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The SWine IMputation (SWIM) haplotype
reference panel enables nucleotide resolution
genetic mapping in pigs
Rongrong Ding1,2,3, Rodrigo Savegnago2,10, Jinding Liu2,4, Nanye Long5, Cheng Tan3,6, Gengyuan Cai1,6,

Zhanwei Zhuang1, Jie Wu1, Ming Yang1, Yibin Qiu1, Donglin Ruan1, Jianping Quan1,2, Enqin Zheng1,

Huaqiang Yang 1, Zicong Li1,7, Suxu Tan2,11, Mohammed Bedhane2, Robert Schnabel 8, Juan Steibel2,9,

Cedric Gondro2, Jie Yang 1,7✉, Wen Huang 2✉ & Zhenfang Wu 1,3✉

Genetic mapping to identify genes and alleles associated with or causing economically

important quantitative trait variation in livestock animals such as pigs is a major goal in

animal genetic improvement. Despite recent advances in high-throughput genotyping tech-

nologies, the resolution of genetic mapping in pigs remains poor due in part to the low density

of genotyped variant sites. In this study, we overcame this limitation by developing a

reference haplotype panel for pigs based on 2259 whole genome-sequenced animals

representing 44 pig breeds. We evaluated software combinations and breed composition to

optimize the imputation procedure and achieved an average concordance rate in excess of

96%, a non-reference concordance rate of 88%, and an r2 of 0.85. We demonstrated in two

case studies that genotype imputation using this resource can dramatically improve the

resolution of genetic mapping. A public web server has been developed to allow the pig

genetics community to fully utilize this resource. We expect this resource to facilitate genetic

mapping and accelerate genetic improvement in pigs.
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The domestic pig (Sus scrofa) is an important livestock
species and a model organism for biomedical research1.
Historically, domestication and intense artificial selection

have created many pig breeds that are genetically and phenoty-
pically distinct from each other and from their wild relatives2–4.
More recently, high-throughput DNA sequencing and genotyping
technologies5 have facilitated the genetic improvement of pigs.
For example, hundreds of genome-wide association and quanti-
tative trait locus (QTL) mapping studies have identified numer-
ous genomic regions associated with various production,
physiological, and behavioral phenotypes6. These studies are
important for understanding the genetic and biological basis of
economically and biomedically important traits such as growth7,
fertility8, and disease resistance9.

The resolution of genetic mapping in pigs remains poor due in
part to the low density of single nucleotide polymorphism (SNP)
genotyping arrays. One proven, cost-effective approach to over-
come the limitation in resolution is through genotype imputation,
leveraging linkage disequilibrium to infer genotypes at unob-
served polymorphic loci10. With large haplotype reference panels
created by whole-genome sequencing, imputation has the
potential to provide sequence-level genotypes11. In livestock
animals, where QTL identification and genetic prediction are two
major goals, and linkage disequilibrium is extensive, sequence-
level genotype imputation has been successfully applied with a
relatively small number of reference haplotypes but decent
accuracy12, 13. In pigs, in particular, at least two public imputation
servers are available14, 15. However, they either contained a very
limited number of animals in the reference panel14 or lacked good
representation from major commercial breeds15, limiting their
applications. In addition, although many studies have demon-
strated improvement in mapping resolution16 and genomic pre-
diction accuracy17, none of these can be publicly accessed.

In this study, we produced whole-genome sequence data from
1530 newly sequenced pigs and combined them with 729 addi-
tional animals from public databases to call variants and develop
by far the largest and most diverse reference panel of haplotypes
in pigs to date. This substantial increase in the number of
available genomes allowed us to impute SNP array genotypes to
whole genome sequences rapidly and accurately. We evaluated
the accuracy of imputation and demonstrated the utility of this
haplotype reference panel in genome-wide association mapping.
We introduce a new public web server (swimgeno.org) where
users may submit array genotypes and retrieve imputed whole-
genome sequence-level genotypes. This resource will greatly
improve access to high-accuracy genotype imputation, facilitating
potentially nucleotide resolution genetic mapping in pigs.

Results
Development of a haplotype reference panel consisting of
>2000 pig genomes. We consolidated whole-genome sequence data
from newly sequenced animals (n= 1530) and publicly available data
(Supplementary Data 1 and 2) for a total of 2259 pigs, representing 44
different breeds (Supplementary Data 1). The majority of animals
were Landrace (n= 651), Yorkshire (n= 543), and Duroc (n= 485),
three major commercial breeds. The uniquely aligned sequence depth
was approximately 12.86 X averaged across all animals (Supplemen-
tary Data 1). We called variants using the GATK pipeline and cali-
brated variant quality scores with known variant sets compiled from
commercial SNP arrays. After filtering out variants of low quality and
excessive heterozygosity and missingness, 47.86M autosomal variants
remained. Sub-sampling of animals indicated that the increase in the
number of discovered variants quickly diminished (Fig. 1a). More
than 95% of all variants could be recovered using only 1000 randomly
selected animals.

Linkage disequilibrium (LD) between variants in this popula-
tion was extensive but differed by breed (Fig. 1b). LD in wild
boars declined more rapidly as the distance between variants
increased than in domestic breeds, consistent with the high level
of inbreeding among intensively selected domestic breeds
(Fig. 1b). Genetic variation present in the pig genome separated
breeds into distinct clusters that represented geographic differ-
entiation (Fig. 1c, d). The first principal component of the
genotypes separated Asian breeds and wild boars from their
European counterparts, while the second separated Durocs from
other breeds (Fig. 1c). Estimated ancestries of the breeds also
indicated clearly separated clusters according to their geographi-
cal locations (Fig. 1d). Taken together, the diverse and rich
genetic variation in the 2259 pig genomes included in this study
provides a strong foundation for whole-genome imputation.

Accuracy of genotype imputation. We focused on the ~34 M
autosomal variants (30,489,782 SNPs and 4,125,579 indels) seg-
regating at a minor allele frequency (MAF) > 0.005 to construct
the haplotype reference panel. To investigate factors that influ-
ence imputation accuracy, we considered different combinations
of commonly used phasing and imputation software, including
SHAPEIT4/IMPUTE5, Beagle5.2/Beagle5.2, and Eagle2.4/Mini-
mac4. We defined imputation accuracy using three metrics, the
overall concordance rate between imputed and observed geno-
types, non-reference concordance rate summarizing accuracy for
non-reference genotypes only, and squared correlation (r2)
between imputed and observed genotypes. We focused on
Landrace as the target set because it has the largest number of
animals in the dataset. We held out 100 Landrace pigs sequenced
at high coverage (>15X) and compared observed genotypes with
imputed genotypes starting from sequencing-based genotypes at
sites on a 50 K SNP array (GeneSeek GGP). Regardless of breed
composition in the haplotype reference panel of fixed size,
SHAPEIT4/IMPUTE5 outperformed Beagle5.2/Beagle5.2 and
Eagle2.4/Minimac4 in all three metrics (Fig. 2a–c). SHAPEIT4/
IMPUTE5 was therefore chosen for all subsequent analyses.

In cattle, imputation using multi-breed reference panels
appeared to be more accurate than using a single-breed panel12,18.
However, multi-breed panels are confounded by larger sample
sizes. We asked whether imputation using reference panels of the
same size from a single breed and from a mixture of multiple
breeds made a difference (Fig. 3a, compare L, DLY, and LO). This
question was important as it informs whether to use a multi-
breed or breed-specific reference panel to achieve optimal
accuracy. We again considered 100 Landrace animals as the
target set because of its relatively larger sample size. We found
imputation accuracy measured by all three metrics to be
remarkably similar (Fig. 3b–d) when the reference panel size
was equal. Reference panel derived from the same breed as the
target set had a very slight advantage (Fig. 3b–d). However, multi-
breed panels are useful because reference from the same breed
alone (but smaller sample size) was not able to achieve the same
accuracy (Fig. 3, compare L-250 with others). Because the vast
majority of Landrace pigs were from a single population, the
imputation accuracy may not reflect a realistic scenario when new
target sets are derived from other populations. We evaluated
imputation accuracy using 550 animals as the reference set but 41
Landrace pigs from the SRA as the target set, thus representing a
situation where the target sets are distant from the reference.
Imputation accuracies were lower, and the multi-breed panel
appeared to hold a small advantage (Supplementary Fig. 1).
Expanding the reference panel to 2218 animals increased the
accuracy substantially (Supplementary Fig. 2). The lower
accuracies may be due to a combination of the small number of
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target animals as well as further genetic distance from the
reference panel. Taken together, although the comparison
between multi-breed and breed-specific panels of the same size
depends on specific situations, a multi-breed reference panel is
desired as opposed to a breed-specific reference panel in most
cases as it maximizes reference panel size.

We compared our SWine IMputation (SWIM) resource using
the multi-breed reference panel with an imputation server for
pigs (PHARP) that utilized 1006 animals publicly available in the
SRA15. We evaluated imputation accuracy among variants that
were present in both reference panels. PHARP contained
relatively few major commercial breeds, including 115 Yorkshires,
85 Durocs, and 48 Landraces. We considered target sets from
Landrace, Duroc, and Yorkshire, in which the vast majority of
GWAS are conducted (Fig. 4a). When evaluating imputation
accuracy, we held out 100 animals as the target set and used the
remainder (n= 2159) as the haplotype reference panel. While the
overall concordance rate was uniformly high (>94.24%), imputa-
tion using the SWIM panel developed in the present study was
consistently higher than PHARP within each breed (Fig. 4b). The
improvement was much more pronounced when considering the
non-reference concordance rate and r2, two metrics that more
faithfully reflect the accuracy, especially at low frequency (Fig. 4c,
d). The difference between SWIM and PHARP could simply be a
sample size difference, especially for the breeds evaluated. The
final reference haplotype panel consisting of all 2259 animals is
expected to achieve a concordance rate in excess of 95.84%, a
non-reference concordance rate of 88.26%, and an r2 of 0.85.

We also assessed the performance of different starting SNP
chips, including the GeneSeek GGP 50K, Affymetrix Wens 55K,
and Affymetrix Axiom PigHD 660K. These chips were chosen
because the Wens 55K and GGP 50K have a similar number of
SNPs but share fewer SNPs, and the Axiom PigHD represents a

higher density. The imputation accuracies were evaluated in 100
Durocs and using 2159 animals as the reference (Supplementary
Fig. 3a). After removal of SNPs whose probes did not map
uniquely to the reference genome or were monomorphic, 39,491,
48,337, and 561,111 SNPs overlapped with the haplotype
reference panel for the GeneSeek GGP, Wens, and Axiom
PigHD, respectively (Supplementary Fig. 3b). As expected, higher
density of SNPs led to higher imputation accuracy (Supplemen-
tary Fig. 3c–e) in all three metrics, with the Affymetrix PigHD
660K SNP chip achieving remarkably high accuracy at 99.50%
overall concordance rate (Supplementary Fig. 3c), 98.63% non-
reference concordance rate (Supplementary Fig. 3d), and 0.98 r2

(Supplementary Fig. 3e).

Genetic mapping using imputed sequence-level genotypes. To
demonstrate the usefulness of sequence-level genotype imputa-
tion in genetic mapping, we performed genome-wide association
studies (GWAS) for two important growth traits in pigs, using
both SNP arrays and imputed genotypes. The two traits, backfat
thickness and body length, were chosen because putative causal
genes and mutations have been previously well characterized. Our
objective was to see if imputation-based GWAS was able to find
previously validated functional genes and variants.

Backfat thickness. Backfat thickness (BF) is one of the most
important economic traits in pigs and has been intensively
interrogated for its genetic basis. Genomic heritabilities estimated
using either array SNPs or imputed SNPs were similar and
indicated a moderately heritable trait (Fig. 5a). Alleles in several
genes, including IGF219,20, MC4R21, and LEPR22, have been
consistently associated with BF variation in pigs. In particular, a
missense mutation in the MC4R gene (chr1:160773437:G>A) has
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been suggested as the causative mutation21 and extensively
replicated in multiple genetic backgrounds23. Furthermore,
mutations in MC4R are strongly associated with early onset
obesity in humans24, and its role in the regulation of energy
homeostasis is well established25. Importantly, the putative causal
mutation in MC4R has been included in one of the commercially
available SNP genotyping arrays, the Geneseek GGP Porcine 50K
SNP Chip (Neogen, Lincoln, NE). However, the same SNP is not
present in the more widely used Illumina PorcineSNP60 chip. To
see if genotype imputation was able to correctly impute the
genotypes of this SNP, we excluded the MC4R SNP and imputed
whole-genome genotypes from a population of 3769 Duroc pigs
genotyped using the GGP Porcine 50K SNP arrays. Remarkably,
the concordance rate and r2 between the imputed and array
MC4R SNP genotypes were 99.71% and 0.9916, respectively. We
performed GWAS using array and imputed genotypes; both
showed a major peak on chromosome 1 (Fig. 5a, Supplementary
Data 3 and 4) and a clear deviation of P-value distribution from
the null (Supplementary Fig. 4a). Using imputed genotypes, the
highest hit from imputed SNPs (chr1:161511936:T > C,
P= 2.98 × 10−13) explained 2.85% of the total phenotypic var-
iance (Fig. 5a). Under this peak in a 4-Mb region
(158.5–162.5 Mb), there were 7138 variants within 22 genes.
Linkage disequilibrium in this region was extensive, with 1050
variants in strong LD (r2 > 0.8) with the top hit, including the

MC4R SNP (Fig. 5b). The highest hit was an intronic SNP in the
gene CCBE1 (Fig. 5b). However, the extensive LD in this region
makes it difficult to pinpoint a causative mutation by genetic data
alone. Additional functional information and genetic data that
break the LD are necessary to further fine-map causative genes
and mutations. Nevertheless, the ability to identify the putative
MC4R causative SNP as one of the top associated variants in a
long stretch of high LD region clearly demonstrated the
improvement of resolution using imputed genotypes. In our
analysis, the MC4R SNP was initially removed and would
otherwise be invisible without the imputation, as would be the
case if the Illumina PorcineSNP60 chips were used.

Body length. We next considered body length. We imputed
genotypes from an Affymetrix 55K SNP chip (Wens55K) to a
whole genome sequence using our imputation platform and
performed GWAS in a population of 1694 Yorkshire boars
(Fig. 6a). The trait has a moderately high heritability, as estimated
using both array (h2 ~ 0.32) and imputed (h2 ~ 0.34) genotypes
(Fig. 6a). Using GWAS (Supplementary Fig. S4b), we found a
highly significant peak on chromosome 17 (Fig. 6a, Supplemen-
tary Data 5 and 6) where the lead variant was an intergenic SNP
upstream of the BMP2 gene (chr17:15643342:C>T,
P= 3.45 × 10−39). Remarkably, this variant explained 13.65% of
the total phenotypic variance, and the homozygous C/C animals
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were, on average, 4.01 cm longer than the T/T homozygotes
(Fig. 6b, c). BMP2 has been repeatedly shown to be associated
with growth traits in pigs. A recent study implicated a regulatory
variant upstream of the BMP2 gene and validated its functional
impact using reporter genes26. This regulatory variant was the
third most significant SNP under this peak in our analysis.
Whether one or both of these potentially regulatory variants are
the causative mutations remains to be determined. Given the
strong association, high MAF of these SNPs, and less extensive
LD in this region, it is unlikely that these regulatory variants were
tagging protein-coding and less common variants in the BMP2
gene. In addition to the genetic support from this Yorkshire
population, the body length increasing C allele was much more
prevalent in Landrace than in other breeds. A hallmark of the
Landrace breed is its long body size; thus, regulatory variation of
the BMP2 gene may be a major contributor to the phenotypic
differentiation between pig breeds. In contrast, although the SNP
chip was able to broadly identify this region, the most significant
SNP (chr17:15827832:T>G, P= 1.58 × 10−25) in an SNP chip-
based GWAS was about 184 kb away from the lead SNP and
explained a substantially smaller variance (8.22% versus 13.65%).

SWine IMputation (SWIM) server. To enable the broad research
community to efficiently utilize the resource developed in this
study, we developed a public SWine IMputation (SWIM) web
server (https://www.swimgeno.org and https://swim.scau.
pigselection.com/swim), on which users can upload SNP chip
genotypes and retrieve imputed genotypes. The user interface is
extremely simple, which only requires users to upload the gen-
otypes in gzipped ped/map format and leave their email

addresses. Unlike other servers, such as PHARP, allele matching
and flipping are performed on the server end, further simplifying
the process on the user end. Imputation status can be monitored
and results can be downloaded from a dynamic link without
having to register an account. The server is set up to accom-
modate multiple users at the same time while limiting multiple
jobs of the same user. Our tests indicated that a typical job with
2000 individuals and 50K SNP chip genotypes can be completed
in approximately 12 h for all chromosomes.

Discussion
We present here the development of the largest reference hap-
lotype panel in pigs and an accompanying web server for the
public to utilize this resource for genotype imputation. The high
level of diversity and the large number of animals in the panel
enabled us to achieve very high imputation accuracy with con-
cordance rate, non-reference concordance rate, and r2 in excess of
95.84%, 88.26%, and 0.85, respectively, starting from 50K SNP
arrays (Fig. 2). The accuracies were comparable to those obtained
with medium density SNP arrays within pedigreed populations27.
Given the high accuracy and easy access with no requirement for
pedigree, we expect this public resource to vastly democratize
sequence-level imputation in pigs and accelerate genetic dis-
coveries. The SWIM server only supports SNP chip-based
imputation at present. Low-coverage sequencing-based imputa-
tion is much more challenging to accommodate on a web server
due to its requirement for massive computational resources.
Nevertheless, users may implement their low-coverage sequen-
cing-based imputation using the haplotype reference panel we
share.
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Fig. 3 Effects of breed composition of haplotype reference panel on imputation accuracy. a Experimental design to investigate the effect of breed
composition of haplotype reference panel on imputation accuracy. Three reference panels were tested, including ‘L’: 550 Landrace animals; ‘DLY’: 550 pigs
from the Duroc, Landrace, and Yorkshire breeds; ‘LO’: 550 pigs from Landraces and other non-Duroc or Yorkshire breeds; ‘L-250’: 250 Landrace animals
only. One hundred Landraces were used as the target set. Concordance rate (b), non-reference concordance rate (c), and r2 (d) of imputed versus
observed genotypes using different breed compositions of the haplotype reference panel.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04933-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:577 | https://doi.org/10.1038/s42003-023-04933-9 |www.nature.com/commsbio 5

https://www.swimgeno.org
https://swim.scau.pigselection.com/swim
https://swim.scau.pigselection.com/swim
www.nature.com/commsbio
www.nature.com/commsbio


High-throughput genotyping arrays greatly simplified geno-
typing, and numerous new QTLs have been mapped by asso-
ciation mapping, typically within a breed and with hundreds to
thousands of individuals6. However, while the resolution has
improved with SNP arrays, causative genes and mutations remain
extremely elusive, partly because SNP arrays prioritize assay
feasibility, homogeneous spacing, and common SNPs5.

Our evaluations indicated that Shapeit4/Impute5 outperformed
other software combinations, higher density of SNP chips led to
higher imputation accuracy, and multi-breed haplotype reference
panels maximizing sample size were preferred. Importantly,
animals that were genetically closer to the haplotype reference
panel could be imputed with higher accuracy. This further rein-
forces the importance of data sharing to increase representation
in the haplotype reference panel.

As we have shown with the examples above, imputation is
expected to greatly improve the resolution of gene mapping. Given
the large number of existing genome-wide association studies in
pigs6, we expect this resource to be highly utilized and impactful.
Indeed, more than 130,000 genomes were imputed in the first year
since the server became public, including a recent study that found
SWIM imputed genomes to detect more significant SNPs com-
pared to other platforms28. All existing studies using SNP arrays
can be improved by a simple imputation followed by GWAS
without additional data. Meta-analysis also becomes possible
because a common SNP set can be obtained. Nonetheless, the
resolution of genetic mapping depends not only on SNP density
but also on experimental design and genetic structure in the
mapping population. Sequence-level imputation does not neces-
sarily identify causative mutations in one single step16. The avail-
ability of this resource will allow for suitable designs of mapping
studies to achieve the highest possible resolution in specific cir-
cumstances and potentially nucleotide resolution.

Methods
WGS data collection. We consolidated WGS data from multiple sources. A total
of 1530 animals are first reported in this study using Illumina (n= 863) and BGI
(n= 667) platforms with 150 bp paired-end reads. Among them, 610 Landrace, 413
Duroc, 391 Yorkshire, 18 Taiwanhei, and 17 Lichahei were from Wen’s Food
Group Co., Ltd. (Yunfu, Guangdong, China), 21 Dahuabai, 21 Lantanghei, 20
Guangdong Xiaoerhua, and 19 Yuedonghei from Guangdong Gene Bank of
Livestock and Poultry (Guangzhou, Guangdong, China). Additionally, sequences
for 729 animals were downloaded from the sequence read archive (SRA). A
complete breakdown, including accession numbers, sample sizes, and average
sequencing coverage, can be found in Supplementary Data 1 and 2.

Variant calling, recalibration, and filtering. We aligned sequence reads to the pig
reference genome (Sscrofa11.1, a Duroc pig)29 using BWA-MEM-0.7.1730 and
called variants (in GVCF format) using GATK-4.1.8.1 HaplotypeCaller31 after
several post-alignment processing steps including duplicate removal using
PicardTools-2.23.331, and base quality recalibration using GATK. A population
VCF was generated by combining GVCFs across all samples. Variants with
excessive heterozygosity (“ExcessHet > 54.69”) were removed. Variant quality score
recalibration (VQSR) on SNPs was performed with truth SNP sets compiled from
commercial SNP arrays, including 50K, 60K, and 80K SNP chips (prior = 15.0) on
the Illumina platform and the 660K (prior = 12.0), SowPro90 (prior = 15.0) SNP
chips from the Affymetrix platform. SNPs were filtered with a truth sensitivity filter
level at 99.0. Without a truth set of indels, we applied hard filtering on them by
excluding indels with QD < 2.0, QUAL < 50.0, FS > 100.0, ReadPosRankSum <
−20.0, as recommended by GATK’s best practices. Additionally, we filtered out
animals with a missing rate >0.20, heterozygosity >0.20, and retained bi-allelic sites
with a missing rate <0.2 and mean sequencing depth between 5 and 500. Filtering
was performed using a combination of VCFtools 0.1.1332 and BCFtools 1.1333

commands.

Population genetics analysis. Linkage disequilibrium was computed using
PopLDdecay34 on individuals within the same breed after removing close relatives
(GRM > 0.5) and low-frequency variants (MAF < 0.05). To understand the genetic
structure in the population, we retained variants with MAF > 0.05 and missing rate
<0.1 and pruned SNPs with LD (r2 < 0.3, -indep-pairwise 50 10 0.3) using PLINK
1.935. Principal component analysis (PCA) was performed on the filtered list of
1,223,882 variants using GCTA 1.93.236 for all individuals. Ancestries were esti-
mated using ADMIXTURE 1.337 on 185 individuals randomly selected according
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Fig. 4 SWIM provides high imputation accuracy in pigs. a Composition of the haplotype reference panels, including different scenarios of SWIM and
PHARP, and target set. SWIM-100Y, SWIM-100D, and SWIM-100L are holding out 100 Yorkshires, 100 Durocs, and 100 Landraces as the target set,
respectively. For the PHARP reference panel, the same 100 Yorkshires, 100 Durocs, and 100 Landraces are used to evaluate imputation accuracy.
b Concordance rate of imputed versus observed genotypes using different haplotype reference panels. The mean concordance rate across all variants is
also indicated on the plot for each reference panel. c Non-reference concordance rate of imputed versus observed genotypes using different haplotype
reference panels. The mean non-reference concordance rate across all variants is also indicated on the plot for each reference panel. d r2 of imputed versus
observed genotypes using different haplotype reference panels. Mean r2 across all variants is also indicated on the plot for each reference panel.
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to breed representation in the dataset or at least four individuals per breed. The
downsampling was necessary to properly visualize population structure.

Genotype imputation. We further filtered variants prior to phasing haplotypes in
the reference population. Variants with missing rate >0.1 and MAF < 0.005 were
removed. Additionally, variants with a Hardy–Weinberg equilibrium test P-
value < 10−10 implemented separately in PLINK in all three of the Duroc, Land-
race, and Yorkshire pigs were removed. Only autosomal variants were retained for
imputation.

We extracted 100 Landrace pigs with the highest sequencing depth (17.42 X
average sequencing depth, ranging from 14.98 to 63.11 X) and designated these
individuals as the target population to evaluate imputation accuracy. To test the
effect of breed composition of the reference population, we constructed four

reference haplotype panels using different sets of individuals, including All
(n= 2159): all individuals except the 100 Landraces; L (n= 550): Landrace pigs
only; DLY (n= 550): 250 Landraces + 150 Durocs + 150 Yorkshires; and LO
(n= 550): 250 Landraces + 300 randomly selected pigs other than Durocs and
Yorkshires. Phasing was independently performed in these reference sets. In
addition, we also tested imputation using the PHARP web server (http://
alphaindex.zju.edu.cn/PHARP/index.php), which contains reference haplotypes
constructed from 1006 individuals in the SRA.

We tested three combinations of software for phasing and imputation,
including SHAPEIT 4.238+ IMPUTE5 1.1.539, Beagle 5.240 + Beagle 5.2, and Eagle
2.441 + Minimac 442. All software tools were run with default options and an
uninformative linkage map (1 cM per 1Mb), but the effective population size was
set to 100. Imputed genotypes were called by the ones with the highest posterior
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genotype probability. However, users of the imputation web server also receive
genotype probabilities.

We considered three commonly used metrics of imputation accuracy,
concordance rate, non-reference concordance rate43, and r2. Concordance rate is
defined as the proportion of individuals with imputed genotypes in concordance
with observed genotypes. Non-reference concordance rate is similar to the
concordance rate but is restricted to only individuals that are not homozygous for
the reference allele. r2 is the squared Pearson correlation coefficient between
observed and imputed genotypes. We measured concordance rates and r2 on a per
SNP basis and averaged them over SNPs in MAF bins or across the whole genome.

Genotypic and phenotypic data collection. To demonstrate the utility of impu-
tation in genetic mapping, we collected phenotypes and genotypes for three
populations of pigs, which were managed by three core breeding farms of Wen’s
Food Group Co., Ltd. (Yunfu, Guangdong, China), all under standard management
practices. For backfat thickness, the phenotypes were collected on 3769 Duroc pigs
from 2013 to 2018, and SNP genotyping was performed using the Geneseek GGP
Porcine 50K SNP chip (Neogen, Lincoln, NE, USA). Backfat thickness was

measured between the 10th and 11th ribs using an Aloka 500 V SSD B ultrasound
(Corometrics Medical Systems, USA) when live weights of pigs reached about
100 kg (100 ± 5 kg). For body length, phenotypes from a total of 1694 Yorkshire
boars were collected from 2012 to 2018, and SNP genotyping was performed using
the Affymetrix PorcineWens55K SNP chip (Affymetrix, Santa Clara, CA, United
States). Body length was measured from the base of the ear to the base of the tail in
pigs at approximately 100 kg (100 ± 5 kg) body weight. All samples were collected
according to the guidelines for the care and use of experimental animals approved
by the Ministry of Agriculture and Rural Affairs of the People’s Republic of China.
The ethics committee of South China Agricultural University specifically approved
the animal use in this study.

Genome-wide association studies. We used GCTA 1.92.1 to perform a mixed
linear model (MLM) based association analysis. The following statistical model was
used: y ¼ μþ xbþ g þ e (Equation 1), where y is the vector of the phenotypic
values for all animals, μ is the intercept, x is the design matrix coding genotypes
and other incidences of fixed effects, b is the vector of fixed effects including SNP
effect and additional covariates such as sex, pen, year-season effects depending on
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the traits, and g is the vector of polygenic random effects with covariance dictated
by the genomic relationship matrix, and e is the vector of random residuals. We
used SNPs on the GeneSeek GGP 50 K SNP chip (for backfat thickness) and
Affymetrix Wens 55K SNP chip (for body length) to compute the genomic rela-
tionship matrix. We used a genome-wide significance threshold of P= 5 × 10−8 to
declare significance. Variance explained by a single significant SNP was estimated
by fitting a mixed linear model with the genomic relationship matrix determined
by a single SNP.

Statistics and reproducibility. All statistical analyses are performed using either
software packages as described or in R 4.2.2. We supply all scripts, including those
to generate figures in a GitHub (https://github.com/qgg-lab/swim-public) as well as
a Zenodo repository44 (https://doi.org/10.5281/zenodo.7900470). The sample size
for the entire SWIM haplotype reference panel is 2259, with subsets selected for the
different designs to answer specific questions. Sample sizes for the backfat thickness
and body length GWAS were 3769 and 1694, respectively.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence data for 512 animals have been deposited to SRA (PRJNA842867).
Additional sequenced animals were proprietary properties of Wen’s Food Group Co.,
Ltd. and Guangdong Gene Bank of Livestock and Poultry. They may be requested by
contacting research-pig@wens.com.cn and yangh@scau.edu.cn, respectively. Raw
sequence data for a subset of the animals (n= 729) utilized in this study were
downloaded from SRA (Supplementary Data 1 and 2). Imputation utilizing the full
dataset is delivered as a web service (https://www.swimgeno.org and https://swim.scau.
pigselection.com/swim) and is publicly available. Phased haplotypes from all publicly
available individuals, including this study (n= 1241), are available as VCF files at https://
quantgenet.msu.edu/swim/statistics.php. Source data underlying Figs. 1a, b, 2, 3, 4, and
6c are provided in Supplementary Data 7, 8, 9, 10, 11, and 12, respectively.

Code availability
All computer codes, including all analyses performed in this study and codes for the
SWIM web server, are available at https://github.com/qgg-lab/swim-public and at a
Zenodo repository44 (https://doi.org/10.5281/zenodo.7900470).
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