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A scalable sparse neural network framework for
rare cell type annotation of single-cell
transcriptome data
Yuqi Cheng 1,2, Xingyu Fan3, Jianing Zhang1 & Yu Li 1,4✉

Automatic cell type annotation methods are increasingly used in single-cell RNA sequencing

(scRNA-seq) analysis due to their fast and precise advantages. However, current methods

often fail to account for the imbalance of scRNA-seq datasets and ignore information from

smaller populations, leading to significant biological analysis errors. Here, we introduce

scBalance, an integrated sparse neural network framework that incorporates adaptive weight

sampling and dropout techniques for auto-annotation tasks. Using 20 scRNA-seq datasets

with varying scales and degrees of imbalance, we demonstrate that scBalance outperforms

current methods in both intra- and inter-dataset annotation tasks. Additionally, scBalance

displays impressive scalability in identifying rare cell types in million-level datasets, as shown

in the bronchoalveolar cell landscape. scBalance is also significantly faster than commonly

used tools and comes in a user-friendly format, making it a superior tool for scRNA-seq

analysis on the Python-based platform.
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S ince the first establishment of single-cell RNA sequencing
(scRNA-seq) by Tang et al. in 20091, this technology has
rapidly become popular among scientists in various biolo-

gical research fields. Compared with traditional bulk RNA
sequencing which only measures the average gene expression
level of the samples, scRNA-seq provides a powerful method to
profile transcriptomes on the cell-specific level. Therefore, it
could enable analyzing individual cells and give a more infor-
mative insight into cell heterogeneity. The development of
scRNA-seq technology has been widely used in several biological
research areas, such as cancer research2,3, COVID analysis4,5,
developmental biology research6, etc. In these studies, uncovering
and identifying cellular populations is one of the most critical
tasks.

Typically, cell-type annotation involves two steps: (1) cluster-
ing cells into different subgroups and (2) labeling each group with
a specific type manually based on the prior-known marker genes.
A number of unsupervised machine-learning algorithms have
been developed, including classical machine-learning-based
methods such as Seurat7 and Scanpy8, and newly published
deep learning-based methods, such as scDHA9 and CLEAR10.
However, these methods can be time-consuming and burden-
some. For those who do not have too much knowledge of the
marker genes, this approach could cost far more time than
expected. Automatic cell-type annotation methods, in contrast,
do not suffer from the manual labeling process. Different from
the unsupervised methods, automatic cell-type identification tools
are mainly designed based on supervised learning frameworks.
Taking advantage of its fast and precise features, they are
becoming predominant tools to identify cell types in single-cell
experiments. With the unprecedented boom in the well-
annotated scRNA-seq atlas and the rapid promotion of the
Human Cell Atlas project11,12, auto-annotation tools are facing a
more broad prospect than anytime before. Up to now, 32 auto-
annotation tools are developed and published13. For example,
SingleCellNet14 utilizes a random-forest classifier to solve the
cross-platform and cross-species annotation tasks. ACTINN15

implements a simple artificial neural network to overcome the
batch effect.

While numerous tools have been established in recent years,
most of those often fail to identify the entire population because of
the existence of rare cell types. From the perspective of cell com-
position, scRNA-seq datasets are always imbalanced, which have
common cell types and rare cell types. The rare population is a
small proportion of cells in the single-cell dataset. For example, the
dendritic cell usually takes 1–5% of peripheral blood mononuclear
cells (PBMCs), especially in large datasets16,17. When we train an
auto-annotation tool, the classifier is consistently unable to learn
their information thus hard to identify these cell types in the query
dataset. However, these rare populations can be crucial, especially
in disease research18. Recently, some cluster detection methods
have noticed this point19,20 but few classification methods focused
on the cell population imbalance. Meanwhile, we also find that the
existing methods have two other main deficiencies. (1) Lack of
scalability. Recent scRNA-seq experimental platforms enable
investigations of million-level cells21,22. Notably, one of the most
recent COVID PBMC atlas has reached 1.5 million cells17. Thus
computation speed restriction will render auto-annotation packa-
ges poorly scalable for the million-level dataset. Moreover, large-
scale reference datasets add more challenges for learning rare cell
types in classifier training, which leads current software more dif-
ficult to identify minor groups. Most recently published paper has
elevated the training scale to 600 K cells23, however, no published
tools successfully report scalability on the million-level cell atlas. (2)
Compatibility of the existing tools is not as good as expected.
Among the existing Python-based tools, most of the tools such as

ACTINN15, scPretrain24, scCapNet25, and MarkerCount26 are
script-based. Considering that Seurat and Scanpy are both packages
that can be downloaded from a standard software repository (e.g.,
PyPI), running an external Python script on the server will add an
additional burden to the user. In addition, some of the tools are no
longer maintained or are not able to use. All these challenges
together make a new annotation tool that has a balanced ability to
label major and minor cell types in a scalable manner become
necessary.

Here, we introduce scBalance, a sparse neural network fra-
mework that can automatically label rare cell types in scRNA-seq
datasets of all scales. scBalance leverages the combination of
weight sampling and sparse neural network, whereby minor
(rare) cell types are more informative without harming the
annotation efficiency of the common (major) cell populations.
We evaluated scBalance on real datasets with varying degrees of
cell population imbalance and scale on both intra- and inter-
dataset annotation tasks, and compared its performance to pop-
ular published tools such as Scmap-cell27, Scmap-cluster27,
SingleCellNet14, SingleR28, scVI29, scPred30, and MARS31. Each
method represents a traditional machine-learning algorithm such
as Scmap-cell is based on KNN, SingleCellNet is based on Ran-
dom Forest and scVI and MARS are deep learning-based meth-
ods. Among them, our method consistently outperformed these
tools in identifying rare cell types, while maintaining high accu-
racy in annotating major cell types. Additionally, scBalance also
demonstrated fast and stable computation speeds outperforming
other approaches across all dataset sizes. Moreover, scBalance was
successfully trained on a published COVID immune cell atlas17

(1.5 million cells) and further annotated and discovered new cell
types in the published bronchoalveolar lavage fluid (BALF)
scRNA-seq dataset32. Satisfyingly, our method identified more
rare cell types than the original analysis. Our user-friendly
application is compatible with Scanpy and Anndata, and can be
easily downloaded from PyPI and used as an external API of
Scanpy (https://github.com/yuqcheng/scBalance).

Results
Overview of the architecture of scBalance. scBalance provides
an integrative deep learning framework to perform accurate and
fast cell-type annotation, especially on rare cell types, in a scalable
manner (Fig. 1). The structure of the scBalance includes two
parts, a weight sampling technique that adapts to imbalanced
scRNA-seq datasets, and a sparse neural network that efficiently
annotates cell types.

First, different from all existing tools, we use a specially
designed weight sampling technique to adaptively process the
imbalanced scRNA-seq dataset. Unlike exsiting methods that use
synthetic-based technique33,34, our method incorporates the
balancing technique into training batches so that will not
generate new points, thus can save memory space and speeding
up training. This design is particularly useful for the atlas-scale
dataset, where generating new dataset points is impractical. In
scBalance, to keep as much information as possible and avoid a
huge training time cost, we randomly over-sample the rare
populations (minority classes) as well as under-sample the
common cell types (majority classes) in each training batch
(Fig. 1a, Step 1). The sampling process is done with replacement,
and the sampling ratio is adaptive for different reference datasets,
defined as the cell-type proportions of the true label provided by
the reference set. This minimizes overfitting in the oversampling,
thus maintaining a promising performance of the generalization
ability of scBalance. Meanwhile, regarding the enormous over-
lapping expression information in the common populations, the
under-sampling of the major class enables scBalance to use a
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relatively small training size with an abundance of training
information. Leveraging this design, scBalance yields an excep-
tional performance in learning features of rare cell types as well as
maintains a strong ability in classifying all major cell types, thus
also improving its overall annotation accuracy. To testify to the
performance of our internal sampling method, we benchmarked

it with popularly used balancing techniques such as simple
oversampling and downsampling as well as Synthetic Minority
Over-sampling Technique (SMOTE). The results show that our
internal balancing method improves classification accuracy
compared with simple over- and downsampling and also
outperforms the synthetic method SMOTE (Fig. 1c and

Fig. 1 Schematic overview of scBalance. a The method is constructed based on the supervised learning framework, which contains a dataset-balancing
module and a dropout neural network module. Step 1 Upper: With our adaptive weighted sampling, scBalance will automatically choose the weight for each
cell type in the reference dataset and construct the training batch. Lower: Users can choose an external dataset-balancing method, such as scSynO, instead
of using our internal balancing method. Only the classifier will be used in this case. Step 2: While training, scBalance will iteratively learn mini batches from
a three-layer neural network until the cross-entropy loss converges. b Dropout setting in different stages. In the training stage, scBalance randomly disables
neurons in the network. The dropout layer is binary with a rate of 0.5. All the dropped units will be reconnected in the testing stage. The prediction will be
processed by a fully connected neural network. c Evaluation of balancing methods shows that our sampling method outperforms simple oversampling and
downsampling methods as well as the SMOTE method. The p-value is from a significance test of scBalance and SMOTE (n= 5 for each boxplot).
d Comparison of running times among different sampling techniques.
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Supplementary Fig. 1). Notably, our method provides a faster and
space-saving balancing solution compared with normally used
balancing methods (Fig. 1d and Supplementary Fig. 2a, b, and
Supplementary Data 1). Because our method is coupled with the
training process, it will not need to generate new data points, thus
saving time and memory space. Additionally, scBalance also
provides an interface for users who would like to explore specific
minor cell types in a more detailed granularity. It allows datasets
processed by external sampling methods such as scSynO34. In this
case, only scBalance classifier will be used.

Moreover, we notice that the reference dataset and the
prediction dataset can be generated by different sequencing
platforms and protocols such as the 10X platform and Smart-seq
platform, thus will naturally introduce different noises such as
gene detection dropouts and random sequencing error35. To
address this issue, scBalance considers random noise as a type of
overfitting event and implements the dropout36 technique to
mitigate this problem. The dropout layer, due to its excellent
capacity of reducing overfitting, also enhances the learning ability
of the scBalance to the resampled minor cell types. Additionally,
scBalance provides a network reusing option for atlas-scale
training scenario, enabling users to avoid the significant time cost
of training the model again for the same dataset (Fig. 1a, Step 3).

Taken together, scBalance provides a three hidden layers
network structure with a batchnorm and dropout setting in each
layer. The activation function is set as an exponential linear unit
(ELU)37 and the output layer uses Softmax. In the training mode
(Fig. 1a, Step 2), units in the hidden layer are randomly disabled
to help reduce the influence of noises on the training process. In
the predicting mode, the network will be set as a fully connected
status to keep all parameters being used in the forward process.
The model evaluation and backpropagation are based on the
cross-entropy loss function and Adam optimizer. To speed up the
training and predicting process, scBalance also includes a
graphics processing unit (GPU) mode which reduces the running
time of the classifier by 25–30%. Overall, scBalance is well-
designed to handle different types of noises and imbalanced
datasets while achieving high classification accuracy for rare and
major cell types.

scBalance accurately identifies rare cell population in the intra-
dataset labeling task. We first demonstrated the rare cell-type
identification ability of scBalance in the baseline test. To evaluate
performance, we used twelve scRNA-seq datasets with different
imbalance degrees and different cell numbers, which were divided
into train sets and test sets. To ensure a more comprehensive test,
most of the datasets are generated from different sequencing
platforms (see “Methods” and Table 1). The true label informa-
tion of these datasets is only available in evaluating prediction
results. Here, we compared scBalance with seven methods that
are widely used for scRNA-seq cell-type identification:
SingleCellNet14, SingleR28, scVI29, scmap-cell27, scmap-cluster27,
scPred30 and MARS31, in which scPred and MARS also claimed
the ability to treat imbalance single-cell dataset in their papers,
and scVI and MARS are deep learning-based methods like
scBalance. To ensure our benchmark comparison is under a fair
experiment, we used a uniform preprocessing process for each
tool and set all parameters as default. All the experiments were
conducted based on the fivefold cross-validation to quantify the
classification variability. Detailed protocol can be found in
“Methods”. We used Cohen’s kappa score to quantitatively
evaluate the performance of scBalance and the other seven
methods (Fig. 2a). According to the result, scBalance outperforms
all other methods on most of these twelve datasets by achieving
the highest Cohen’s kappa score. Notably, scBalance particularly

performs well on large and complex datasets such as Campbell
and Zillions. And the performance of scBalance is the most stable
among all these seven methods, giving it an advantage in further
atlas-scale reference training. Because Cohen’s kappa score pro-
vides a minority class sensitive metric, outperforming on this
score gives preliminary evidence that the scBalance has more
advantages in rare population annotation.

To better demonstrate the ability of scBalance to accurately
annotate minor cell populations, we further investigated the
accuracy of each cell type to show whether the overall high
performance is exactly obtained by the improvement of minor
cell-type identification (Fig. 2b and Supplementary Figs. 2–4, and
Supplementary Data 2). We categorized these datasets into three
classes: (1) large datasets with a simple cell composition, such as
Baron Human, Lake, and Zillions; (2) small datasets with a simple
cell background, such as Muraro, Baron Mouse, Deng, etc.; and
(3) datasets with complex cell structures, for example, Zheng
68 K, which is primarily composed of T cell and its subtypes so
that cells are sharing a high similarity. We first analyzed the
performance of scBalance on the Baron Human dataset (Fig. 2b
and Supplementary Data 3) and found that all methods perform
well on large populations, such as the Beta cell and Alpha cell.
However, in minor cell types such as the Mast cell and Epsilon
cell, the performance of scBalance still keeps stable and
promising, while the other methods fail to recognize most of
these rare cell types. These results demonstrate the ability of
scBalance to annotate minor cell populations in regular datasets.
Similar results can also be found in the result of the small dataset
(Supplementary Fig. 3). Furthermore, we were also interested in
the performance of scBalance on the dataset with a complex cell
background. By analyzing the result on the Zheng 68 K dataset
(Supplementary Fig. 4), we found that scBalance is still the best
method for identifying rare cell types while maintaining high
accuracy in the other types. This result further gives scBalance a
practical advantage in real-world problems. In addition, to better
understand the true positive detection sensitivity of scBalance for
each cell type, we then analyzed the precision of scBalance in
these three datasets (Supplementary Tables 1–3). The results
show that scBalance is the most robust and sensitive method for
identifying the minor cell types compared with the other
methods, especially under the complex cell background.

In summary, scBalance performs well on the baseline
annotation task, as it has the stable ability to not only successfully
identify the major cell types but also the minor cell types.

scBalance outperforms in rare population identification in the
inter-protocol annotation task. In the realistic scenario, it’s
expected that users may train an annotation tool using a dataset
that’s generated from a different protocol than the one used for
the query scRNA-seq profile. However, when different sequen-
cing platforms are used, more noise can be introduced, which can
affect the inter-dataset annotation task more than the intra-
dataset annotation task38. To improve the generalization ability of
scBalance in cross-protocol tasks, we used the dropout technique
to m`ake our model more robust to the technical variations. We
first conducted a comparison experiment between scBalance with
dropout and scBalance without dropout on the PBMCBench
datasets from different sequencing platforms (Fig. 3a and Sup-
plementary Fig. 5, and Supplementary Data 4) and the Pancreatic
datasets from different protocols used in a previous study39

(Supplementary Fig. 6 and Supplementary Data 5). The results
show that scBalance with dropout improves the generalization
ability and leads to better performance in the inter-dataset
annotation task for all sets of datasets. Moreover, we demon-
strated the robustness of scBalance to batch effects in
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Fig. 2 scBalance demonstrates superior performance in identifying rare cell populations on the intra-dataset annotation task. a Overall annotation
performance, as measured by Cohen’s Kappa score, compared to existing methods on multiple datasets (cell number indicated after dataset name).
scBalance consistently outperforms other methods in accurately identifying minor cell populations across all twelve datasets. (n= 5 for each barplot and
error bar. Error bars are defined as mean value ± standard deviation). b Cell-type-specific accuracy benchmarking on the Baron Human dataset (n= 5 for
each boxplot). The number following each cell-type name represents the number of cells in that type. scBalance achieves higher accuracy in identifying rare
cell types compared to other methods.
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Fig. 3 scBalance excels at identifying rare cell types in cross-platform annotation tasks. a Dropout technique is utilized in scBalance to enhance model
generalization and robustness against noise. b scBalance’s overall annotation accuracy is compared to that of other methods on datasets generated by
different protocols. Each experiment pair is named “Train Dataset_Test Dataset” and Cohen’s kappa score is used as the overall metric. (n= 42 for each
boxplot to show all 42 training pairs). c scBalance’s ability to accurately identify rare cell types in inter-dataset annotation tasks is demonstrated. (n= 42
for each boxplot to show all 42 training pairs). d UMAP visualization shows that scBalance outperforms other methods in identifying rare cell populations
across different approaches. All methods were trained on the PBMC dataset (SMART-Seq2) and used to predict cell types in the PBMC dataset (10xv3).
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cross-dataset annotation tasks. We compared the classification
performance of scBalance with and without batch correction
using Combat40, a commonly used batch correction tool, to
evaluate whether the performance of scBalance can be further
improved by batch correction (Supplementary Fig. 7 and Sup-
plementary Data 6). The results indicate that scBalance’s per-
formance is not significantly impacted or improved by batch
correction, suggesting that our method itself is robust to the
potential negative effects of batch effects.

To further evaluate the performance of scBalance under batch
effect and its ability to identify rare cell types, we expanded our
benchmarking to include other annotation methods on the inter-
dataset annotation task. We utilized the PBMCbench datasets
(refer to “Methods” and Table 1) to test and evaluate the
performance of each method on every protocol pair, with Cohen’s
kappa score being used as the evaluation metric. Meanwhile, we
were particularly interested in scBalance’s classification accuracy
on minor cell populations, which we defined as cell types with less
than 5% of the total cell number. Thus we also quantified the rare
cell-type annotation ability along with the overall accuracy. The
results, summarized in Fig. 3b, show that scBalance achieved the
highest average scores across all experiments (Fig. 3b and
Supplementary Data 7). Compared with the second-best method,
scBalance elevated the average score from 0.85 to 0.95. Moreover,
scBalance was also the best method on most of the test pairs,
demonstrating its excellence on the inter-dataset task. Notably,
we also analyzed the rare-type classification accuracy of each
method (Fig. 3c), and the results show that scBalance outper-
forms the other methods in accurately identifying minor
populations on most of the test pairs in the inter-dataset task.
To further show the practicality and efficiency of scBalance, we
conducted additional benchmarking experiments to evaluate its
performance on the inter-dataset annotation task when other
methods are used in conjunction with batch correction methods
(Supplementary Fig. 8 and Supplementary Data 8). The results
suggest that, while most of the methods demonstrated improve-
ment (average improvements ranged from 1 to 4%) after batch
effect correction preprocessing compared to Fig. 3b, scBalance
continued to outperform the other methods for the inter-dataset
annotation task. This indicates that scBalance remains one of the

most efficient tools available for this task. Subsequently, to gains
further insights into the classification results of the rare cell
population, we used Uniform Manifold Approximation and
Projection (UMAP) to visualize the clustering result of the top
three highest-performing methods with the prediction label or
true label (Fig. 3d). Our analysis revealed that, compared with the
true label, SingleCellNet displayed more incorrect annotations on
the Megakaryocyte cells and CD16+ monocytes than scBalance.
Similarly, scVI demonstrated more incorrect labels on the
Megakaryocyte cells and even completely failed on the classifica-
tion of CD16+ monocytes. In contrast, scBalance provided the
most accurate annotation result on all six cell types and
successfully labeled the two rare cell populations, Megakaryocytes
and CD16+ monocytes. Taken together, the results indicate that
scBalance offers a more robust performance than existing
methods for cross-platform annotation tasks and retains its
outstanding capability of identifying rare cell populations under
the influence of technical variations.

Fast and robustness on the running speed enhances the scal-
ability of scBalance. Running time is considered one of the most
essential things for an annotation tool in the real single-cell
analysis environment as well as the greatest obstacle to scalability.
To highlight the superiority of the scBalance on the calculation
speed, we presented the comparison results of the six repre-
sentative methods which all have different basic machine-learning
models (Fig. 4). Because of the usage of the GPU, we separately
showed the scBalance-CPU and scBalance-GPU in order to make
the comparison fair for other methods without GPU computa-
tion. We first compared the performance of the scBalance on the
different processing units. The result indicates that scBalance-
GPU has a large improvement in the running speed, which
reduces more than 50% running time compared to the scBalance-
CPU (Fig. 4a). Especially, scBalance-GPU gives a robust perfor-
mance on the datasets with different cell numbers. The running
time keeps relatively stable on the samples from 30k cells to 60k
cells. This robustness gives scBalance a potential expanding ability
to annotate large-scale datasets in a fast manner. We also pre-
sented the comparison result of scBalance-CPU with the other
five methods. Even though all the methods are based on the CPU,

Fig. 4 scBalance outperforms existing methods on speed and scalability. a Running time comparison of scBalance on datasets of different scales using
different processors. Our method achieves fast running times with high scalability. b Comparison of the running times of six different methods on datasets
of varying sizes. All methods are tested on the CPU. scBalance outperforms the other methods across all tested dataset sizes.
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scBalance also gives a promising running speed. Notably, in the
datasets with more than 30k cells, scBalance reduces the running
time to 10% of the other five methods. In the largest dataset,
scBalance gives more than 20 times the computation speed
compared with SingleR (Fig. 4b). The advantage in time-
consuming also makes scBalance an outstanding tool in large-
scale dataset annotation.

Revealing bronchoalveolar immune cell atlas in COVID
patient proofs the scalability of scBalance. As the size of the cell
atlas continues to increase, the scalability of annotation tools
becomes more important. We thus discussed the strength of
scBalance to learn rare cell types in the million-level scRNA-seq
datasets. We first used the intra-dataset annotation result as proof
of concept to evaluate the annotation performance of scBalance
on the large-scale cell atlas. We collected two recently published
cell atlas including human heart cell atlas41 (487,106 cells) and
COVID-19 immune atlas17 (1,462,702 cells). As no other existing
methods have reported annotation ability on million-level
scRNA-seq profiles, especially it is even hard to load the dataset
for R-based methods such as SingleCellNet and Scmap, we
compared scBalacne with conventional machine-learning meth-
ods such as random forest (n_estimators=50,random_state=10),
decision tree, SVM (kernel:rbf), and kNN (k= 3) in Python. As
shown in Fig. 5a and Supplementary Data 9, scBalance sig-
nificantly outperforms the other machine-learning methods on
both two cell atlases. In addition, compared with the other
methods, scBalance achieves up to 150 times faster running speed
when training and labeling the COVID cell atlas (Fig. 5b). Even
the threefold increase in cell number between the two datasets,
scBalance remains the only method with a robust running speed,
providing an advantage in scalability.

In addition to the simple evaluation of the scalability, we used
COVID immune atlas as the reference dataset for an instance to
illustrate that the annotation result of scBalance can effectively
identify rare cell types when training with million-scale
references. We also collected Bronchoalveolar lavage fluid (BALF)
cells scRNA-seq profile from a severe COVID patient as the query
data (Fig. 5c). While there are lots of publications discussing
PBMC landscape42–45 in different COVID patient samples, the
BALF cell component of COVID patients still lacks investigation.
But as the sample that can most directly reflect microenviron-
ment information on lung alveoli, BALF cells are of great
importance to understanding the association of the disease
severity and respiratory immune characteristics dynamic.
Although Liao et al. revealed bronchoalveolar immune cells
landscape in patients with COVID in 202032, their work which is
based on the integration of Seurat only identified cell groups in a
low resolution. Here, we used scBalance to annotate BALF
scRNA-seq dataset. Our method successfully identified much
more cell subtypes than the original research by using the COVID
atlas as the reference. Compared to the manual labeling method
used in the original analysis, scBalance significantly improved
annotation resolution for the BALF dataset. In combination with
the result in Fig. 5c, d and Supplementary Fig. 9, scBalance
identified 64 subtypes of the immune cells in the BALF sample.
As expected, macrophages show the highest enrichment in the
BALF sample whereas B cells only be a small part of the immune
landscape. Notably, scBalance also identified rare subtypes in all
cell groups. In the myeloid group, our method elucidates that
there are also monocyte locates in the BALF instead of only
macrophages. But macrophage cells are still the major compo-
nent, especially the pro-inflammatory macrophage (M1) such as
CCL3L1+ macrophage, which suggests a strong immune cell
recruitment signal in BALF in the severe patient. Meanwhile,

different from the analysis by Liao et al.32, our method reveals
that the pro-inflammatory environment is not only produced by
macrophages but also by CD14 monocyte (CCL3+). Furthermore,
our method also found that a significant expansion of
proliferative memory T cells (including MKI67-CCL4 (high)
CD4 T cell and MKI67-CCL4 (low) CD4 T cell), compared with
effector T cells, are enriched in the lung region. Together, our
methods successfully identified cell subtypes and provide a more
comprehensive immune atlas in the BALF by using the COVID
cell atlas as the reference. It is worth noting that most of the cell
types revealed by scBalance are rare in the COVID atlas, which
further presents the advantage of identifying rare cell types of our
method in the large-scale scRNA-seq dataset.

Discussion
Recent advances in scRNA-seq methods have led to a growing
need for cell-type annotation tools. As more well-defined cell
atlases are published, auto-annotation tools are becoming
increasingly popular. However, limitations in current software
exist in the areas of rare cell-type labeling, scalability, and com-
patibility. In this article, we present scBalance, an open-source
Python package that integrates adaptive weight sampling and a
sparse neural network for supervised cell-type auto-annotation.
We have demonstrated scBalance’s rare-type annotation ability
and superior overall cell annotation ability through intra- and
inter-dataset comparison experiments on several scRNA-seq
datasets of different scales, generation protocols, and degrees of
imbalance. Notably, Compared to most of the widely used cell-
type annotation tools14,30,31, scBalance has shown excellent rare
cell-type annotation ability, even in large datasets with complex
cell backgrounds, where other methods fail to identify minor
populations. In addition, we have demonstrated the robust run-
ning speed of scBalance on datasets of various scales, giving it a
potential advantage for scalability. By testing our method on two
recently published large cell atlases, we have further demonstrated
scBalance’s scalability and rare population identification capacity
in million-scale datasets. By utilizing this ability, scBalance has
successfully described an immune landscape of BALF cells and
identified more rare types than published research. Moreover,
scBalance is designed to be compatible with Scanpy and Anndata,
providing a user-friendly application.

In addition to introducing our method, we also show how
scBalance can work with other software to offer users a broader
range of applications. As illustrated in Fig. 1 and the GitHub
tutorial, we provide optional parameters for users to use an
external cell-type balancing method such as scSynO34 to better
focus on a specific minor cell type of interest. We believe that
incorporating these complementary tools into our method can
significantly improve the performance of scBalance on various
types of tasks, which could further expand the potential user
population of scBalance.

Finally, we suggest several future efforts to improve scBalance,
for example, including more prior knowledge such as marker
genes to make more accurate annotations for similar cell types,
such as CD4+ /CD45+ naïve T cells and CD4+ /CD45+
memory T cells. In addition, scBalance could be modified to
annotate single-cell chromatin accessibility sequencing (scATAC-
seq) data by adjusting the network to a sparse-robust structure. In
summary, we believe that scBalance is a valuable addition to the
auto-annotation toolbox, especially due to its rare cell-type
annotation ability and scalability.

Methods
Datasets. In this section, we will describe all the datasets we used in the experi-
ments and analysis above. In the baseline annotation experiments (intra- and inter-
dataset), we used 20 datasets from small scale (~200 cells) to large scale (~70k
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Fig. 5 scBalance shows scalability by revealing immune landscape of BALF cells. a annotation performances compared with different methods on Cardiac
Atlas (~50 K cells) and COVID Atlas (~1.5M cells). b Running time comparison between scBalance and traditional machine-learning algorithms. Y axis
shows running time in second. c UMAP shows the annotation result of scBalance. The reference dataset is COVID Atlas17 and the query dataset is BALF
data32. d Dotplot shows the cell subtype distribution in the BALF dataset.
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cells). To further demonstrate the generalization ability of scBalance, all the
selected datasets are generated from different complexities and different sequencing
protocols. In the scalability experiments, two ultra-large datasets are used. All the
datasets and their corresponding cell-type labels are obtained from the original
paper. Corresponding details are shown in Table 1.

scBalance pipeline. We provide scBalance, a compounded neural network
structure, to conduct cell-type annotation tasks. scBalance requires a single-cell
RNA expression matrix M as an input, in which each column represents a gene,
and each row represents a cell. To obtain a more accurate annotation result, we
recommend using a filtered dataset with log transformation and normalization as
the training set. Log transformation and normalization steps can follow the stan-
dard preprocessing pipeline in the Scanpy tutorial. The goal is to prevent the outlier
genes from interfering training process. Preprocessing can be done by following the
tutorial of Scanpy, in which the scale parameter can be manually changed in the
normalization function. The prediction dataset should have the same preprocessing
steps as the training set. Before training, subsets will be extracted from the refer-
ence set and predicting set based on the common genes and be used as the input.
scBalance pipeline consists of three core modules (Fig. 1a), a weighted sampling
function and a neural network classifier.

Weighted sampling function. The first module is a weighted sampling function
that provides a simple but efficient solution for the learning imbalanced scRNA-seq
datasets. Unlike commonly used oversampling and under-sampling methods,
scBalance offers a combination of these two methods, thus significantly improving
running speed without overfitting the minor types. In the training step, because we
have the known labels in the training set, scBalance gives a weight to each cell type
according to the proportion and randomly chooses samples from the dataset based
on the weights to construct the training batch for the neural network. The sampling
process is set with replacement to ensure the classifier can learn as much as possible
minor type information in a reliable way.

Neural network classifier. In the second module, we used a neural network (NN)
structure to conduct the classification task. The NN classifier in scBalance contains
an input layer, three hidden layers, and a softmax layer. The number of neurons in
the input layer equals the number of genes in the scRNA-seq dataset. Following the
three hidden layers have 256, 128, and 64 units, respectively. We also add dropout
and batch normalization techniques at each hidden layer to overcome overfitting
and increase running speed. Only the training stage of scBalance involves forward
propagation with Batch Normalization and Dropout techniques. To avoid the
variance shift46, we put the Dropout layer after the Batch Normalization layer
(Eqs. (1–4)):

xl�1 ¼ BNðxl�1Þ ð1Þ

xlj ¼ σðWl
jx

l�1 þ blÞ ð2Þ

rl � Bernoulli p
� � ð3Þ

exl ¼ rlxl ð4Þ
where l represents the lth layer of the neural network, j represents the jth neuron in
its layer, b represents the random bias added in the layer, and σð�Þ represents
activation function. BNð�Þ is the batch normalization function to normalize the
value of each mini-batch. r is a vector of independent Bernoulli random variable
with the dropout probability p. This vector multiplied element-wise with each
hidden layer to create dropout layer exl . In scBalance, the default dropout prob-
ability is 0.5. The activation function (Eq. (5)) in scBalance is exponential linear
unit (ELU) function,

f xð Þ ¼ x; x ≥ 0

αeðex � 1Þ; x<0

�
ð5Þ

The output layer is based on the softmax function (Eq. (6)):

s zi
� � ¼ ezi

∑K
k¼1e

zi
ð6Þ

where z is the input vector of the softmax layer, K is the number of cell types in the
reference dataset. In the backpropagation, we choose cross-entropy loss as the loss
function of scBalance and the Adam47 optimization method as the optimizer. After
training, the dropout layer will be disabled. scBalance provides a three-layer fully
connected neural network for cell-type prediction.

Hyperparameters. To demonstrate the effectiveness of the hyperparameters in
scBalance, we compared different hyperparameter settings. (1) Activation function.
In scBalance, due to the advantages of ELU in processing sparse datasets, we chose
ELU as the activation. (2) Dropout layer. We then tested the performance of using
the dropout layer. Because the dropout layer is designed mainly for batch effect, we
design experiments following the cross-platform tasks. The result shows that using

dropout layer improves the overall performance. Each value in the table comes
from the average of five repeats.

Software comparison and settings. To testify to the performance of scBalance,
we compared it with several commonly used methods including R-based packages
such as Scmap-cell, Scmap-cluster, SingleCellNet, SingleR, and scPred, and Python-
based package scVI and MARS. All the evaluation codes and input data follow the
instructions and tutorials provided by each package. To ensure our evaluation is
fair to each method, we set all parameters as default for each approach, including
scBalance.

The running environment we used for Python-based software is (1) scVI from
Github (https://github.com/YosefLab/scvi-tools) version is 0.14.5. We ran the GPU
version and set the hyperparameters following their example. We included LTMG
inferring in preprocessing with the corresponding given option of the code. All the
hyperparameters are set following the tutorial. The task is implemented on the
workstation with Intel(R) Xeon(R) CPU E5-2667 v4, CentOS Linux release
7.7.1908 operation system, Nvidia TITAN X GPU, and 503GB physical memory.
(2) MARS from Github (https://github.com/snap-stanford/mars). All the
hyperparameters are set following the tutorial. The task is implemented on the
server Linux Ubuntu 20.04.4 with 2.35 GHz AMD EPYC 7452 32-Core Processor
and 503 G RAM. For the R-based packages, we implemented the tasks with the
computer model Intel(R) Core(TM) i5-5287U CPU @ 2.90 GHz RAM 8GB. The
details of the software are (3) SingleR version 1.6.1 from CRAN (https://github.
com/dviraran/SingleR). The parameters are set as the default value provided by the
tutorial. (5) Scmap-Cell and Scmap-Cluster from BioManager (https://github.com/
hemberg-lab/scmap), with all parameters following the function instruction. For
(5) scPred version 1.9.2 from BiocManager (https://github.com/
powellgenomicslab/scPred), running with the default parameters. And (6)
SingleCellNet version 0.1.1 from BiocManager (https://github.com/pcahan1/
singleCellNet), running with the default parameters. We took the category with the
largest score in the prediction to the final result. The task is implemented on the
server Linux Ubuntu 20.04.4 with 2.35 GHz AMD EPYC 7452 32-Core Processor
and 503 G RAM.

Performance evaluation. We describe below the protocol and quantitative metrics
we used in the experiments. To make the evolution reliable and able to quantify the
variability, we used both fivefold cross-validation and 5-time repeating as the basic
protocol in each of our experiments. For the fivefold cross-validation, the train-test
split in the intra-dataset classification task is based on the StratifiedKFold function
in sklearn v1.2.0 Python package. The split strategy is in a stratified fashion based
on the ground truth label of the dataset. When testing, the true label of the test
dataset will be hidden. The train-test split ratio is set as 0.8 (n_split=5) for all
experiments in order to keep enough data in both the training set and the testing
set. For the 5-time repeating test, the train-test split is based on the Train_test_split
function in sklearn v1.2.0 Python Package. Random seed is applied to keep fairness.
Each method will be tested five times. To evaluate the performance of the scBa-
lance, we used Cohen’s kappa score, Macro F1 score and Accuracy in our paper.
Cohen’s kappa score is for the overall performance metric. Unlike most of the
papers which use Accuracy (Acc) as the metric, our aim is to testify to the iden-
tification ability of the rare cell types as well as the overall classification accuracy.
Therefore, we choose Cohen’s kappa coefficient48 k, which is a minor-class sen-
sitive approach thus can give us a comprehensive evaluation of classification per-
formance, including the major types identification and the minor types
identification (Eq. (7)),

k ¼ p0 � pe
1� pe

ð7Þ

where p0 is the observed proportionate variable and pe is the hypothetical prob-
ability of chance variable. To calculate pe, we use the observed data to calculate the
probabilities of each observer randomly seeing each category. In this formula, the
weight for misclassification of the rare populations will be highlighted.

Macro F1 score, because of its sensitivity to rare population, is used for the
comparison of the sampling method (Eq. (8)).

Macro F1 ¼ sumðF1 scoreÞ
number of classes

ð8Þ

Accuracy is used to evaluate cell-type-specific accuracy in the intra-dataset
annotation task and rare cell-type accuracy in the inter-dataset annotation task.

Precision is used as a true positive detection sensitivity metric (Eq. (9)):

Precision ¼ TP
TP þ FP

ð9Þ

In which TP is true positive and FP is false positive.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04928-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:545 | https://doi.org/10.1038/s42003-023-04928-6 | www.nature.com/commsbio 11

https://github.com/YosefLab/scvi-tools
https://github.com/snap-stanford/mars
https://github.com/dviraran/SingleR
https://github.com/dviraran/SingleR
https://github.com/hemberg-lab/scmap
https://github.com/hemberg-lab/scmap
https://github.com/powellgenomicslab/scPred
https://github.com/powellgenomicslab/scPred
https://github.com/pcahan1/singleCellNet
https://github.com/pcahan1/singleCellNet
www.nature.com/commsbio
www.nature.com/commsbio


Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new data were generated for this study. All data used in this study are publicly
available as previously described (see Table 1).

Code availability
scBalance is available as an independent Python package at https://github.com/
yuqcheng/scBalance.
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