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GABA decrease is associated with degraded neural
specificity in the visual cortex of glaucoma patients
Ji Won Bang 1✉, Carlos Parra1, Kevin Yu1, Gadi Wollstein1,2,3, Joel S. Schuman 1,2,3,4 &

Kevin C. Chan 1,2,3,4,5✉

Glaucoma is an age-related neurodegenerative disease of the visual system, affecting both the

eye and the brain. Yet its underlying metabolic mechanisms and neurobehavioral relevance

remain largely unclear. Here, using proton magnetic resonance spectroscopy and functional

magnetic resonance imaging, we investigated the GABAergic and glutamatergic systems in the

visual cortex of glaucoma patients, as well as neural specificity, which is shaped by GABA and

glutamate signals and underlies efficient sensory and cognitive functions. Our study shows that

among the older adults, both GABA and glutamate levels decrease with increasing glaucoma

severity regardless of age. Further, our study shows that the reduction of GABA but not

glutamate predicts the neural specificity. This association is independent of the impairments on

the retina structure, age, and the gray matter volume of the visual cortex. Our results suggest

that glaucoma-specific decline of GABA undermines neural specificity in the visual cortex and

that targeting GABA could improve the neural specificity in glaucoma.
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G laucoma is an age-related neurodegenerative disease char-
acterized by the gradual loss of retinal ganglion cells. Such
damage disrupts the transmission of the retinal signals to

the brain and eventually leads to irreversible blindness. With the
increasing aging population, it is estimated that 111.8 million
people worldwide will be affected by glaucoma in 2040, suggesting
that glaucoma is a major public health problem1. Nevertheless, the
exact mechanisms underlying glaucoma remain unclear. Current
clinical treatments focus on intraocular pressure (IOP) reduction
with laser, medication, or surgery. However, IOP is a major risk
factor but not the cause of the disease. Glaucoma progression in
certain patients cannot be attenuated even with controlled IOP,
indicating that glaucoma cannot be explained by IOP elevation
alone. To reduce the prevalence of this irreversible but preventable
disease, we need a better understanding of the mechanisms of
glaucoma that will lead to improved treatment strategies beyond
IOP control.

An increasing amount of studies has pointed out that glauco-
matous degeneration occurs along the visual pathway including
the optic nerves2,3, optic chiasm3, lateral geniculate nucleus3–9,
optic radiation2,10, and visual cortex3,6,7,9,11–13. Further, recent
studies have suggested that glaucoma may share some pathogenic
mechanisms with Alzheimer’s disease, which is characterized by
the accumulation of amyloid β and tau14,15. Critically, glaucoma
patients were shown to present abnormal tau proteins in the
retina16 and vitreous fluid17. Likewise, in animal models of
glaucoma, amyloid β and tau were found in the retina18, lateral
geniculate nucleus, and even in the primary visual cortex19,
although the amount of deposits was relatively lower in the visual
cortex than in the anterior visual pathway. It suggests that the
disease may spread trans-synaptically from the anterior to pos-
terior visual pathways19.

Accumulation of amyloid β and tau in Alzheimer’s disease was
found to impair the glutamatergic and GABAergic systems, which
are the main excitatory and inhibitory systems in the brain.
Exposure to amyloid β can increase extracellular glutamate levels
by preventing glutamate uptake20,21 or potentiating glutamate
release22,23. Elevated amyloid β and tau can also impair synaptic
inhibition via downregulation of GABAA receptor24 and induce
substantial loss of GABAergic neurons25–27 and GABA-synthetic
enzyme25. Of note, loss of GABAergic interneurons co-localizes
with tau markers25. If glaucoma patients present amyloid β and
tau accumulation in the visual system of the brain, the gluta-
matergic and/or GABAergic signals are likely to be impaired
similar to individuals with Alzheimer’s disease.

In particular, the GABAergic signals play a critical role in
shaping the response patterns of neuronal populations28. Recent
magnetic resonance spectroscopy (MRS) studies revealed a tight
relationship between GABAergic signals and neural specificity at
the level of neuronal population. As the cortical GABA levels
decrease, neural activity patterns associated with different cate-
gories become similar, thus more confusable29,30. Increased con-
fusability of neural activity patterns then could potentially degrade
behavioral performance31. Indeed, loss of neural specificity was
observed to be associated with declines in memory performance32

and fluid processing abilities such as executive function and
speed of processing33. Relatedly, glaucoma patients were found to
present impairments on some of the perceptual and cognitive
functions where GABAergic signals are thought to be involved.
These include abnormalities in visual crowding effect34, binocular
rivalry35–38, visual categorization39,40, visual attention41, and cog-
nitive capacity42. Further, glaucoma is thought to accelerate the
speed of aging process43, which involves gradual reduction of
cortical GABA levels44–49. It suggests that glaucomatous degen-
eration may involve the reduction of GABA to a greater extent than
healthy aging and that this reduction of GABA may affect the

neural specificity. Recent hypothesis-independent pathway analysis
also implicates GABA and acetyl-CoA metabolism as the novel
pathway that is associated with primary open-angle glaucoma50.
Nevertheless, other than the limited studies on GABAergic invol-
vements in the retina of experimental glaucoma models51,52, no
studies have directly examined glaucoma-specific changes in the
GABAergic signals and their relationship with neural specificity in
the visual cortex of glaucoma patients.

Therefore, in the current study, we investigated whether the
GABA and glutamate levels in the visual cortex are affected by
glaucoma and whether these neurochemical changes are associated
with the neural specificity independent of the impairments of the
retina structure and age. To address these questions, we recruited
glaucoma patients and age-matched healthy subjects and con-
ducted functional magnetic resonance imaging (fMRI), MRS of the
brain, as well as clinical ophthalmic tests including Humphrey
visual field perimetry and optical coherence tomography (OCT) of
the retina and optic nerve. Using principal component analyses
(PCA) and regression modeling, we observed that among our older
adult subjects, GABAergic and glutamatergic signals in the visual
cortex gradually reduced with increasing severity of glaucoma
regardless of age. Further, we observed that the neural specificity in
the visual cortex was tightly related to the glaucoma-specific
reduction of GABAergic signals, but not that of glutamatergic
signals. This association between GABA and neural specificity was
observed independent of age or impairments on the retina. These
findings indicate the importance of the GABAergic action in the
visual cortex and its implications in sensory encoding in glaucoma.

Results
Forty glaucoma patients and twenty-four age-matched healthy
subjects underwent clinical ophthalmic exams and magnetic
resonance imaging. Their demographic and clinical characteristics
can be found in Table 1. Specifically, we obtained each individual’s
structural and functional images of the whole brain, neurochemical
profiles of the visual cortex (Fig. 1) as well as clinical ophthalmic
measures including peripapillary retinal nerve fiber layer (pRNFL)
thickness, macular ganglion cell-inner plexiform layer (mGCIPL)
thickness, optic nerve head cup-to-disc (C/D) ratio, and neuror-
etinal rim (NRR) area from OCT and the visual field mean
deviation (MD) from Humphrey standard automated perimetry.

Glaucoma is accompanied by reduction of GABA in the visual
cortex. To examine whether the GABAergic system in the visual
cortex alters with disease severity, we first compared the GABA
levels across healthy controls, early glaucoma subjects (average
MD between eyes better than −6.0 dB) and advanced glaucoma
subjects (average MD between eyes worse than −6.0 dB). A one-
way ANCOVA while regressing out the effect of age revealed a
significant main effect of group (F(2,54)= 6.666, P= 0.003,
partial η2= 0.198; Fig. 2a). Post-hoc tests showed that the levels
of GABA are significantly reduced in advanced glaucoma patients
compared to healthy controls (early glaucoma vs. healthy con-
trols, Bonferroni-corrected P= 0.330, 95% CI=−0.068 to 0.014,
advanced glaucoma vs. healthy controls, Bonferroni-corrected
P= 0.002, 95% CI=−0.084 to −0.016, early glaucoma vs.
advanced glaucoma, Bonferroni-corrected P= 0.508, 95% CI=
−0.018 to 0.064).
Next, we also tested whether the impairments on the retina

structure, which is a fine-grained, continuous measure of disease
severity in the eye are associated with the reduction of GABA
levels in the visual cortex. For this, we obtained the marker for
retinal structural damage by extracting a common component
from each individual’s pRNFL thickness, mGCIPL thickness, C/D
ratio, and NRR area of left and right eyes using PCA. The PCA
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yielded only one component that had an eigenvalue greater than
one, explaining 73.42% of variances of all clinical OCT measures.
This component, termed as retinal structure index, was signifi-
cantly different between groups, with the smallest value in the
advanced glaucoma subjects and the greatest value in the healthy
controls (main effect of group, F(2,48)= 85.042, P < 0.001, partial
η2= 0.780; early glaucoma vs. healthy controls, Bonferroni-
corrected P < 0.001, 95% CI=−1.753 to −0.849, advanced
glaucoma vs. healthy controls, Bonferroni-corrected P < 0.001,
95% CI=−2.407 to −1.636, early glaucoma vs. advanced
glaucoma, Bonferroni-corrected P < 0.001, 95% CI= 0.293 to
1.149). Using this component, we ran a linear regression analysis
to estimate the GABA levels. The results showed that the retina
structure significantly predicted the GABA levels while controlling
for age (T(45)= 2.414, P= 0.020, β= 0.337, partial correlation =
0.339, R2 change = 0.113; Fig. 2b). It indicates that those who have
greater impairments on the retina structure (i.e., lower value of the
retinal structure index) present lower amounts of GABA in the
visual cortex independent of their ages. The effect of age, however,
failed to predict the amount of GABA after controlling for the
retinal structure index (T(45)= 0.596, P= 0.554, β= 0.083, partial
correlation = 0.088, R2 change = 0.007).

Glaucoma is accompanied by reduction of glutamate in the
visual cortex. Next, we examined whether the glutamate levels
exhibit similar changes as GABA levels in glaucoma. A one-way
ANCOVA with a factor of group controlling for age revealed a
significant main effect of group (F(2,56)= 5.157, P= 0.009, partial
η2= 0.156; Fig. 3a). The levels of glutamate were significantly lower
in advanced glaucoma patients compared to healthy controls and
early glaucoma patients (early glaucoma vs. healthy controls,
Bonferroni-corrected P= 1.000, 95% CI=−0.110 to 0.153,
advanced glaucoma vs. healthy controls, Bonferroni-corrected
P= 0.031, 95% CI=−0.236 to −0.009, early glaucoma vs.
advanced glaucoma, Bonferroni-corrected P= 0.024, 95% CI=
0.015 to 0.273). Further, the linear regression analysis demonstrated
that the retinal structure index significantly predicted the levels of
glutamate while the effect of age was controlled (T(46)= 2.654,
P= 0.011, β= 0.358, partial correlation=0.364, R2 change = 0.128;
Fig. 3b). It suggests that older adults with greater impairments on
the retina structure present lower amounts of glutamate in the visual
cortex independent of their ages. Nevertheless, age failed to account
for the levels of glutamate when the effect of the retina structure was
controlled (T(46)=−1.525, P= 0.134, β = −0.206, partial corre-
lation=−0.219, R2 change = 0.042).

Reduction of GABA, but not glutamate predicts deteriorated
neural specificity in the visual cortex. Given the significant
reduction of GABA and glutamate in the visual cortex of glau-
coma patients, we further tested whether the neural specificity is
associated with the levels of GABA and glutamate (see Supple-
mentary Fig. 1 for box plots of the neural specificity). For this, we
obtained each individual’s brain activity patterns across V1, V2,
ventral V3, and ventral V4, which overlapped with the MRS
voxel. During image acquisition, subjects viewed the horizontal
and vertical flickering checkerboards in an alternating order. We
measured the marker for neural specificity by calculating the
fisher z-transformed correlation coefficient between the brain
activation patterns representing horizontal and vertical flickering
checkerboards. Here, more negative correlation coefficient value
indicated a stronger neural specificity.

To investigate the relationship between neural specificity and the
reduced levels of GABA and glutamate, we conducted a series of
multiple linear regression analyses while controlling for the effect of
age and retinal structure index. Here, we adjusted the effect of theT
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retinal structure index in addition to age because the impairments
in the retina may block some of the incoming visual signals,
resulting in degraded neural specificity. Our regression analyses
showed that those with lower GABA levels present weaker neural
specificity in the visual cortex when the retinal structure index and
age were adjusted (T(42)=−2.165, P= 0.036, β = −0.317, partial
correlation=−0.317, R2 change = 0.088). This association
between GABA and neural specificity survived even after we
additionally controlled for the levels of glutamate (T(39)=−2.143,
P= 0.038, β = −0.328, partial correlation=−0.325, R2 change =
0.091) and the gray matter volume of the corresponding visual
areas (T(38)=−2.159, P= 0.037, β = −0.334, partial correla-
tion=−0.331, R2 change = 0.094; Fig. 4a). In contrast, other
factors such as the glutamate levels (T(38)= 0.439, P= 0.663,
β= 0.070, partial correlation=0.071, R2 change = 0.004; Fig. 4b),
age (T(38)= 1.508, P= 0.140, β= 0.223, partial correlation =
0.238, R2 change = 0.046; Supplementary Fig. 2a), retinal
structure index (T(38)=−1.690, P= 0.099, β = −0.267, partial

correlation=−0.264, R2 change = 0.057; Supplementary Fig. 2b),
and the gray matter volume of visual areas (T(38)= 0.684, P=
0.498, β= 0.100, partial correlation = 0.110, R2 change = 0.009;
Supplementary Fig. 2c) failed to account for the neural specificity.
These results suggest that the most important predictor of neural
specificity was the GABA levels in the visual cortex.

In a separate analysis, we conducted a hierarchical regression
analysis to test whether the GABA levels explained the significant
variance beyond that explained by the retinal structure index, age,
glutamate levels, and the gray matter volume of visual areas. The
results showed that adding GABA levels to the regression model
explained an additional 9.4% of the variations in neural specificity
and that this change was significant (F(1,38)= 4.663, P= 0.037).

After confirming that GABA levels significantly accounted for the
neural specificity in the entire sample, we further tested whether the
same association could be found within the samples of glaucoma
patients and healthy controls separately. In the sample of glaucoma
patients, we replicated the results of an association between GABA

Fig. 1 Sample voxel location for proton MRS and representative spectra for GABA and glutamate. a A 2.2 × 2.2 × 2.2 cm3 voxel (white box) was
manually positioned along the calcarine sulci on the occipital lobe. b A sample spectrum from the MEGA-PRESS sequence for GABA. The GABA peak is at
2.8–3.2 ppm. c A sample spectrum from the PRESS sequence for glutamate. The glutamate peak is at 2.2–2.4 ppm.
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levels and neural specificity when the retinal structure index and age
were controlled (T(26)=−2.507, P= 0.019, β = −0.410, partial
correlation=−0.416, R2 change = 0.166). This association even
became stronger when we additionally adjusted the effects of the
levels of glutamate (T(24)=−2.886, P= 0.008, β = −0.517, partial
correlation=−0.508, R2 change = 0.219) and the gray matter
volume (T(23)=−2.870, P= 0.009, β = −0.524, partial correla-
tion=−0.513, R2 change = 0.223; Fig. 5a). A hierarchical
regression analysis also showed that an additional 22.3% of the
variations in neural specificity can be explained by adding GABA
levels to the regression model (F(1,23)= 8.235, P= 0.009).

Nevertheless, other factors such as the glutamate levels
(T(23)= 1.635, P= 0.116, β= 0.324, partial correlation = 0.323,
R2 change= 0.072; Fig. 5b), retina structure index (T(23)=−1.883,

P= 0.072, β = −0.341, partial correlation=−0.365, R2 change =
0.096; Fig. 5c), and the gray matter volume of visual areas
(T(23)= 0.489, P= 0.630, β= 0.085, partial correlation= 0.101, R2

change = 0.006; Supplementary Fig. 3) failed to predict the neural
specificity. This non-significant effect of the glutamate levels, retina
structure index, and the gray matter volume of visual areas in the
glaucoma group is consistent with the findings from the entire
sample including both glaucoma and healthy subjects.

A discrepancy between the sample of glaucoma patients and
the entire sample was seen in the effects of age on neural
specificity. Glaucoma patients with older ages presented weaker
neural specificity while controlling for other confounding effects
including retinal structure index, GABA levels, glutamate levels,
and the gray matter volume of the visual areas (T(23)= 2.610,
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Fig. 3 Glutamate levels in the visual cortex. a The glutamate levels (normalized to total creatine levels) were significantly lower in advanced glaucoma
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Fig. 4 The relationship between neural specificity, GABA, and glutamate in the visual cortex for the entire sample. a The GABA levels were significantly
correlated with neural specificity after controlling for the glutamate levels, retinal structure index, age, and the gray matter volume of the visual areas
(r=−0.331, P= 0.037; n= 44). b The glutamate levels were not associated with neural specificity after adjusting the effects of the GABA levels, retinal
structure index, age, and the gray matter volume of the visual areas (r= 0.110, P= 0.498; n= 44).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04918-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:679 | https://doi.org/10.1038/s42003-023-04918-8 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


P= 0.016, β= 0.496, partial correlation = 0.478, R2 change =
0.185; Fig. 5d). This result indicates that age was a meaningful
predictor for neural specificity within the sample of glaucoma
patients, but not in the entire sample including both glaucoma
and healthy subjects.

Finally, we examined whether the same patterns of relationship
could be seen within the healthy control group. The results showed
that none of GABA, glutamate, age, or retinal structure index was a
significant predictor for the neural specificity in healthy controls
after adjusting the remaining factors (GABA: T(9)=−0.594,
P= 0.567, β = −0.155, partial correlation=−0.194, R2 change =
0.022; Glutamate: T(9)= 0.310, P= 0.763, β= 0.087, partial
correlation = 0.103, R2 change = 0.006; Age: T(9)=−0.455,
P= 0.660, β = −0.119, partial correlation=−0.150, R2 change =
0.013; Retinal structure index: T(9)=−0.231, P= 0.823, β =
−0.060, partial correlation=−0.077, R2 change = 0.003; Supple-
mentary Fig. 4a–d). However, the gray matter volume of visual
areas was a significant predictor for the neural specificity in healthy
controls (T(9)= 2.444, P= 0.037, β= 0.659, partial correlation =
0.632, R2 change = 0.375; Supplementary Fig. 4e).

Critically, the overall MRS results yielded by using total creatine
for normalization were maintained even when we used N-acetyl-
aspartate (NAA), another standard reference resonance for
normalization. Using NAA for normalization, we still observed a
marginal association between the GABA levels and the neural
specificity after adjusting the effects of the retinal structure index,
age, the levels of glutamate normalized by NAA, and the gray
matter volume in the entire sample (T(38)=−1.890, P= 0.066,
β = −0.286, partial correlation=−0.293, R2 change = 0.073). In
the sample of glaucoma patients, this association between the
GABA level normalized by NAA and the neural specificity became
even stronger (T(23)=−2.659, P= 0.014, β = −0.497, partial
correlation=−0.485, R2 change=0.192).

Discussion
In the current study, we demonstrated that both GABA and
glutamate levels in the visual cortex decline with increasing

glaucoma severity. This association between impairments of the
retina structure, GABA, and glutamate was independent of age
among our older adults. Further, we showed that the reduction of
GABA, but not that of glutamate, was associated with the neural
specificity in the visual cortex after controlling for confounding
effects including age and retinal structural damage. These results
provide clear evidence that glaucomatous neurodegeneration
involves the reduction of GABA and glutamate levels in the visual
cortex and that the reduction of GABA, but not that of glutamate,
plays a critical role in degrading neural specificity.

The reduction of GABA levels in the visual cortex of glaucoma
patients is consistent with the literature showing that GABA
metabolism is a unique pathway associated with glaucoma50.
Furthermore, GABA is susceptible to the accumulation of amyloid
β and tau24–27,53. Prior studies demonstrated that glaucoma
involves accumulation of tau in the vitreous fluid17, retina16,18,
lateral geniculate nucleus19 as well as deposits of amyloid β in the
lateral geniculate nucleus and the primary visual cortex19. Notably,
exposure to amyloid β and tau is known to impair the GABAergic
systems24–27,53. In animal models of Alzheimer’s disease, accu-
mulation of amyloid β led to decreases in the number26 and density
of GABAergic neurons before loss of pyramidal cells27. Further,
amyloid β was shown to weaken synaptic inhibition via down-
regulating GABAA receptors24. In another animal model expres-
sing high deposits of tau, a substantial decline was observed in the
GABA-synthetic enzyme and GABAergic interneurons, which co-
localized with tau markers25. This line of studies raises a possibility
that glaucoma may share common pathogenic mechanisms with
Alzheimer’s disease and that accumulation of amyloid β and tau in
the visual pathway may promote loss of GABA neurotransmission
in glaucoma patients.

In addition to the possible impact of amyloid β and tau on
GABA, several other factors may contribute to GABA reduction.
First, impaired visual input may facilitate GABA reduction.
Visual deprivation was shown to trigger GABA reduction in the
primary visual cortex54. Given that the visual signals are gradually
blocked as glaucoma progresses, it is speculated that its impact on
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Fig. 5 The relationship between neural specificity, GABA, glutamate, retinal structure index, and age within the glaucoma group. a The GABA levels
significantly predicted neural specificity after controlling for the glutamate levels, retinal structure index, age, and the gray matter volume (r=−0.513,
P= 0.009; n= 29). b The glutamate levels were not associated with neural specificity after controlling for the GABA levels, retinal structure index, age, and
the gray matter volume (r= 0.323, P= 0.116; n= 29). c The retinal structure index was not associated with neural specificity after controlling for the GABA
levels, glutamate levels, age, and the gray matter volume (r=−0.365, P= 0.072; n= 29). d Age was significantly correlated with neural specificity after
adjusting the effects of the GABA levels, glutamate levels, retinal structure index, and the gray matter volume (r= 0.478, P= 0.016; n= 29).
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GABA would increase as well. Consistent with this, our study
observed that the GABA levels in the visual cortex measured by
MRS decrease with increasing impairments of the retina struc-
ture. Second, accelerated aging process in glaucoma may affect
GABA levels. Facilitated aging in glaucoma is supported by the
finding that glaucoma patients present elevated amount of
advanced glycation end products, which are inevitable com-
pounds of the aging process, as well as upregulation of their
receptors in the retina and optic nerve head43. Relatedly, the
aging process involves impairments of GABAergic systems55. In
healthy animal models and humans, age-related declines were
observed in terms of the number of GABAergic neurons56–58,
baseline GABA levels, GABA release, GABA receptor binding57,
and MRS GABA measures throughout the brain44–49. Therefore,
it is possible that the age-related declines of GABA may be
accelerated in glaucoma patients. Future studies could address
this possibility by obtaining the measures of biological speed of
aging from biological assays along with MRS and functional MRI.

In this study, MRS measures of GABA cannot distinguish
whether the decreased GABA levels in the visual cortex of glau-
coma patients reflect reduction of GABAergic neurons, GABA
neurotransmitters, or GABA synthesis59. Any combination of
these changes could lead to reduced MRS GABA levels. While it is
yet unknown which factor contributed the most to our MRS
observations, one study using an experimental monkey model
observed that after unilateral IOP elevation, the GABAA receptor
protein in the primary visual cortex was reduced11, possibly
driven by suppression of visually driven activity60. This finding
suggests that the declined MRS GABA levels that we observed in
the current study are in part reflective of reduced GABA receptor
binding. Other possibilities such as reduction of the GABAergic
neurons or GABA neurotransmitters need to be further identified
in future in vivo, in situ, and ex vivo studies using a finer
spatial resolution. Further, it should be noted that in the current
study, the GABA-editing technique did not specifically suppress
the macromolecules, although macromolecule signals were taken
into account in the analysis. Future studies can consider
macromolecule-suppressed GABA-edited techniques in order to
further reduce the potential contaminations of GABA signals with
the macromolecules61.

The decreased GABA signals in the visual cortex of glaucoma
patients suggest that the cortical GABAergic function is likely
impaired in glaucoma. GABAergic signals are critical for shaping
the response of a single neuron as well as the response patterns of
a population of neurons28. At the level of a single neuron, GABA-
mediated inhibition can sharpen the neuronal response around
the preferred stimulus feature62. In line with this, application of
GABA agonist increases the neuron’s selectivity to preferred sti-
mulus feature, while application of GABA antagonist decreases
the neuron’s selectivity63. Therefore, it is speculated that the
selectivity of neurons in the visual cortex may be undermined in
glaucoma patients. At the population level, GABAergic signals are
related to the specificity of neuronal activity patterns in response
to different stimuli. With lower amount of GABA, neuronal
activity patterns become less distinct or more confusable29,30.
Consistent with these prior findings, we observed that those who
had lower GABA levels displayed less specific neural activity
patterns in the visual cortex independent of the age and
impairments of the retina structure. It suggests that the declines
of GABA and neural specificity in the visual cortex may nega-
tively affect the downstream processes along the lower- to higher-
order brain regions32,33 in glaucoma.

Alterations of GABA levels and neural specificity in glaucoma
patients are likely to have functional influences to various
aspects of brain functions. Prior studies showed that GABA levels in
healthy subjects are associated with visual-spatial intelligence, visual

surround suppression64, motor inhibition45, motor learning65,
general sensorimotor functioning49, cognitive performance46,48,
experience-dependent plasticity66, and sleep67. Further, neural
specificity was found to be related to memory performance32 and
fluid processing ability33. Therefore, it is reasonable to suspect that
these aspects of brain functions may be undermined if the GABA
level and the neural specificity are impaired. In line with this
speculation, glaucoma patients were found to present abnormalities
in perceptual, cognitive functions and sleep quality. Specifically,
these abnormalities include elevated visual crowding effect34,
impairments on perceptual switch during binocular rivalry35–37,
declines in visual categorization39,40, visual attention41 and cognitive
capacity39,40,42 as well as sleep disturbance68,69. Thus, we propose
that there could be a functional link between GABA reduction and
the reported abnormalities in glaucoma patients. Future studies
could address this question by employing both MRS and behavioral
measures.

In addition to the GABA levels, we observed that the years of
age could predict the neural specificity within the sample of
glaucoma patients. Specifically, lower neural specificity was
associated with older ages. This association is reasonable given
that aging is accompanied by degraded neural distinctiveness/
discriminability29–31,70,71. However, in the sample of healthy
subjects alone, the relationships between GABA, years of age and
neural specificity were not observed. This discrepancy could be
partly due to the smaller sample size of the healthy controls or
could be related to accelerated biological aging process in glau-
coma patients. In order to fully understand this discrepancy, we
need future studies with a greater sample size.

Another important finding in this study is that the glutamate
levels in the visual cortex decline with the impairments on the
retinal structure. This observation may appear inconsistent with
the literature showing that accumulation of amyloid β leads to
increased glutamate levels in the extracellular space20,21. Never-
theless, it should be noted that glutamate and GABA are closely
linked to each other in terms of production, function, and reuptake.
At the level of production, GABA is synthesized by decarboxylation
of glutamate via glutamate acid decarboxylase. At the functional
level, the balance between excitation and inhibition is critical for a
neuron to function properly. The neurons become dysfunctional
when cortical excitation or inhibition is acutely manipulated72.
Further, increases or decreases in the strength of cortical excitation
are naturally accompanied by the corresponding proportional
changes in the strength of inhibition73,74. At the level of reuptake,
glutamate uptake strengthens inhibitory synapses75. Thus, it is
possible that reduced glutamate levels in the visual cortex may be at
least partially related to the reduced GABA levels. Further, recent
studies have demonstrated that amyloid β and glutamatergic sig-
nals have multifaceted mechanisms76. In the early stage of Alz-
heimer’s disease, glutamatergic activity is elevated leading to
hyperexcitability of neurons77,78. However, as Alzheimer’s disease
progresses, glutamate release and vesicular glutamate transporters
become markedly decreased79. Prior MRS studies also observed a
decreasing pattern of glutamate levels with severity of Alzheimer’s
disease80,81. Thus, our results of decreased glutamate levels in
glaucoma may resemble these progressive glutamate changes in the
late phases of Alzheimer’s disease.

In the current study, the glutamate levels were not associated
with the neural specificity. While it is not clear why the glutamate
levels are not linked to the local brain activity, prior studies have
consistently shown that the glutamate levels measured during rest
are not correlated with the intra-regional brain activity during
tasks82–87. Meta-analyses also found evidence in favor of no asso-
ciation between glutamate levels and local brain activity88. This is
in sharp contrast with the GABA levels which showed largely
negative associations with the local brain activity82,83,85,89,90. Up to
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date, two explanations have been proposed to interpret the absence
of association between glutamate levels and local brain activity.
First, the glutamate levels measured during rest may be related to
the resting-state brain activity, rather than task-related brain
activity91. Second, glutamatergic neurons detected by MRS may
influence the brain activity in distal regions more than the local
region through their long-range projections88. This interpretation
is based on prior studies showing that the glutamate levels are
positively correlated with the brain activity outside of the MRS
sampling region92–94, but not within the sampling region82–87.
However, these explanations remain speculative and thus, need to
be further examined in future studies.

While the current study focused on the visual cortex only, it is
worth knowing whether the same neurochemical changes occur in
the retina of glaucoma patients. A number of patient and experi-
mental animal studies have examined the glutamate-mediated
excitotoxicity in the vitreous body and retina in glaucoma95–98.
Nevertheless, these studies provided disparate results, making it
unclear whether the glutamate in the retina is elevated under
glaucoma. Other studies investigating GABA, however, point to a
dysfunction of the GABAergic signals in glaucoma. For example, in
animal models of glaucoma, the retina showed decreases in the
GABA turnover rate, activity of GABA-synthetic enzyme, GABA
release and the expression of retinal genes associated with
GABAergic systems51,99. Further, studies reported that modulating
GABAergic activity in the rat’s retina under chronic glaucomatous
conditions may improve retinal ganglion cell viability and
function100,101. Future studies are warranted to examine whether
GABA plays a role in glaucomatous neuroprotection and func-
tional recovery throughout the visual system of the brain.

To conclude, our findings demonstrate a tight link between
declines of GABA and neural specificity in the visual cortex of
glaucoma patients. Our results suggest that glaucoma-specific
declines of GABA undermine neural specificity in the visual
cortex and that targeting GABA could improve the neural spe-
cificity in glaucoma patients.

Methods
Subjects. The Institutional Review Board of New York University Grossman
School of Medicine approved this study. This study adhered to the tenets of the
Declaration of Helsinki. Informed consent was obtained from all subjects prior to
participation. Forty glaucoma subjects [age = 65.98 ± 1.26 (mean ± S.E.M.); 42.5%
male] and twenty-four healthy controls [age = 64.67 ± 1.56 (mean ± S.E.M.); 45.8%
male] were included in the study between August 2018 and May 2022 at New York
University Langone Health’s Department of Ophthalmology. All subjects had a
best corrected visual acuity (BCVA) of 20/60 or better and showed no past medical
history (PMH) or current evidence of retinal or neurological disorders. The
demographic and clinical information of those who were included in this study is
depicted in Table 1. Subjects in the disease group were clinically diagnosed with
primary glaucoma, whereas healthy controls exhibited no clinical evidence of
glaucomatous conditions. Subjects were not allowed to participate in the MRI study
if they were pregnant or breastfeeding at the time of the study, had any metal parts
or fragments in the body with the exception of dental fillings, had conditions such
as anxiety or claustrophobia, or had obesity that would hinder placement into the
MRI scanner.

Clinical ophthalmic exams. The clinical ophthalmic data for both glaucoma
patients and healthy subjects were collected, which included pRNFL thickness,
mGCIPL thickness, optic nerve head C/D ratio, and NRR area through an auto-
matic analytic software on board of the Cirrus spectral-domain OCT device (Zeiss,
Dublin, CA, USA). Visual field MD was also obtained from the Humphrey Swedish
Interactive Thresholding Algorithm (SITA) 24-2 standard (Zeiss, Dublin, CA,
USA). The average MD of the left and right eyes combined (OU) were obtained to
assign the patients into early or advanced glaucoma group. Early glaucoma was
categorized as glaucoma patients with average OU MD better than −6.0 dB and
advanced glaucoma was determined as average OU MD worse than −6.0 dB fol-
lowing the previous literature102–105.

MRI data acquisition. Age-matched healthy subjects and glaucoma patients were
scanned inside a 3-Tesla MR Prisma scanner (Siemens, Germany) with a 20-
channel head coil at the Center for Biomedical Imaging, NYU Langone health, New

York University. For anatomical reconstruction, high-resolution T1-weighted MR
images were acquired using a multi-echo magnetization-prepared rapid gradient
echo sequence, with 256 slices, voxel size = 0.8 × 0.8 × 0.8 mm, 0-mm slice gap,
repetition time (TR)= 2400 ms, echo time (TE)= 2.24 ms, flip angle = 8°, field of
view = 256 mm, and bandwidth = 210 Hz per pixel.

For MRS acquisition (see Supplementary Table. 1 for details), we manually
positioned a 2.2 × 2.2 × 2.2 cm3 voxel along the calcarine sulci in the occipital
cortex. The voxel covered parts of the visual cortex including V1, V2, ventral V3,
and ventral V4. Shimming was performed by a vendor-provided automated shim
tool followed by manual fine adjustment. The shim value defined by the full width
at half maximum of the water peak was 13.02 ± 0.13 (mean ± S.E.M.) for gamma-
aminobutyric acid (GABA) and 12.93 ± 0.14 (mean ± S.E.M.) for glutamate. The
concentration of GABA was measured from a voxel using a MEshcher-GArwood-
Point RESolved Spectroscopy (MEGA-PRESS) sequence with double-banded
pulses, at TR= 1500 ms, TE= 68 ms, number of averages = 172, and scanning
duration = 522 s. The final spectrum was obtained by subtracting the ‘edit-off’
spectrum from ‘edit-on’ spectrum. The concentration of glutamate was measured
from the same voxel using a Point RESolved Spectroscopy (PRESS) sequence, with
TR= 3000 ms, TE= 30 ms, number of averages = 99, and scanning duration =
300 s. During both MEGA-PRESS and PRESS scans, subjects performed a fixation
task. For two subjects, MRS acquisition could not be completed due to technical
issues. Additionally, 30 out of the 64 subjects (15 healthy controls and 15 glaucoma
patients) underwent water-unsuppressed PRESS scan with number of averages =
16, and scanning duration = 48 s immediately before the PRESS scan in order to
perform water scaling.

AfterMRS acquisition, functional MR images were acquired using a gradient-echo
echo-planar imaging (EPI) sequence, with voxel size = 2.3 × 2.3 × 2.3mm,
TR= 1000ms, TE= 32.60ms, and scanning duration = 300 s. During fMRI scan,
subjects performed a fixation task while a flickering checkerboard pattern was
presented at the horizontal vs. vertical meridians. For four subjects (3 healthy controls
and 1 glaucoma patient), fMRI images could not be obtained due to technical issues.

Fixation task. To maintain subjects’ attention and vigilance levels across the scans,
we provided subjects with the fixation task during MEGA-PRESS and PRESS scans.
The fixation point was presented at the center of the gray background and subjects
were asked to fixate their eyes at the point. The fixation point changed its color
unpredictably from white ([R, G, B]= [255, 255, 255] to red ([R, G, B]= [255, 127,
127]) and returned to white 1.5 s later. When the button was pressed within a 1.5-s
time window, this response was recorded as a hit. If not, the response was recorded
as a miss. The mean accuracy (±S.E.M.) was 98.87 ± 0.58%. The accuracy did not
differ across healthy controls, and early and advanced glaucoma patients
(F(2,32)= 0.263, P= 0.770, partial η2= 0.016).

Neural specificity task. During fMRI scans (1 run=300 s), subjects performed the
same fixation task, while the background was filled with flickering checkerboard
patterns. The checkerboard patterns were presented at either horizontal or vertical
meridians in a gray background. The purpose of adding the flickering checkerboard
patterns in the background was to obtain the neural specificity for horizontal and
vertical meridians. Each of the horizontal and vertical meridians was presented for 8 s
in alternation, with 18 trials for horizontal meridians and 18 trials for vertical mer-
idians in total. At the first and the last 6-s periods, the fixation point was presented
only without any checkerboard patterns. The mean accuracy of the fixation task
(±S.E.M.) was 94.10 ± 1.11% and was comparable across healthy controls, and early
and advanced glaucoma patients (F(2,42)= 1.468, P= 0.242, partial η2= 0.065).

MRS data analysis. MRS data was fitted in the frequency domain using the
LCModel software106. We used basis functions that include models of macro-
molecular spectra to adjust the baseline generated by macromolecular and lipid
components. We assessed the quality of fitting by visually inspecting LCmodel
fitted spectra and examining their Cramer-Rao lower bounds (CRLB) and spectral
signal-to-noise (S/N) ratio. Four spectra from the MEGA-PRESS and two spectra
from the PRESS scans were excluded from further analyses because of poor fitting
(CRLB > 20%, S/N < 8). The CRLB was 8.76 ± 0.15% (mean ± S.E.M.) for GABA
and 8.65 ± 0.40% (mean ± S.E.M.) for glutamate. The S/N ratio was 23.84 ± 0.38
(mean ± S.E.M.) for GABA and 26.6 ± 1.36 (mean ± S.E.M.) for glutamate. We
normalized the concentrations of GABA and glutamate using the amount of total
creatine, which is commonly used as a standard reference resonance106,107. For
complementary support, we also normalized the GABA and glutamate con-
centrations by the amount of N-acetyl-aspartate (NAA). In order to examine
whether the concentrations of total creatine and NAA were stable regardless of
glaucoma, we also normalized the total creatine and NAA to the water signal using
the water-unsuppressed PRESS scans collected from 30 out of the 64 subjects. The
absolute values of total creatine and NAA did not differ between groups (total
creatine, F(2,27)= 0.465, P= 0.633, partial η2= 0.033; NAA, (F(2,27)= 1.431,
P= 0.257, partial η2= 0.096, one-way ANOVA) and did not have any association
with the retina structure index (total creatine, T(23)=−1.152, P= 0.261, β=
−0.234, R2= 0.055; NAA, T(23)= 1.174, P= 0.253, β= 0.238, R2= 0.056, linear
regression). These findings indicate that the total creatine and NAA were not
substantially affected by glaucoma, and can be used as reliable references.
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fMRI data analysis. We analyzed fMRI data using Freesurfer software version 7.2
(http://surfer.nmr.mgh.harvard.edu/) and MATLAB. The fMRI data was pre-
processed with motion correction but not with spatial or temporal smoothing.
Then the functional data was registered to the individual’s structural template. We
extracted the blood-oxygenation-level-dependent (BOLD) signals from the indi-
vidual’s region-of-interest (ROI) masks generated from Freesurfer’s cortical
reconstruction process. The ROI masks that we used were four cytoarchitectonic
areas in the occipital lobe (hOc1-hOc4v) which spatially overlapped with the
location of the MRS voxel. The extracted BOLD signals were then shifted by 6 s to
account for the hemodynamic delay. We excluded voxels with spikes greater than
10 standard deviations from the mean and removed the linear trend in the BOLD
time course. Then we normalized the BOLD signals using z-score for each voxel.
All volumes were included in the analysis.

Calculation of neural specificity. We defined the neural specificity as the dis-
similarity in brain responses between different visual conditions. For this, we
averaged the z-normalized BOLD signals of each voxel across 8 volumes (8 s)
which corresponded to the duration of horizontal/vertical meridian presentation.
These BOLD signals of each voxel were then averaged across 18 trials of horizontal
meridians or 18 trials of vertical meridians separately. Given that these two patterns
of BOLD signals represented the horizontal or vertical meridians, we computed the
Fisher z-transformed correlation coefficient between these two representations to
obtain multi-voxel pattern similarity. Finally, we averaged the correlation coeffi-
cients across V1, V2, ventral V3, and ventral V4.

Statistics and reproducibility. The sample size was not predetermined but
similar or even greater to those reported in prior studies2,3,10,12,13,108. The
investigators were not blinded to disease diagnosis during data collection.
For all statistical comparisons, we conducted two-tailed parametric tests with
P < 0.05 as the criterion for statistical significance. For ANOVAs, we assessed the
assumption of homogeneity of variances using Levene’s test. The following post-
hoc tests were conducted with Bonferroni corrections. For multiple regression
analyses, we confirmed that the assumptions of independence of observations
and non-multicollinearity were not violated using the Durbin-Watson statistic
and tolerance/VIF values. Further, we extracted a common component from
clinical ophthalmic measures including pRNFL thickness, mGCIPL thickness,
optic nerve head C/D ratio, and NRR area for each individual using PCA. Then
we entered this component, a measure of retina structure in the regression
model rather than entering all clinical ophthalmic measures because the clinical
measures were highly correlated to each other, violating the non-
multicollinearity. We set the criteria of selecting the component in the PCA as
the eigenvalue higher than one. To verify that the overall MRS results hold
regardless of the method of normalization, we used NAA in addition to total
creatine for normalization.

Apparatus. We created all visual stimuli in MATLAB using Psychophysics
Toolbox 3109. The stimuli were presented via an MRI-compatible projector
(1024 × 768 resolution, 60 Hz refresh rate).

Inclusion and ethics statement. The authors followed the recommendations set
out in the Global Code of Conduct for Research in Resource-Poor Settings. The
research was determined and conducted by local researchers. The roles and
responsibilities were agreed amongst collaborators ahead of the research. This
research did not involve any of the health, safety, security or other risk to
researchers, and did not have any severe restrictions in the setting of the
researchers. This study did not result in any of the stigmatization, incrimination,
discrimination or personal risk. The authors took local and regional research
relevant to the current study into account in citations.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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