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ImmuneBuilder: Deep-Learning models for
predicting the structures of immune proteins

Brennan Abanades® !, Wing Ki Wong® 2, Fergus Boyles!, Guy Georges?, Alexander Bujotzek® 2 &
Charlotte M. Deane® '™

Immune receptor proteins play a key role in the immune system and have shown great
promise as biotherapeutics. The structure of these proteins is critical for understanding their
antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models
trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies
(NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder
generates structures with state of the art accuracy while being far faster than AlphaFold2. For
example, on a benchmark of 34 recently solved antibodies, ABodyBuilder2 predicts CDR-H3
loops with an RMSD of 2.814, a 0.09A improvement over AlphaFold-Multimer, while being
over a hundred times faster. Similar results are also achieved for nanobodies, (NanoBody-
Builder2 predicts CDR-H3 loops with an average RMSD of 2.894, a 0.55A improvement over
AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder also gives an
error estimate for every residue in its final prediction. ImmuneBuilder is made freely available,
both to download (https://github.com/oxpig/ImmuneBuilder) and to use via our webserver
(http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred). We also make available struc-
tural models for ~150 thousand non-redundant paired antibody sequences (https://doi.org/
10.5281/zenodo.7258553).
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identifying and neutralising a wide range of pathogens. To

achieve this, immune cells have developed antigen-specific
proteins such as T-cell receptors (TCRs) or, in the case of B-cells,
antibodies. While antibodies are capable of binding with great
affinity and specificity to the surface of almost any antigen, TCRs
target digested pieces of intracellular proteins that are presented
on the cell surface by the major histocompatibility complex.
Due to their key role in identifying a wide range of antigens,
antibodies and TCRs have become proteins of particular interest
for therapeutic development, with several TCR drugs in clinical
trials! and over a hundred approved antibody drugs?3. Nano-
bodies, single-domain antibodies naturally found in organisms
such as camelids and sharks, have also received significant
interest as therapeutics, with a recently accepted nanobody drug
and a number undergoing clinical trials*.

All three of these immune proteins are built up from immu-
noglobulin (Ig) domains with the binding site either sitting across
two Ig domains in the case of antibodies (VH and VL) and TCRs
(Va and V), or being found at the tip of one Ig domain, in the
case of nanobodies.

The binding site of antibodies and TCRs is concentrated in six
loops, three on each of the two Ig domains known collectively as
the complementarity-determining regions (CDRs). In nano-
bodies, the binding site is concentrated in only three CDR loops
on its single Ig domain. These CDR loops show variable length,
composition and structure with the most variable being CDR-H3
in the case of antibodies and nanobodies®. This loop also tends to
be the largest contributor to the binding site®. An example of the
structure of an antibody variable domain, a TCR variable domain
and a nanobody are shown in Fig. 1.

Despite the similarities in the global structure of antibodies,
TCRs and nanobodies, their binding sites are known to have dis-
tinct properties and their CDRs have different length distributions
as well as occupying distinct areas of structural space”-S.

As with many proteins, the availability of sequence data far
outstrips structural information®-13, but structural information
allows for a more in-depth understanding than studies focused on
sequence alone!®. For example, knowledge of CDR loop con-
formations has been used to help identify antibodies that bind to
similar targets!®, while accurate knowledge of side chain atom
placement can aid in identifying key interactions in antibody-
antigen binding!®17.

Experimental structure determination is time-consuming and
expensive!8. Computationally predicted structural models can

The adaptive immune system in humans is effective at
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be used to circumvent this problem. This is particularly the case
for immune proteins, as next-generation sequencing of immune
receptor repertories is now routinely used in the study of the
adaptive immune system!?20. These methods enable research-
ers to obtain millions of sequences per study, making structural
analysis of this data a challenge. For example, Observed Anti-
body Space (OAS) contains over two billion antibody heavy
chain sequences and is growing rapidly®10. If this huge amount
of sequence data is to even partially be analysed in terms of
structure, rapid accurate methods for the prediction of antibody
structures are required.

AlphaFold2 is a deep learning method that has revolutionised
the field of computational protein structure prediction, achieving
near experimental accuracy for a large number of single-chain
proteins?!. This was then extended to AlphaFold-Multimer
to accurately predict protein complexes?2. Many methods have
followed from AlphaFold2 and AlphaFold-Multimer but these
remain the de facto gold standard for single domains and
complexes23-23,

The AlphaFold2 model can be divided into two main steps: In
the first step, the Evoformer module is used to extract evolu-
tionary couplings from alignments of many protein sequences
into information-rich embeddings. It then uses these embeddings
in the structure module to predict the 3D structure of a given
protein sequence.

Structure prediction methods specific to a certain class of
protein tend to outperform more general methods?%27. By using
knowledge specific to a type of protein, they can easily predict the
conserved regions in that protein allowing greater focus on
harder details. For example, DeepH3 was shown to outperform
TrRosetta on antibodies?2, while Nanonet obtains results of
similar accuracy to AlphaFold2 on nanobodies with a far simpler
architecture3?. More recent examples of this are IgFold*> and
EquiFold3!, where the authors trained antibody-specific models
that predict structures of comparable accuracy to AlphaFold-
Multimer.

In this paper, we present ImmuneBuilder, a set of deep learning
models developed to predict the structure of proteins of the immune
system. By training on specific protein types, we are able to create
rapid accurate models, enabling ImmuneBuilder to be routinely
used on large sequence data sets. We have built three models,
ABodyBuilder2, an antibody-specific model, NanoBodyBuilder2, a
nanobody-specific model and TCRBuilder2 a TCR-specific model.
We show that these methods perform at least as well as state-of-the-
art methods for their respective protein types while predicting

Nanobody

Variable
I region
Ev)

Fig. 1 Structural representation of an antibody variable domain (PDB code 1GIG), a TCR variable domain (PDB code 7SU9) and a nanobody (PDB code
4LA)) with labelled regions. The heavy and beta chains are shown in green while the light and alpha chains are blue. As these structures show, antibodies
and TCRs are structurally similar and the nanobody is also similar to an individual chain of an antibody or TCR. However, their CDR loops occupy distinct

areas of structural space.
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structures in a fraction of the time. We also demonstrate that these
methods both accurately predict details of the structure and create
physically and biologically sensible structures.

The three ImmuneBuilder models are made freely available for
download and as web servers.

Results

Throughout the results section we will focus on the results for
ABodyBuilder2 (AB2) on antibodies with the results for Nano-
BodyBuilder2 (nanobodies) and TCRBuilder2 (TCRs) discussed in
Supplementary Notes 1 and 2. All three methods show qualitatively
similar results.

We compare ABodyBuilder2 to several other methods. These
methods are a homology modelling method (the original version
of ABodyBuilder®? (ABB)), one general protein structure pre-
diction method (AlphaFold-Multimer??2 (AFM)), and three
antibody-specific methods (ABlooper3? (ABL), IgFold? (IgF) and
EquiFold3! (EqF)). As a benchmark, we selected a non-redundant
set of 34 antibody structures recently added to SAbDAb!1:13 (see
methods). This was done so none of the antibody structures in
the benchmark would have been seen during training for any
of the benchmarked methods. To give a complete picture of how
these methods perform, we carryout a comprehensive benchmark
using five different measures. Figure 2 shows an example of a
prediction by ABodyBuilder2, highlighting important aspects of
structural modelling.

Accuracy of prediction. To measure how accurately the back-
bone atoms are predicted, the RMSD between predicted and true

Fv structure comparison

structures for each antibody region was compared. The RMSD for
each CDR and framework is computed by aligning each protein
chain to the crystal structure and then calculating the RMSD
between the C,, N, C and Cg atoms. Regions are defined using the
IMGT numbering scheme®®. The results of this analysis are
shown in Table 1.

The experimental error in protein structures generated via
X-ray crystallography has been estimated to be around 0.6A for
regions with organised secondary structures (such as the antibody
frameworks) and around 1A for protein loops>>. On average, the
predicted structures for most of the antibody regions using any
method have errors within the range of what would be expected
from experimentally resolved crystal structures. The exception to
this is CDR-H3, where all methods make the worst predictions.

ABodyBuilder2 and AlphaFold-Multimer are the most accurate
methods at predicting the structure of CDR-H3 (RMSD of 2.81 A
and 2.90 A, respectively). EquiFold, IgFold and ABlooper generate
structures with CDR-H3 loops around 10% less accurate than
ABodyBuilder2 and AlphaFold-Multimer. The worst method for
predicting CDR-H3 loops is the original version of ABodyBuilder,
showcasing how deep learning has improved our ability to model.
Supplementary Note 4 explores how the accuracy of ABodyBuilder2
for CDR-H3 prediction correlates to the maximum sequence
identity in the training set. A comparison of the CDR-H3 RMSD for
each individual structure in the test set between each pair of
methods is shown in Supplementary Fig. 4.

Tables 2 and 3 show how accurate TCRBuilder2 and Nano-
BodyBuilder2 are at predicting the position of atoms in the
backbone. We compare them to homology modelling methods

Side chain accuracy

hd
CDR loop accuracy

Fig. 2 Example of an antibody structure predicted with ABodyBuilder2. The heavy chain is shown in green, the light chain in blue and the crystal structure
in white. The figure on the left shows the overall Fv structure, demonstrating how ABodyBuilder2 accurately predicts the relative orientation between the
heavy and light chain. The figures on the right focus on the structure of CDR loops. The top image showcases the accuracy of ABodyBuilder2 at modelling
side chain atoms and the bottom image shows its accuracy at predicting the backbone of CDR loops.

the backbone atoms for each antibody chain.

Table 1 Comparison between ABodyBuilder, ABlooper, IgFold, EquiFold, AlphaFold-Multimer and ABodyBuilder2 at predicting

Method CDR-H1 CDR-H2 CDR-H3 Fw-H CDR-L1 CDR-L2 CDR-L3 Fw-L
ABodyBuilder (ABB) 1.53 1.09 3.46 0.65 0.71 0.55 118 0.59
ABlooper (ABL) 118 0.96 3.34 0.63 0.78 0.63 1.08 0.61
IgFold (lgF) 0.86 0.77 3.28 0.58 0.55 0.43 112 0.60
EquiFold (EqF) 0.86 0.80 3.29 0.56 0.47 0.41 0.93 0.54
AlphaFold-M (AFM) 0.86 0.68 290 0.55 0.47 0.40 0.83 0.54
ABodyBuilder2 (AB2) 0.85 0.78 2.81 0.54 0.46 0.44 0.87 0.57

The mean RMSD to the crystal structure across the test set for each of the six CDRs and framework (Fw) is shown. RMSDs are given in Angstroms (A). The best-performing method for each metric is
highlighted in bold. The individual RMSDs for each method for each CDR are given in Supplementary Data 1.
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the backbone atoms for each TCR chain.

Table 2 Comparison between TCRBuilder, RepertoireBuilder, AlphaFold-Multimer, ABodyBuilder2 and TCRBuilder2 at predicting

Method CDR-ar1 CDR-0:2 CDR-03 Fw-o CDR-f1 CDR-f2 CDR-f3 Fw-p
TCRBuilder 1.60 1.31 2.89 0.87 0.99 0.90 3.12 0.81
RepertoireBuilder 135 1.00 2.64 0.75 0.86 1.59 2.77 1.05
AlphaFold-M 1.25 0.96 184 0.69 0.75 0.65 1.94 0.82
ABodyBuilder2 3.49 6.57 3.14 2.89 3.27 3.77 3.48 3.65
TCRBuilder2 1.34 0.93 1.85 0.90 0.74 0.63 1.93 0.67

The mean RMSD to the crystal structure across the TCR test set for each of the six CDRs and framework (Fw) is shown. RMSDs are given in Angstroms (A). The best-performing method for each metric
is highlighted in bold. The individual RMSDs for each method for each CDR are given in Supplementary Data 2.

Table 3 Comparison between ABodyBuilder, MOE,
AlphaFold2 and NanoBodyBuilder2 at predicting the
backbone atoms of nanobodies.

Table 5 Comparison of surface accuracy for ABodyBuilder
(ABB), ABlooper (ABL), IgFold (IgF), EquiFold (EqF),
AlphaFold-Multimer (AFM) and ABodyBuilder2 (AB2).

CDRs and framework (Fw) is shown. RMSDs are given in Angstroms (A). The best-performing
method for each metric is highlighted in bold. The individual RMSDs for each method for each
CDR are given in Supplementary Data 3.

Method CDR1 CDR2 CDR3 Fw Method A 2 3B 24 E/B
ABodyBuilder 296 2.08 5.08 1.09 ABB 0.81 0.77 0.63 0.56 0.92
MOE 2.67 1.99 4.90 119 ABL 0.75 0.70 0.60 0.53 0.90
AlphaFold2 2.08 1.35 3.44 0.82 IgF 0.77 0.66 0.54 0.52 0.91
NanoBodyBuilder2 1.98 1.37 2.89 0.79 EqF 0.84 0.71 0.61 0.55 0.94
AFM 0.85 0.77 0.59 0.58 0.91
The mean RMSD to the crystal structure across the nanobody test set for each of the three AB2 0.85 0.78 0.63 0.52 0.91

Values shown are percentages representing the accuracy when modelling each of the first four
torsion angles of the side chain (y) if they exist. E/B gives the accuracy at predicting whether a
residue is exposed or buried. The best-performing method for each metric is highlighted in bold.

Table 4 Comparison of VH-VL orientation between
ABodyBuilder (ABB), ABlooper (ABL), IgFold (IgF), EquiFold
(EgF), AlphaFold-Multimer (AFM) and ABodyBuilder2
(AB2).

Method HL HC1 LC1 HC2 LC2 dc

Xtal 118 0.48 0.75 0.62 0.80 omn
ABB 0.83 1.09 0.82 1.81 0.90 0.10
ABL 0.80 0.97 0.83 1.70 0.90 0.2
IgF 0.63 0.91 0.7 1.40 0.74 0.14
EqF 0.64 0.98 0.64 1.68 0.72 omn
AFM 0.67 0.74 0.69 1.45 0.63 omn
AB2 0.64 0.90 0.66 137 0.61 0.2

Values shown were calculated using ABangle38. HL, HC1, LC1, HC2, LC2 and dc are defined in
Supplementary Fig. 2 and ref. 38, The error in the angles HL, HC1, LC1, HC2 and LC2 is shown in
degrees with the error in the distance dc given in Angstroms (A). The average standard
deviation observed in antibodies experimentally resolved over five times is shown for

comparison (Xtal). The best-performing method for each metric is highlighted in bold.

(RepertoireBuilder3® and TCRBuilder® for TCR modelling, and
MOE?” and ABodyBuilder’? for nanobody modelling) and
machine learning methods AlphaFold-Multimer?> for TCRs
and AlphaFold22! for nanobodies. Supplementary Fig. 1 provides
a visual representation of the potential differences in the
predicted conformation of the CDR-H3 region using NanoBody-
Builder2 and ABodyBuilder2, even when they correspond to the
same sequence. Full results for TCRBuilder2 and NanoBody-
Builder2 and details on their respective test sets are given in
Supplementary Notes 1 and 2.

Heavy and light chain packing. As described in the introduction,
in antibodies the binding site sits across the heavy and light chain
variable regions (VH and VL). With half of the CDRs on each
chain, the relative VH-VL orientation can have an impact on the
structure of the binding site.

To quantify how accurate each method is at predicting the
relative orientation between chains, in Table 4 we show the average

absolute error in the five angles (HI, HC1, HC2, LC1, LC2) and
distance (dc) that fully characterise VH-VL orientation38, A brief
description of how these values are defined is given in Supplemen-
tary Note 3, for a more complete description see ref. 3. The results
for TCR domains are given in Supplementary Table 2.

As an upper bound for the accuracy of predicted structures, the
average standard deviation of the VH-VL orientation measure-
ments in 55 antibodies with structures resolved over five times is
shown in Table 4. In the original study38, the vector dc was chosen
as an axis as it was found to be the most conserved amongst
antibody structures. All of the benchmarked methods predict this
distance with very high accuracy. All methods are also accurate at
predicting the angles, with small errors with respect to what is
observed in experiments. However, small deviations in these angles
will still have an impact on the structure of the binding site.
ABodyBuilder2 is on average the most accurate method at heavy
and light chain packing by a small margin.

Side chain and chemical surface accuracy. During binding, an
antigen will mostly form interactions via side chain atoms on the
surface. Therefore to be able to study antigen binding, predicted
antibody structures must accurately model the position of side
chain atoms and whether they are exposed on the surface or buried.
To benchmark the accuracy of side-chain modelling we use a
method similar to ref. 3%, where a side-chain torsion angle is con-
sidered correct if it is within 40 degrees of the true conformation.
The original implementation of ABodyBuilder will occasionally fail
to predict a side chain, this is treated as an incorrect prediction. A
residue is labelled as buried if its relative solvent accessibility
(calculated as described in ref. 40) is below 7.5%. The results of this
analysis are given in Table 5 for ABodyBuilder2 and in Supple-
mentary Tables 1 and 2 for Nanobodies and TCRs respectively.
As ABlooper and IgFold are deep learning methods that only
predict the backbone (leaving side chain prediction to OpenMM?*!
and Rosetta®2, respectively), it is perhaps not surprising that they
are the least accurate at modelling the chemical surface. EquiFold,
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AlphaFold-Multimer and ABodyBuilder2, all of which output all-
atom structures, predict the y1 and x2 side chain atoms with
high accuracy while struggling to model longer side chains. The
original implementation of ABodyBuilder predicts side chains with
comparable accuracy to AlphaFold-Multimer and ABodyBuilder2.
All methods are highly accurate at predicting whether a residue is
exposed or buried, EquiFold is the most accurate.

Physical plausibility and accurate stereochemistry. Although
deep learning models are trained on crystal structures, they will
occasionally predict conformations that are very rare or do not
occur in nature. We next check for the presence of steric clashes,
cis-peptide bonds, D-amino acids, or bonds with nonphysical
lengths in the models generated by each method. For bond lengths,
only the peptide bond is checked as all other bond lengths are fixed
to their literature value in all benchmarked methods but ABlooper
and EquiFold.

ABodyBuilder2 and AlphaFold-Multimer both generate structures
of comparable quality to experimentally resolved ones, whereas IgFold
appears to generate a number of cis-peptide bonds and clashes even
after being refined with Rosetta??. EquiFold does not use an energy-
based method to refine its predicted structures and hence all of the
structures it generates are unphysical. This shows that a refinement
step is still necessary to ensure structures generated by deep learning-
based methods are realistic (Table 6).

The results for TCRs and nanobodies are shown in Supplemen-
tary Tables 1 and 2, respectively.

Computational cost. The original version of AlphaFold-Multimer
is by far the most computationally expensive of the benchmarked
methods. It requires over one terabyte of sequence data and takes
around three hours to generate one structure when run on five
CPUs. Large speed-ups can be obtained by reducing the size of the
sequence database, using faster sequence alignment algorithms, or
using GPUs*3*4, Even with these modifications, it takes around
thirty minutes on a GPU to generate a single structure. All other
methods benchmarked can be run on five CPUs in under a minute,
with the fastest being EquiFold due to its lack of a refinement step.
This makes them all well suited for high throughput structural
modelling of next-generation sequencing data. ABodyBuilder2 can
also be sped up significantly by using a GPU taking around five
seconds to generate an antibody structure on a Tesla P100.

Error estimation. ABodyBuilder2 predicts four structures for
each antibody. We found that the diversity between predictions,

Table 6 Quality check for models generated using
ABodyBuilder (ABB), ABlooper (ABL), IgFold (IgF), EquiFold
(EqF), AlphaFold-Multimer (AFM) and ABodyBuilder2 (AB2).

Method Peptide bond D-amino acid Cis-bond Clash
Xtal 0 0 0 0
ABB 19 0 3 9
ABL* 1 0 1 1

IgF 0 0 51 10
EqF 271 4 2 765
AFM 0 0 0 0
AB2 0 0 0 0

The errors observed in experimentally resolved crystal structures (Xtal) are also shown for
comparison. A peptide bond length is considered to be incorrect if it is more than 0.1A away
from its literature value. Peptide bonds including a proline were not included in the calculation of
cis-isomers. Two non-bonded heavy atoms are considered to be clashing when they are closer
than 0.63 times their Van-der-Waals radius3°. (*) Calculated using the latest version of
ABlooper, updated since publication to reduce the number of D-amino acids and cis-isomers.

as in ABlooper, can be used to estimate the uncertainty in the
final prediction. If the structures predicted by all four models
disagree in a region then the final prediction for this region is
likely to be incorrect. This allows ABodyBuilder2 to give a con-
fidence score for each residue that can be used to filter for
incorrectly modelled structures. In Fig. 3 we show how the root
mean squared predicted error for CDR-H3 residues correlates
with CDR-H3 RMSD.

A low predicted error does not necessarily indicate an accurate
structure. However, a high predicted error works as a good filter
for removing inaccurate models. For example, if a predicted error
cut-off of around 1 A is set for the current benchmark, it would
remove five structures with an average RMSD of 4.46 A. The
average CDR-H3 RMSD for the remaining set would then be
2.53A.

Discussion

We present ImmuneBuilder, a set of three open-source and freely
available tools for modelling immune proteins capable of rapidly
generating accurate antibody, TCR, and nanobody structures.
ImmuneBuilder can produce structures of antibodies and TCRs
with accuracy comparable to AlphaFold-Multimer while being
over a hundred times faster and without the need for large
sequence databases or multiple sequence alignments. ABody-
Builder2 is shown to be the most accurate of the antibody-specific
tools and the only one to consistently predict structures with
correct stereochemistry.

The comparison with homology modelling methods, such as
ABodyBuilder, shows the benefits that deep learning has brought to
the field of antibody structure prediction. However, all methods
still struggle to accurately predict the conformation of CDR-H3,
suggesting that models capable of predicting multiple conforma-
tions may be required to accurately capture this loop. Deep learning
methods also still struggle to consistently predict physically plau-
sible structures. This challenge can be addressed by using physics-
based methods, such as restrained energy minimisation, but for
fast methods like ABodyBuilder2 this greatly increases computa-
tional cost.

By measuring the variability between predictions, Immune-
Builder is able to provide an error estimate for each residue. In
combination with its prediction speed and accuracy, the ability to
filter for incorrect models makes it a useful tool for incorporating

Error estimation for CDR-H3
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Fig. 3 Scatter plot showing the CDR-H3 RMSD against the root mean
squared predicted error for all structures in the benchmark. The line
shown is the best fit with the 95% confidence interval shown as the shaded
area around it. The data used to generate this plot is given in
Supplementary Data 4.
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Antibody sequence

H: [QVHLVQSGAEVKKPGASVKAGVNT (. . .) |

L: [D1oMTQSPSSLSASVGDRVNIACR(. . .) |

[ ABodyBuilder2 model ]

e ™
Ensemble of four structures
N\ J
[ Model selection ]
e . B
Top ranked prediction
. J
Structural refinement
with OpenMM
- N
(Final structure
N J

Fig. 4 Pipeline used to predict structures by ABodyBuilder2. First, the
heavy and light chain sequences are fed into four separate deep-learning
models to predict an ensemble of structures. The closest structure to the
average is then selected and refined using OpenMM#! to remove clashes
and other stereo-chemical errors. The same pipeline is used for
NanoBodyBuilder2 and TCRBuilder2.

structural information into data from next-generation sequencing
experiments.

To further demonstrate the usefulness of ImmuneBuilder, we
predicted the structure of around 148 thousand non-redundant
paired antibody sequences from OAS!? and make these freely
available at (https://doi.org/10.5281/zenodo.7258553).

Methods

In the methods section we describe in detail the data and models for creating
ABodyBuilder2. An overview of the steps used to predict an antibody structure
with ABodyBuilder2 is shown in Fig. 4. Details for NanoBodyBuilder2 and
TCRBuilder2 are given in Supplementary Notes 1 and 2.

Data. The data used to train, test, and validate ABodyBuilder2 was extracted from
SAbDab!l, a database containing all antibody structures in the PDB4°. The training
data was extracted on the 31st of July 2021 resulting in a total of 7084 structures.
Filters were used to ensure structures in the training data had both the VH and VL
chains, were not missing residues other than at the start and end of the chain, and
had a resolution of 3.5 A or better. Structures with the same amino acid sequence
were kept in the training data to expose the model to antibodies with multiple
conformations. As a validation set, we used the set of 49 antibodies in the Rosetta
Antibody Benchmark. Structures with the same sequence as antibodies in the
validation set were removed from the training set.

For the test data, we extracted all PDB files containing antibody Fv structures in
SAbDab added between the 1st of August 2021 and the st of June 2022. Only
crystal structures resolved by X-ray diffraction and with a resolution better than
2.3 A were kept. A set of non-redundant Fvs were then selected from these and
further filtered to remove antibodies with CDR-H3s longer than 22 amino acids
and structures with missing residues. Finally, it was ensured that there were no
structures with the same sequence in the test, training, and validation sets. This
resulted in the set of 34 Fvs that was used to benchmark ABodyBuilder2 against
other methods. A comparison of the maximum sequence identity to the training set
against CDR-H3 RMSD for each Fv in the test set is shown in Supplementary
Fig. 3. A full list of PDB codes for structures used in the training, validation and test
set is given at https://github.com/oxpig/ImmuneBuilder.

Deep learning architecture. The architecture of the deep learning model behind
ABodyBuilder2 is an antibody-specific version of the structure module in
AlphaFold-Multimer with several modifications. Residues are treated as rigid
bodies, each one defined by a 3D point in space and a matrix representing its
orientation. The input node features are a one-hot encoded representation of the
sequence and the input edge features are relative positional encodings. At the start,
all residues are set at the origin with the same orientation.

The model is composed of eight update blocks that run sequentially. At every
iteration, the node features are first updated in a structurally aware way using the
Invariant Point Attention layer, and then residue coordinates and orientations are
updated using the Backbone Update layer. For further details on how these layers
work, see the original AlphaFold2 paper?!. Finally, torsion angles for each residue
are predicted from node features and are then used to reconstruct an all-atom
structure using hard-coded rules. Unlike AlphaFold-Multimer, all blocks have their
own weights.

The main term in the loss function is the Frame Aligned Point Error (FAPE)
loss, which quantifies how structurally similar the true and predicted structures are
in the local reference frame of each residue. For details see ref. 2l. In AlphaFold2,
the FAPE loss is clamped at 10 A focusing on correctly placing residues relative to
those closest to it. Similar to AlphaFold-Multimer, a modified version of FAPE loss
is used for ABodyBuilder2 in which more focus is given to correctly placing CDR
residues relative to the framework. This is achieved by clamping the FAPE loss at
30 A when it is calculated between framework and CDR residues and at 10 A
otherwise. The final loss term is a sum of the average backbone FAPE loss after
every backbone update and the full atom FAPE loss from the final structure.

As is done in AlphaFold2, a structural violation term is added to the loss
function. This penalises nonphysical conformations with a term for bond angles,
bond distances, and clashing heavy atoms. In our models, this term was reduced by
an order of magnitude with respect to AlphaFold2 as this was found to slightly
improve prediction accuracy without significantly harming the physicality of the
final prediction. Finally, the side-chain and backbone torsion angle loss from
AlphaFold2 is also used.

Each model was trained in two stages. In the first stage, the structural violations
term of the loss function was set to zero and a dropout of 10% was used. The
RAdam optimiser“® was used with a cosine annealing scheduler with warm restarts
every 50 epochs, learning rates between le-3 and le-4, and a weight decay of le-3.
For the second stage, the structural violations loss is added and dropout is set to
zero. RAdam is also used for this stage with a fixed learning rate of le-4 and weight
decay of 1le-3. To aid with stability, the norm of gradients is clipped to a value of 0.1
in the second stage of training. For both stages, a batch size of 64 is used and
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training is stopped if there was no improvement in the validation set after 100
epochs. On average, training took around four weeks for each model on a
single GPU.

Model selection. ABodyBuilder2 is composed of four deep-learning models
trained independently to predict antibody structures. To select the best prediction,
we align all predicted structures and choose as the final prediction the closest one
to the average. This reduces the method’s sensitivity to small fluctuations in the
training set. It also results in a small improvement in prediction accuracy.

Structural refinement. Although the models are encouraged to predict physically
plausible structures during training, they will occasionally produce structures with
steric clashes, incorrect peptide bond lengths, or cis-peptide bonds. A restrained
energy minimisation procedure with OpenMM is used to resolve these issues. The
AMBER14 protein force field*” with an added harmonic force term to keep the
heavy atoms of the backbone close to their original positions is used. In the rare
case when two side chain atoms are predicted by the model to be within 0.2 A of
each other, the clashing side chains are deleted and remodelled using pdbfixer?!.
AMBER14 does not explicitly consider chirality, so when the predicted structure
contains peptide bonds in the cis configuration, an additional force is added to flip
their torsion angles into the trans configuration.

By design, the ABodyBuilder2 deep learning model will always generate amino
acids in their L-stereoisomeric form. However, it was found that during energy
minimisation residues are occasionally flipped into their D-stereoisomer. To fix
this, a method similar to that in ref. *8 is used. First, the chirality at the carbon
alpha centre of each D-stereoisomeric residue is fixed by flipping the hydrogen
atom. The structure is then relaxed keeping the flipped hydrogen atoms in place
before a final minimisation.

Benchmarked methods. We compared ABodyBuilder2 to five other methods:
AlphaFold-Multimer, EquiFold, IgFold, the original version of ABodyBuilder and
ABlooper. AlphaFold-Multimer was run using the freely available version of
code??. It was run using the weights from version 2.2 and without the use of
templates. The effect of templates on antibody structure prediction is shown in
Supplementary Table 3. This generated 25 structures per antibody out of which the
top-ranked was selected for the benchmark. The public version of their respective
code bases (as of December 15th) was used to generate EquiFold®! and IgFold?®
models. As in their paper, Rosetta* is used to minimise IgFold models. The
original version of ABodyBuilder3? was run by using the SAbBox Singularity
container (https://process.innovation.ox.ac.uk/software/p/20120-a/sabbox-
singularity-platform—academic-use/1) from July 2022 excluding all templates with
a sequence identity of 99% or higher. ABlooper®? (version 1.1.2) was run to
remodel the CDR loops from the ABodyBuilder predictions. Structures generated
by all methods were numbered using ANARCI#.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used to generate the ImmuneBuilder models was extracted from public
repositories such as SAbDab!! and STCRDab!2. All data generated from this study is
available in the public repository located at https://doi.org/10.5281/zenodo.7258553.

Code availability
Source code for the ImmuneBuilder models, trained weights and inference script are
available under an open-source license at https://github.com/oxpig/ImmuneBuilder.
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