Guo1,2, Yonghua Zhao 4, Shaohui Huang5 & Zhen Yuan 1,2✉

To date, reliable biomarkers remain unclear that could link functional connectivity to patients’

symptoms for detecting and predicting the process from normal aging to Alzheimer’s disease

(AD) in elderly people with specific genotypes. To address this, individual-specific functional

connectivity is constructed for elderly participants with/without APOE ε4 allele. Then, we

utilize recursive feature selection-based machine learning to reveal individual brain-behavior

relationships and to predict the symptom transition in different genotypes. Our findings

reveal that compared with conventional atlas-based functional connectivity, individual-

specific functional connectivity exhibits higher classification and prediction performance from

normal aging to AD in both APOE ε4 groups, while no significant performance is detected

when the data of two genotyping groups are combined. Furthermore, individual-specific

between-network connectivity constitutes a major contributor to assessing cognitive symp-

toms. This study highlights the essential role of individual variation in cortical functional

anatomy and the integration of brain and behavior in predicting individualized symptoms.
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A lzheimer’s disease (AD) is one of the most prevalent
neurodegenerative disorders, causing deficits in memory
and executive function and difficulties in patients’ daily

life1. Accumulated evidence has demonstrated that AD progres-
sion is closely associated with specific genotypes2,3 and the
spectrum of AD clinical phenotypes4,5. Meanwhile, it is challen-
ging to early detect and predict the process from normal aging
(NA) to AD at the individual level, particularly for patients with
different clinical phenotypes. Therefore, it is essential to inspect
the brain-behavior relationship and identify the crucial bio-
markers from NA to AD in elderly people with specific genotypes.

Interestingly, human Apolipoprotein E (APOE) genotype var-
iants are one of the major genome-wide associated risk factors for
AD in elderly people6. The APOE gene has three gene alleles (i.e.,
APOE ε2, APOE ε3, and APOE ε4), thus producing six genotypes
(i.e., ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4). In particular,
existing studies illustrated that the presence of ε4 allele dose-
dependently enhances the risk of AD, with ε3/ε4 carriers and ε4/
ε4 carriers showing 3.68-fold and 7-fold increased risks as com-
pared to ε3 homozygotes e.g.,7. In addition to the high risk for
AD, APOE ε4 carriers are inclined to exhibit poorer scores in
cognitive functions, episodic memory, executive function, and
perceptual speed as compared to APOE ε4 noncarriers8,9. Further,
the brain networks in both APOE genotyping populations have
been inspected, which indicated that both APOE ε4 carriers and
APOE ε4 noncarriers manifest brain disconnection and decreased
functional connectivity mainly in the default mode network
(DMN)10,11. These studies suggested that APOE ε4 carriers and
APOE ε4 noncarriers may present distinct neural pathways
causing the differing stages from NA to AD. Therefore, it is
essential to divide elderly participants into different APOE gen-
otyping groups, so as to obtain higher performance for classifying
and predicting the process from NA to AD.

Elderly participants might exhibit varying cognitive symptoms
since they could be at different stages of cognitive declination or
at different levels of disease progression. Therefore, identifying
the brain biomarkers with sufficient accuracy to track particular
symptoms at the individual level would fundamentally benefit the
way of assessment and management in clinical practice. In par-
ticular, neuroimaging like structural and functional magnetic
resonance imaging (MRI) has enabled us to make advances in
identifying the potential biomarkers of AD. Likewise, brain net-
work analysis has been performed to detect the macroscopic
features that can distinguish well between various categories of
dementia12. However, existing evidence has not yet been inte-
grated into a set of regional interactions which can effectively
track each elderly individual’s present AD-related symptoms
from NA to AD and assist in the evaluation of individuals with
different genotypes.

In addition, biomarkers detected from the circuit anomalies
among NA, mild cognitive impairment (MCI), and AD have been
compromised by the inconsistent brain activation regions iden-
tified across individuals. Thus, stable parcellations of the cerebral
cortex13–15 and subcortical structures16,17 are essential for the
large-scale investigation into human brain architecture, which
provides a cortical taxonomy for inspecting regional or network-
level alterations in cortical functions associated with symptoms.
However, the downside of these atlases is that they only offer the
functional organization of the brain at the population level rather
than the peculiarities of a particular individual. To date, a
majority of neuroimaging studies still relied on group-level atlases
for accessing individual-level functional data10,12. Although these
atlas-level analyses were able to identify the relationships between
brain connectivity and clinical demographic data18,19, some
nuanced yet critical information was still missing since the
symptoms associated with functional networks are highly variable

across individuals. For example, recent studies showed that some
essential characteristics of brain networks might be missing by the
use of atlas-based templates14,20. Consequently, these findings
might dilute the brain-behavior correlations that are crucial for
fully understanding the neural mechanism underlying the process
from NA to AD when using the group-level atlas on individual
participants.

In this study, an individual-specific strategy21 that examined the
individual differences in cortical functional architecture was pro-
posed to improve the robustness and inter-individual reliability of
functional connectivity analysis and to generate the relationship
between the brain networks and participants’ individualized
symptoms. Our findings suggested that functional connectivity
varied widely across individuals, particularly in the frontal and
parietal cortices which were associated with higher-order cognitive
functions. Next, to quantify the relationship between brain and
clinical symptoms, we examined the individual-specific functional
connectivity of a large cohort of APOE ε4 carriers and noncarriers
with varying degrees of cognitive symptoms, respectively. Speci-
fically, machine learning was carried out to identify the connec-
tions that track multiple domains of cognitive symptoms [e.g.,
Mini-Mental State Examination (MMSE) and Immediate Recall
Total Score (LIMM)] in different APOE ε4 groups. Our results
demonstrated that the use of individual-specific functional con-
nectivity can detect effective biomarkers of clinical symptoms to
facilitate early detection and prediction from NA to AD in both
APOE ε4 groups. Furthermore, we categorized whole-brain func-
tional connections as within-network or between-network ones.
We found that individual-specific between-network connectivity
mostly contributed to assessing cognitive symptoms in both APOE
ε4 groups. Therefore, our study demonstrated the critical con-
tribution of accounting for individual variation in cortical func-
tional anatomy to tracking multiple clinical symptoms and
genotypes, which could open an avenue for the diagnosis and
prediction from NA to AD.

Results
Inter-subject variability in size, position, and functional con-
nectivity of individuals’ brain regions. In light of an iteratively
individual-specific functional network parcellation approach, a
total of 235 elderly participants were initially destinated into
APOE ε4 carriers (N= 120) and noncarriers (N= 115) (Table 1).
Then, 18 cortical networks were mapped in each individual, and
116 discrete ROIs were derived from these networks. Individuals
showed inter-individual variability in these functional ROIs (see
Supplementary Fig.1 for example). For each participant, func-
tional connectivity was calculated among these ROIs in order to
investigate the relationship between the brain and behavior with
specific genotypes (Fig. 1).

To examine whether the individual-specific approach carried
high variation information across individuals and whether
individual-specific connectivity conducted a higher correlation to
individual differences than atlas-based connectivity, this study
quantified the individual variability in individual-specific connec-
tivity, atlas-based connectivity, and vertex-based connectivity across
all 235 participants. The relationship between individual-specific
connectivity and individual variability in size and position of the
116 ROIs was then evaluated. Individual variability in vertex-based
connectivity showed that functional connectivity was highly variable
across individuals, especially in the frontal and parietal cortices
which were associated with higher-order cognitive functions
(Fig. 2a). Additionally, vertex-based functional connectivity was
significantly associated with the variability in connectivity strength
among individual-specific ROIs (r= 0.27, p= 0.003; Fig. 2b, d) and
atlas-based ROIs (r= 0.20, p= 0.032; Fig. 2c, e). Furthermore,
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individual-specific connectivity showed a higher correlation with
vertex-based connectivity than individual variability in atlas-
based connectivity. Then, the individual variability in individual-
specific connectivity was significantly associated with both
variability in size (r= 0.66, p < 0.001; Fig. 3a, c) and variability in
position (r= 0.27, p= 0.004; Fig. 3b, d). Therefore, these results
could justify that individual-specific connectivity was more related
to different aspects of individual variability than atlas-based
connectivity, and the significant results in the current study
corresponding to the individual-specific approach were caused by
the individual variability across participants.

Distinguishing among NA, MCI, and AD in the individual-
specific/atlas-based functional connectivity. To examine whe-
ther individual-specific functional connectivity can effectively
distinguish the elderly participants among NA, MCI, and AD, we
developed classifiers that predicted the clinical subgroups based on
individual-specific and atlas-based functional connectivity across
different APOE genotypes. Consistent with previous studies22,23,
the classification of MCI from NA or AD was less accurate than
separating NA from AD (Table 2). Furthermore, compared with
classification performance using atlas-based functional con-
nectivity, individual-specific functional connectivity performed

Table 1 Demographic characteristics of all participants.

NA (N= 42) MCI (N= 39) AD (N= 39) P-value Total (N= 120)

APOE ε4 carriers Age, years 69.80 (5.48) 71.87 (6.18) 73.18 (7.84) 0.057 71.37 (6.52)
Gender, male/female 17/25 23/16 17/22 0.07 50/70
Education, years 15.75 (2.76) 15.64 (2.11) 15.63 (3.09) 0.228 15.71 (2.16)
MMSE 29.22 (0.84) 27.65 (2.3) 22.33 (4.3) <0.001 26.84 (3.88)
LIMM 14.62 (2.95) 9.49 (4.21) 4.58 (2.98) <0.001 10.28 (5.34)

NA (N= 43) MCI (N= 39) AD (N= 33) P-value Total (N= 115)

APOE ε4 noncarriers Age, years 70.61 (5.79) 73.02 (8.58) 72 (8.02) 0.275 71.67 (7.25)
Gender, male/female 19/24 22/17 14/19 0.094 55/60
Education, years 16.29 (2.42) 16.23 (2.61) 16.17 (3.15) 0.293 16.26 (2.39)
MMSE 29.23 (0.87) 27.95 (1.62) 21.4 (2.64) <0.001 27.43 (3.24)
LIMM 15.11 (2.67) 9.87 (3.37) 3.7 (2.72) <0.001 10.35 (5.14)

Note: Data is presented as mean ± standard deviations (SD). NA normal aging, MCI mild cognitive impairment, AD Alzheimer’s disease.

Fig. 1 Procedure of estimating symptom scores in elderly people with/without APOE ε4 allele using functional connectivity among individually-
specified ROIs. Participants were initially classified as APOE ε4 carriers (N= 120) and noncarriers (N= 115) depending on whether they carried at least
one APOE ε4 allele or not, respectively. Then, based on the individual-level cortical network parcellation approach, we identified 116 homologous functional
ROIs in each individual participant. The rs-fMRI signals in each ROI were then extracted and functional connectivity among these ROIs was computed,
resulting in a 116 × 116 connectivity matrix for each participant. SVR model was trained to estimate each participant’s symptom scores based on ROI-to-ROI
connectivity. To reduce the dimensionality of the input data, only a subset of connections that showed significant correlations with the symptom scores in
the training dataset were selected as the relevant features to train the SVR. Data from N-1 participants were used to train the model and then the resulting
model was applied to the data of the remaining participants to estimate the individual’s symptoms. This procedure was repeated N times to predict the
symptom scores of all participants. The correlation between the estimated and observed behavioral scores was then evaluated.
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better in the evaluation matrix of accuracy (ACC), specificity
(SPE), sensitivity (SEN), and area under the receiver operating
characteristic curve (AUC), especially in APOE ε4 carriers
(Table 2).

Individual-specific functional connectome tracks MMSE
symptoms. To determine whether individual-specific functional
connectivity in different APOE genotyping carriers could track
cognitive status, SVR model was trained to estimate the MMSE
scores from each participant carrying or not carrying APOE ε4
allele. For the individuals with APOE ε4 allele, we found that a
collection of functional connections among individual-specific
ROIs were able to reliably predict MMSE symptom ratings.
Meanwhile, the estimated and observed MMSE scores showed a
modest yet statistically significant correlation (r= 0.41, p= 0.025,
Fig. 4a). Connections that exerted the greatest prediction on the
MMSE symptom mainly employed the FPN and DMN (Fig. 4b
and Supplementary Fig. 4a). In contrast, MMSE scores estimated
by atlas-based functional connectivity identified in Yeo’s group-
level atlas13 were not significantly correlated with the observed
MMSE symptoms (r= 0.33, p= 0.087, Fig. 4c). For the indivi-
duals without APOE ε4 allele, neither individual-specific ROIs
(r= 0.23, p= 0.264) nor atlas-based ROIs (r= 0.21, p= 0.252)
were able to estimate MMSE scores.

Focusing on the symptom-related connections, we then
examined whether the same connections defined by atlas-based
ROIs would be less correlated with symptom scores. In other
words, we tested if the connectivity features were already
impaired by the atlas-based functional connectivity before the
prediction model was applied. We found that the symptom-
related connections (Fig. 4b) were less correlated with symptom
scores (Supplementary Fig. 3) indeed when defined by atlas-based
ROIs. This finding suggested that the atlas-based ROIs obscured

the symptom-related connections, thus further impeding symp-
tom prediction.

Individual-specific functional connectome tracks LIMM
symptoms. To examine the specificity and precision of the cur-
rent approach in estimating multiple symptoms, we next tested
whether individual-specific functional connectivity can track
LIMM symptom scores in the same group of individuals with or
without APOE ε4 allele. For the group of APOE ε4 carriers, sig-
nificantly positive correlation (r= 0.30, p= 0.048, Fig. 5a) was
again obtained between the estimated and observed LIMM
symptom scores. Nevertheless, functional connectivity among the
atlas-based ROIs cannot predict the LIMM scores (r= 0.23,
p= 0.13, Fig. 5c). Connections most contributing to LIMM
symptom prediction mainly involved the FPN, DMN, and sen-
sorimotor (MOT) (Fig. 5b and Supplementary Fig. 4b). For the
APOE ε4 noncarrier group, functional connectivity among
individual-specific ROIs was able to predict LIMM symptom
scores (r= 0.44, p= 0.012, Fig. 6a). Although atlas-based func-
tional connectivity also showed a significant correlation between
the estimated and observed LIMM scores, the correlation was
relatively weaker as compared to the individual-based functional
connectivity (r= 0.38, p= 0.041, Fig. 6c). Connections most
contributing to LIMM symptom prediction mainly involved the
FPN, ATN, DMN, and MOT (Fig. 6b and Supplementary Fig. 4c).
Additionally, decreased correlation with symptom scores was also
found with the symptom-related connections (Figs. 5b and 6b)
defined by atlas-based functional connectivity (Supplementary
Fig. 3).

Between-network connectivity is a major contributor to the
estimation of symptoms. By examining the functional connec-
tions that were predictive of MMSE and LIMM symptoms

Fig. 2 Individual-specific ROI connectivity was more correlated with vertex-based ROI connectivity than with atlas-based ROI connectivity. a Individual
variability in resting state functional connectivity was calculated at each vertex across participants (N= 235). Frontal and parietal cortices showed stronger
individual variability than other cortices. b, c Individual-specific ROI connectivity and atlas-based ROI connectivity were quantified at 116 ROIs across
participants (N= 235). d, e Both individual variability in individual-specific ROI (r= 0.27, p= 0.003) and atlas-based ROI (r= 0.20, p= 0.032)
connectivity showed significant association with individual variability in vertex-based ROI connectivity (N= 116 ROIs).
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(e.g., Figs. 4b, 5b, and 6b), we found that the majority of them
were connections between functional networks rather than those
within the same network. The strength of between-network
connectivity showed a decrease of 7.25% on average when the
ROIs were individual-specific compared to atlas-based (p < 0.01

for 17 of the 18 networks, paired t-test, Bonferroni corrected for
18 comparisons, Supplementary Fig. 2). Therefore, the reduced
connectivity could result in more accurate symptom estimations,
suggesting that between-network connectivity could be quantified
more precisely when functional regions were localized in
individuals.

Grouping the connections into the 7 canonical functional
networks, the connections that contributed to MMSE symptom
estimate model were mostly between-network connections
including the FPN and DMN in APOE ε4 carriers (Fig. 7a).
Furthermore, the connections that contributed to LIMM
symptom estimation model were mostly between-network
connections including the FPN, DMN, and MOT in both APOE
ε4 carriers (Fig. 7b) and APOE ε4 noncarriers (Fig. 7c).
Specifically, ATN showed a higher contribution ranking in APOE
ε4 noncarriers than in APOE ε4 carriers.

Estimations of symptom dimensions perform better within
different APOE genotyping groups. While a large body of
imaging and neuropathology studies tended to suggest some
distinct aspects of pathophysiology in elderly people with differ-
ent APOE genotypes3,24, it is still unclear whether different
functional connectivity could result in distinct neuropsychologi-
cal representations in elderly people with differing APOE geno-
types. To this end, we conducted an SVM group separation of
APOE ε4 carriers and APOE ε4 noncarriers in differing clinical
groups, respectively. Furthermore, we aggregated all 235

Fig. 3 Individual variability in individual-specific ROI connectivity was significantly associated with individual variability in the size and position of the
functional regions. a, c Individual variability in ROI size was calculated for each of the 116 ROIs, and the size variability showed a significant correlation
(r= 0.66, p < 0.001) with the variability in individual-specific ROI connectivity. b, d Individual variability in ROI position was also quantified for each of the
116 ROIs, and the position variability showed a moderate correlation (r= 0.27, p= 0.004) with the variability in individual-specific ROI connectivity.

Table 2 Classification performance between clinical
subgroups in individual-specific/atlas-based functional
connectivity.

SVM
Classification

AUC ACC SEN SPE

APOE ε4
carriers
(N= 120)

Individual-
specific FC

NA vs. MCI 0.94 0.88 0.92 0.85
MCI vs. AD 0.92 0.87 0.73 0.94
NA vs. AD 0.94 0.90 0.92 0.85

Atlas-
based FC

NA vs. MCI 0.90 0.82 0.94 0.65
MCI vs. AD 0.86 0.75 0.70 0.80
NA vs. AD 0.92 0.88 0.90 0.80

APOE ε4
noncarriers
(N= 115)

Individual-
specific FC

NA vs. MCI 0.92 0.84 0.98 0.64
MCI vs. AD 0.89 0.81 0.50 1.00
NA vs. AD 0.96 0.89 0.94 0.82

Atlas-
based FC

NA vs. MCI 0.90 0.83 0.96 0.64
MCI vs. AD 0.89 0.81 0.50 1.00
NA vs. AD 0.96 0.87 0.94 0.78

Individual-specific FC Individual-specific functional connectivity, Atlas-based FC Atlas-based
functional connectivity.
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individuals across both APOE ε4 carriers and APOE ε4 non-
carriers, and then trained SVR models to predict MMSE and
LIMM symptoms on this merged dataset.

The SVM group separation of APOE ε4 carriers and APOE ε4
noncarriers using 10-fold cross-validation revealed an AUC of
0.98 (ACC= 0.89, SEN= 0.75, and SPE= 0.97) in AD groups, an
AUC of 0.91 (ACC= 0.80, SEN= 0.80, and SPE= 0.81) in MCI
groups, and an AUC of 0.86 (ACC= 0.78, SEN= 0.88, and
SPE= 0.68) in NA groups (Fig. 8a). Furthermore, even though
the aggregated analysis included the largest number of partici-
pants, individual-specific functional connectivity in this cross-
genotype cohort cannot perform MMSE symptom estimation
above the chance level (r= 0.18, p= 0.139, Fig. 8b). Similar
results were also found in LIMM symptom estimation.
Individual-specific functional connectivity failed to yield LIMM
estimation, which was not significantly correlated with the
observed LIMM symptom rating (r= 0.23, p= 0.108, Fig. 8c).

Discussion
Drawing on the individual-specific functional network parcella-
tion and machine learning approaches, the current study aimed at
identifying the neuroimaging signatures in different APOE gen-
otyping groups that could track cognitive symptoms from NA to
AD. Our methods would enable data-driven estimations of the
specific cortical connections which allow for the most accurate
prediction of clinical statuses and symptom scores in the elderly
population with or without APOE ε4 allele. Specifically, the

current results provide reliable readouts for testing how changes
in a particular model affect the model’s ability to predict the
clinical subgroups and estimate a specific set of symptoms, which
further establishes the relationship between brain functional
connectivity and behavioral symptoms.

In line with previous studies25–27, individual variability results
demonstrated that functional connectivity was highly variable
across individuals, especially in the higher-order cognitive areas.
The individual-specific approach used in the current study can
more precisely depict individual differences than the atlas-based
approach. Furthermore, the comparison results indicated that
compared to performing atlas-based functional connectivity,
analysis carried out on individual-specific functional regions
could promote the prediction of patients’ clinical statuses and the
correspondence between functional connectivity and multiple
symptom scores in differing APOE genotypes. This pattern was in
line with the evidence from the healthy population28 and psy-
chotic illness patients29, which showed that individual-specific
functional connectivity manifested much greater accuracy to
assess fluid intelligence and psychotic symptoms than using the
atlas-based template.

With regard to the connections most contributing to symptom
estimation, previous studies reported that APOE gene-related
symptoms could alter the resting-state functional connectivity
among the frontal, temporal, and DMN regions24,30,31. Yet,
convergent evidence was unable to be obtained from NA to AD
population32,33, even though this is thought to be a gradual
process from NA to MCI and finally AD34. In the current work,

Fig. 4 Functional connectivity among the individual-specific ROIs can better predict MMSE symptoms than that among the atlas-based ROIs in APOE
ε4 carriers from NA to AD. a The scatterplot demonstrates the correlation (Pearson’s correlation, r= 0.41, p= 0.025) between the MMSE scores
predicted by the connectivity among the individual-specific ROIs and the actually observed scores in APOE ε4 carriers from NA to AD (N= 120). Each
circle indicates a subject. Correlation significance was determined by using 1000 permutations. b 116 ROIs derived from the 18 networks are presented by
the colored rectangles under the corresponding brain networks. Twenty-two connections, which are above the 90th percentile of absolute weight in MMSE
symptom estimation among APOE ε4 carriers (N= 120), are specified by the black lines. Group-level maps of the 18 functional networks are shown on the
cortical surface, respectively. ROIs involved in these predictive connections are plotted and color-coded with differing weights on the cortical surface below.
c A similar analysis is performed using 116 ROIs defined in an atlas-based template. Functional connectivity among the atlas-based ROIs is not able to
predict the MMSE scores in the group of APOE ε4 carriers (N= 120; r= 0.33, p= 0.087). Correlation significance was determined by using 1000
permutations.
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we observed the most consistent results in APOE ε4 carriers that
FPN and DMN connections contributed to MMSE symptom
estimation model, while the FPN, DMN, and MOT connections
contributed to LIMM symptom estimation model in APOE ε4
carriers and noncarriers. Moreover, compared to the results in
APOE ε4 carriers, the contribution ranking of ATN was higher in
APOE ε4 noncarriers, thus suggesting that ATN might constitute
a critical region corresponding to symptoms in APOE ε4 non-
carriers. This finding is compatible with several proposals
examining the abnormal circuit in MCI or AD patients relative to
healthy participants31,35.

Another noteworthy finding from the current research is that,
in every symptom we tested, between-network connection in both
APOE ε4 carriers and noncarriers implicated a critical role in
predicting the severity of symptoms. Although the absolute values
of between-network connectivity were significantly reduced after
functional alignment, they still performed a more accurate pre-
diction of symptoms. While exploring interactions across func-
tional networks from NA to AD participants, previous studies
primarily focused on the within-network variation as a key source
of the illness-related signal. In particular, the hyper- or hypo-
connectivity within DMN was reported to be associated with the
extent of cognitive decline33. In this study, however, less rela-
tionship between within-network connectivity and clinical
symptoms was identified, especially in the elderly participants
with APOE ε4 allele. Since within-network variance may only
reflect symptom-related general pathology of the disorder, the
results of variation in between-network connectivity may repre-
sent the identification of symptom-related specific biomarkers.
This finding is in line with recent studies suggesting that changes
in between-network connectivity may signify neuropathology
changes in diseases29,36. Importantly, our findings indicate that

accounting for individual differences in functional network
boundaries is critical, as mislocalization of networks might
obscure the actually low between-network correlations and fur-
ther the identification of brain-behavior associations. To our
knowledge, our study is among the first to combine individual-
specific functional connectivity and machine learning approaches
to examine the relationships among brain and behavioral symp-
toms in elderly people with specific genotypes from NA to AD.
Therefore, the analysis framework of the current study can be
extended to the investigations of brain-behavior associations in
both healthy and clinical populations in the future.

Finally, some caveats need to be noted regarding the present
study. Our study did not subdivide the groups of APOE ε4 car-
riers or noncarriers into NA, MCI, and AD since symptom rat-
ings might be low or invariant among individuals in the same
subgroup. Meanwhile, subdividing groups might reduce the
effective numbers of sampling and bias the symptom estimation
models. Moreover, we investigated the neuroimaging signatures
of their correlation with symptom scores from APOE ε4 carriers
and noncarriers, respectively, instead of differentiating the two
groups. Finally, although feature selection was conducted using
significant connectivity related to symptoms, the use of LOOCV
still might increase the chance of overfitting. Future investigations
could address these issues by subgrouping the participants in an
increased sample size and performing various machine-learning
models to verify the estimated findings.

In summary, the current study found that the connectivity
between individual-specific functional areas in elderly partici-
pants with different APOE genotypes was capable of predicting
the clinical subgroups from NA to AD and yielding moderate-to-
strong estimation levels across many primary categories of AD-
related symptomatology. Notably, without accommodating

Fig. 5 Functional connectivity among the individual-specific ROIs can better predict LIMM symptoms than that among the atlas-based ROIs in APOE
ε4 carriers from NA to AD. a The scatterplot demonstrates the correlation (Pearson’s correlation, r= 0.30, p= 0.048, 1000 permutation test) between the
LIMM scores predicted by the connectivity among the individual-specific ROIs and the actually observed scores (N= 120). b Thirty-four connections, which
are above the 90th percentile of absolute weight in LIMM symptom estimation among APOE ε4 carriers (N= 120), are denoted by the black lines. ROIs
involved in these predictive connections are plotted and color-coded with differing weights on the cortical surface below. c Functional connectivity among the
atlas-based ROIs is not able to well predict the LIMM scores in the group of APOE ε4 carriers (N= 120; r= 0.23, p= 0.13, 1000 permutation test).
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individual differences in cortical functional architecture, con-
ventional atlas-based functional connectivity was shown to be
ineffective in predicting these clinical statuses and symptoms in
almost all cases. Furthermore, between-network variation
explained far more symptom-specific severity than in atlas-
defined models, especially for elderly people with APOE ε4 allele.
Our findings underscored the importance of accounting for
individual variation in cortical functional anatomy in neurode-
generative research, which can be extended to the healthy
population as well. Moreover, precision medicine, which aims to
provide personalized treatment strategies by considering indivi-
dualized disease heterogeneity, could benefit from using

individual-specific functional connectivity models to tailor treat-
ments to specific needs and improve patient care. Therefore, our
work highlighted the meaningful relationship between brain
connectivity and symptoms, which can serve clinical utility in
diagnosis, prognosis, and treatment for elderly people from
potential to identified disorders.

Methods
Participants. Participants were retrieved from the phase 2 and phase 3 datasets from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI; https://adni.loni.usc.edu/)
in light of the availability of T1-weighted and resting-state functional MRI, APOE
genotypes, and symptom severity assessment including MMSE and LIMM.

Fig. 6 Functional connectivity among the individual-specific ROIs can better predict LIMM symptoms than that among the atlas-based ROIs in APOE
ε4 noncarriers from NA to AD. a The scatterplot demonstrates the correlation (Pearson’s correlation, r= 0.44, p= 0.012, 1000 permutations) between
the LIMM scores predicted by the connectivity among the individual-specific ROIs and the observed scores (N= 115). b Twenty-nine connections, which
are above the 90th percentile of absolute weight in LIMM symptom estimation among APOE ε4 noncarriers (N= 115), are plotted by the black lines. ROIs
involved in these predictive connections are plotted and color-coded with differing weights on the cortical surface below. c The correlation between the
predicted and observed LIMM scores was weaker when connectivity was estimated using the atlas-based ROIs among these participants (N= 115;
r= 0.38, p= 0.041, 1,000 permutations).

Fig. 7 Between-network connectivity plays an essential role in predicting MMSE symptoms in APOE ε4 carriers and LIMM symptoms in APOE ε4
carriers and APOE ε4 noncarriers. a The functional connections most predicted of the MMSE scores in APOE ε4 carriers (N= 120) are grouped according
to the 7 canonical networks. Connections contributing to the symptom prediction are mainly between-network connections (white bars). These between-
network connections mainly involve the FPN and DMN. b The prediction of LIMM scores in APOE ε4 carriers (N= 120) is mainly driven by between-
network (white bars) involving the FPN, DMN, and MOT. c The prediction of LIMM scores in APOE ε4 noncarriers (N= 115) is mainly driven by the
between-network involving the FPN, ATN, DMN, and MOT. Connections within the VIS and SAL also contributed to the prediction.
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According to APOE genotypes, participants were classified into two groups: 1) APOE
ε4 carriers’ group with at least one APOE ε4 allele (genotype ε3/ε4 and ε4/ε4), 2)
APOE ε4 noncarriers’ group with genotype ε3/ε3. Previous studies have verified that
APOE ε2 allele could contaminate the dose effect of the APOE ε4 allele and result in
different neuropathology37,38. Thus, individuals with ε2 allele (i.e., ε2/ε2, ε2/ε4, and
ε2/ε3) were excluded due to the possible protective effect. In addition, neuroimaging
data of participants with excessive head motions (see the third step of neuroimaging
data preprocessing), severe artifacts, partial brain coverage, histories of obvious head
trauma, and alcohol/drug abuse were also excluded for further analysis. Further, 235
elderly participants (120 APOE ε4 carriers and 115 APOE ε4 noncarriers) were
selected for the present study (Table 1). Ethical approval was approved by the
institutional review boards of ADNI participating institutions, and written informed
consent was obtained from all participants.

APOE genotyping, neuropsychological assessment, and neuroimaging data
acquisition. As previously described in ref. 39, all participants’ APOE genotypes
were screened by using DNA extracted from peripheral blood cells. The cells were
collected in 10 ml EDTA plastic tubes and transported to the University of
Pennsylvania AD Biofluid Bank Laboratory by overnight delivery at room tem-
perature. More detailed information can be found in the ADNI Procedures Manual
(http://adni.loni.usc.edu/methods/documents/).

A battery of neuropsychological assessments was completed by each participant
in ADNI database. The present study focused on the results of MMSE and LIMM,
which have been well-validated and widely used as reliable tools for assessing
cognitive impairment40. Importantly, the two assessments have been reported to be
associated with brain functional connectivity41,42. Table 1 presents the
demographic and neuropsychological performances of all participants.

Both structural and functional MRI data of the baseline were included in this
study. Functional MRI (fMRI) data were selected based on the following
parameters: TR= 3000 ms; TE= 30 ms; flip angle= 90°; number of slices= 48;
slice thickness= 3.4 mm. The first section (200-time points, 10 min) of fMRI data
was extracted as each participant’s resting-state data. Detailed MRI scanner
protocols for structural and functional sequences are available online (http://adni.
loni.usc.edu/methods/documents/mri-protocols/).

Neuroimaging data preprocessing. Resting-state fMRI (rs-fMRI) data were
processed in terms of previous protocols29,43 that include the following steps: 1)
removal of the first four frames; 2) slice timing correction with the FSL package44

(http://www.fmrib.ox.ac.uk/fsl/); 3) rigid-body correction for head motion using
FSL. Framewise displacement (FD) and root-mean-square of voxel-wise differ-
entiated signal (DVARS) were then estimated using fsl_motion_outliers imple-
mented in FSL. Volumes with FD > 0.2 mm or DVARS > 50 were marked as
outliers (censored frames). One frame before and two frames after these outliner
volumes were also flagged as censored frames, together with those lasting fewer
than five contiguous volumes. Volumes with more than half labeled censored
frames were removed; 4) linear regression of multiple nuisance regressors con-
sisting of a vector of ones and linear trend, six motion correction parameters,
averaged white matter signal, averaged ventricular signal, and temporal derivatives
of the six motion correction parameters, averaged white matter signal, and aver-
aged ventricular signal; 5) interpolation of censored frames with Lomb-Scargle
periodogram; 6) band-pass filtering (0.009–0.08 Hz).

Structural MRI data were processed using the FreeSurfer 7.1.1 package (http://
surfer.nmr.mgh.harvard.edu). The structural and functional images were aligned
using boundary-based registration45. In a single interpolation, rs-fMRI data were
aligned to a spherical coordinate system by sampling from the cortical ribbon.

fMRI data of each individual was initially registered to the FreeSurfer surface
template, which had 40962 vertices in each hemisphere. A 6 mm full-width half-
maximum (FWHM) smoothing kernel was then applied to the fMRI data in the
surface space. The smoothed data were then down-sampled to a mesh of 2562
vertices in each hemisphere using the mri_surf2surf function in FreeSurfer.

Identifying functional ROIs in individuals. The functional regions of interest
(ROIs) for individual participants were localized by using the previous
methods21,28,29 with the following procedures:

Step 1. Individual participants’ cortical functional networks were mapped by
using the iterative parcellation method21. The algorithm was initially guided by the
population-level functional network atlas constructed from 1000 healthy
participants. As the impact of the atlas on each individual brain parcellation was
not identical for every participant or each brain area, the atlas was flexibly altered
depending on the known distribution of inter-individual variability and the signal-
to-noise ratio (SNR) distribution in a given participant. As the iteration progressed,
the effect of population-based data diminished, enabling the final map to be totally
driven by the data of each individual participant. More detailed information on the
population-level functional network atlas and the iterative functional parcellation
algorithm can be found in Wang, et al.21.

Step 2. Using a clustering algorithm (mri_surfcluster in FreeSurfer software),
the cortical networks of individual participants obtained from Step 1 were divided
into a number of discrete patches. Each cortical network on the surface was
spatially smoothed using a Gaussian kernel function (sigma= 1 mm) to reduce the
influence of noise and matching costs. Only the template matching procedure (as
explained below) would be impacted by the smoothing. The original unsmoothed
area was kept for further analysis after a homologous ROI was detected.

Step 3. Individual participants’ discrete patches were matched to the 116 cortical
ROIs generated from the population-level atlas that guided the search for a
participant’s networks. The template matching procedure was performed for each
cortical network as follows: 1) If an individual-level patch was overlapped (more
than 20 vertices) with a single ROI in the population-level network, the patch was
labeled as the same ROI in the atlas; 2) If a single individual-level patch was
overlapped with numerous ROIs from a single network, the patch was divided into
smaller patches. Vertices that overlapped with the population-level ROIs were
labeled together with these ROIs, producing the centers of numerous smaller
patches. According to the geodesic distance on the brain surface, the remaining
vertices in the original patch were allocated to the closest ROIs; 3) If a patch was
not overlapped with any population-level ROI and the shortest distance between
the patch and the ROI was less than a specific threshold, the patch was allocated to
the ROI closest to it. The mean distance between any two vertices in the closest
ROI was used as the specific threshold in the procedure; otherwise, the patch was
labeled as “unrecognized”.

Estimating within-network and between-network functional connectivity.
Individual-specific functional connectivity was computed using Pearson correla-
tion, resulting in a 116 × 116 connectivity matrix for each participant. For the
comparison between individual-specific and atlas-based functional connectivity,
Yeo’s group-level atlas13 was used to form a similar 116 × 116 connectivity matrix
for each participant. Then, 116 ROIs based on both individual and atlas levels were
divided into 18 networks21. Functional connections were classified as within-
network or between-network depending on whether they connected two ROIs in
the same or different networks, respectively. Finally, each participant’s within-
network and between-network connection values were calculated. The within-
network connectivity was quantified by the averaged connectivity values of all ROI

Fig. 8 Prediction of clinical groups and symptoms across APOE genotyping groups. a The AUCs for APOE ε4 carriers versus APOE ε4 noncarriers for the
5-fold cross-validation in NA (42 APOE ε4 carriers versus 43 APOE ε4 noncarriers), MCI (39 APOE ε4 carriers versus 39 APOE ε4 noncarriers), and AD
groups (39 APOE ε4 carriers versus 33 APOE ε4 noncarriers), respectively. b Functional connectivity was not able to estimate the MMSE scores in the
elderly participants across two APOE genotypes (N= 235). c Functional connectivity was also not able to estimate the LIMM scores in the cross-genetic
cohort (N= 235).
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pairs within the same network, while the between-network connectivity was
measured by the averaged connectivity values of all ROI pairs that involved one
ROI within the specific network and the other ROIs outside this network.

Estimating individual variability in size, position, and vertex-wise and ROI-
based connectivity of the functional regions. To further examine the individual
variability in the size and position of a functional region, as well as the vertex-wise
and ROI-based connectivity were estimated using the similar strategy described in
Li et al.28. The size of a functional region was estimated by the number of vertices
that fell within this functional region. Then, the size variability for each ROI was
quantified by the standard deviation of the size of functional regions across par-
ticipants. The position of a functional region was determined by the coordinates of
the center mass in this functional region. Then, the averaged geodesic distance
between the ROI centers across participants was used to estimate the position
variability for each ROI. Vertex-wise functional connectivity was denoted by the
connectivity between vertices according to fsLR_32 k surface mesh (59412 vertices).
Furthermore, individual variability in ROI-based functional connectivity was
computed as the strength of individual-specific ROI-to-ROI functional connectivity
and atlas-based ROI-to-ROI functional connectivity across participants.

Predicting individual symptoms using individual-specific/atlas functional
connectivity. Based on the connection between ROIs, a nonlinear support vector
machine (SVM) with a radial basis function (RBF) kernel from the LIBSVM
toolbox (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) was trained to assess the
prediction performance of clinical subgroups among NA, MCI, and AD in different
genotyping groups, and genotyping groups between APOE ε4 carriers and non-
carriers in different clinical subgroups. Covariates, including age and gender, were
initially regressed from the connection features prior to feature selection. Then, to
avoid the over-fitting issue due to the 6670 connection features (symmetric matrix
with 116 × 116) and remove the duplicate information, statistical significances
between each pair of two groups (NA vs. MCI, NA vs. AD, and MCI vs. AD in
different genotyping groups, and APOE ε4 carriers vs. APOE ε4 noncarriers in
different clinical subgroups) were conducted by a two-sample two-sided t-test. The
5-fold cross-validation method was used to train the model on the de-confounded
data from 80% of participants and test the model on the remaining 20% of par-
ticipants. Finally, ACC, SPE, SEN, and AUC were calculated to evaluate the per-
formance of the classification model.

To predict each participant’s symptom severity ratings based on the connection
between ROIs, a SVM for regression algorithm (L2-regularized L2-loss SVR model)
from LIBLINEAR toolbox (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) was
trained. The leave-one-out cross-validation (LOOCV) method was utilized, in
which data from N-1 participants were used to train the model. And then the
model was applied to the data of the remaining participants to assess the severity of
the participant’s symptoms. Before feature selection, covariates including age and
gender were regressed from the features and the symptom severity ratings. The
regressing weights were applied to the left-out dataset. To avoid over-fitting and
remove duplicate information, features that exhibited strong associations with
symptom ratings in the training dataset were chosen to train the model in each
LOOCV46. Then, the de-confounded features from the testing data were fed into
the trained model to calculate the predicted symptom ratings. To assess the
symptom scores of all individuals, the procedure was repeated N times (N= 120 or
N= 115). Finally, the estimated and observed symptom ratings were compared to
reveal the correlation.

Determining the contribution of each ROI and network in symptom estima-
tion. The weight of a connection in the SVR model was used to quantify its
contribution. In the present study, brain connections above the 90th percentile of
absolute weight in each symptom estimation were considered as the most reliable
connections. Specifically, the SVR model in the training data generated a weight
coefficient for each feature of each LOOCV fold. The weights of each connection
were then averaged over all LOOCV folds to determine their contribution to
symptom estimation. If a connection was not chosen as a feature in one-fold, its
contribution in this fold was set to zero. A specific ROI’s contribution was esti-
mated by summing up the contributions of all connections affecting that ROI.

Between-network connections were separated from within-network
connections to quantify the contribution of each functional network to symptom
estimation (identical to the method of estimating within-network and between-
network functional connectivity mentioned previously), which then grouped the
predictive connections into the 7 canonical functional networks. The weight of
each network in symptom estimation was calculated by adding the weights of the
predicted connections of the involved network.

Statistics and reproducibility. Demographic characteristics were compared
between NA, MCI, and AD in APOE ε4 carriers and APOE ε4 noncarriers using
ANOVA for normally distributed and Kruskal-Wallis for non-normally distributed
variables. Statistical significance was defined as p < 0.05 after Bonferroni correction.

For clinical subgroup classifications in SVM model, a significance criterion
(p= 0.001) was used for feature selection between each pair of two groups. To
predict each participant’s symptom severity ratings in SVR model, significant

features associated with symptom ratings achieving the significant criteria
(p= 0.001) after Bonferroni correction were chosen to train and test the SVR
model, resulting in a small amount of characteristics. Furthermore, the significance
of the correlation was assessed using permutation testing (1000 permutations),
which randomly reshuffled the observed symptom among the participants. The p-
value was estimated by calculating the percentage of the correlation value of
permutation data higher than the correlation value of real data. The p-value was
corrected for multiple comparisons by using the Bonferroni method.

Visualization. All imaging results were mapped onto the inflated PALS cortical
surface and visualized by using CARET software (http://brainvis.wustl.edu/wiki/
index.php/Caret:Download). Circos (http://circos.ca/) was used to construct the
connectograms depicting connections that contributed to symptom estimation
(e.g., Fig. 4b). Connections that contributed to symptom estimation were further
split into those positively or negatively linked with the symptoms, which were
elaborated in Supplementary Fig. 4.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available from the ADNI
dataset (https://adni.loni.usc.edu/) upon registration and compliance with the ADNI data
use policy (https://ida.loni.usc.edu/collaboration/access/appLicense.jsp). Source data used
to generate figures can be found in Supplementary Data 1–5.

Code availability
All methods used open-source software, and all links to the relevant software are
included in Methods (URLs). Code used in the analyses described in this paper is
available at https://github.com/LinHuaUM/IndivCode.git.
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