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Predicting 3D soft tissue dynamics from 2D
imaging using physics informed neural networks
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Tissue dynamics play critical roles in many physiological functions and provide important

metrics for clinical diagnosis. Capturing real-time high-resolution 3D images of tissue

dynamics, however, remains a challenge. This study presents a hybrid physics-informed

neural network algorithm that infers 3D flow-induced tissue dynamics and other physical

quantities from sparse 2D images. The algorithm combines a recurrent neural network model

of soft tissue with a differentiable fluid solver, leveraging prior knowledge in solid mechanics

to project the governing equation on a discrete eigen space. The algorithm uses a Long-short-

term memory-based recurrent encoder-decoder connected with a fully connected neural

network to capture the temporal dependence of flow-structure-interaction. The effectiveness

and merit of the proposed algorithm is demonstrated on synthetic data from a canine vocal

fold model and experimental data from excised pigeon syringes. The results showed that the

algorithm accurately reconstructs 3D vocal dynamics, aerodynamics, and acoustics from

sparse 2D vibration profiles.
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T issue dynamics in many organs play critical roles in phy-
siological functions, such as the contraction of the atrial
and ventricles in heart pumping, heart valve dynamics in

blood circulation, and vocal-fold dynamics in voice production.
The diagnosis and treatment of diseases often include an
assessment of tissue dynamics. In recent years, medical imaging
has undergone a major development toward capturing 3D tissue
structure with much higher resolution and less noise and artifacts.
However, real-time high-resolution imaging of 3D tissue
dynamics remains a challenge due to factors including accessi-
bility and temporal/ spatial resolution of measurement and image
reconstruction.

Vocal-fold vibration during human phonation represents one
of the greatest challenges in acquiring 3D dynamics. Upon pho-
nation, the pair of vocal folds are adducted to close the glottis. As
air is forced from the lungs, the adducted vocal folds are pushed
apart by air pressure, and if the conditions between air pressure
and tissue elastic force are right, the vocal folds are set into
sustained vibrations. In clinics, the dynamics of the vibration is an
important metrics for voice diagnosis and is commonly assessed
using imaging techniques such as strobolaryngoscopy and high-
speed endoscopy. However, endoscopy is limited in that it cap-
tures only a 2D top view of the vocal-fold motion without taking
into account the vertical component, which has been shown by
research to be important for phonation1–5. Several techniques
have been explored toward measuring 3D dynamics of vocal-fold
vibration. For examples, high-speed camera tracking small mar-
kers sutured on tissue surface was attempted in in vivo canine
larynx6, high-frame-rate ultrasound was used to estimate body-
layer movement of the vocal folds7, a laser system combined with
high-speed cameras was explored for getting point-wise infor-
mation of 3D motion8, high-speed stereo-endoscope was devel-
oped to reconstruct 3D motion from two views from different
angles2, and optical coherence tomography (OCT) was used to
obtain high-speed, cross-sectional laryngeal imaging to quantify
mucosal wave in the vertical direction9. Despite these develop-
ments, compromises are often made on temporal and spatial
resolutions because of technical limitations of the sensors and the
illumination needed for high-speed recording in wide voice fre-
quency ranges from 80 to 1100 Hz10. However, real-time, high-
resolution measurement of 3D vocal-fold dynamics in in vivo
larynges has not been achieved.

Physics-informed neural network (PINN), as a recently devel-
oped class of deep learning models, shows great promise in
inversely reconstructing 3D field solutions from sparse/indirect
measurements11. The central idea of PINN is to use physics to
inform the network training by penalizing the violation of physical
laws and constraints, thus enabling sparse-label learning, assim-
ilation of indirect data, and improved sample efficiency and
generalizability. Since its appearance, PINN has been successfully
applied in various scientific applications, including but not limited
to aerodynamics12–15, biomechanics16,17, chemical systems18–20,
and heat transfer21,22.

PINN can be potentially applied to reconstruct 3D tissue
dynamics from 2D imaging. However, traditional PINNs face
tremendous challenges in dealing with3D flow-structure inter-
actions (FSI), which are constantly involved in tissue dynamics.
First, the physics laws in a continuous PINN are evaluated at
individual collocation points, the amount of which can easily
become huge for large-scale 3D problems with a high-
dimensional parameter space, making scalable training infea-
sible. Past PINN studies have been mostly focused on 2D
problems12,13,21,22 with a few attempts on steady problems in
3D23,24. Recently, some studies showed improved scalability in
discrete PINN schemes that combine classic numerical techni-
ques with deep learning25–29. Second, the bi-physics nature of

FSI, especially the non-smoothness across FSI interface, is diffi-
cult to capture by a classic neural network with a multilayer
perceptron (MLP) structure. This becomes even more challenging
when soft tissue is involved, which typically experiences large
deformations with complex spatiotemporal dynamics. Third,
traditional PINNs usually do not include temporal dependence of
data, so they are very difficult to converge for problems with
complex temporal dynamics. The challenge is further exacerbated
when the network predictions are forced into the extrapolation
regime, which is not uncommon for many-query applications of
trained network models in forward or inverse uncertainty
quantification.

In addition to the above three challenges related to 3D FSI,
another challenge exists when building correspondence between
network prediction and imaging data. Traditional PINNs are
usually built upon direct one-to-one correspondence between
data and network prediction. However, medical imaging often
generates 2D deformation contours through slicing or projection.
As a result, there is no direct correspondence between network
predictions and measured data, which complicates the construc-
tion of the loss function.

In this study, we designed a hybrid PINN-differentiable
learning algorithm to reconstruct high-resolution 3D vocal-fold
motion from 2D endoscopic imaging. The algorithm integrates a
recurrent neural network of a 3D continuum model of soft tissue
and a differentiable fluid solver to address the above challenges.
The algorithm was first validated against simulation data of vocal-
fold vibration in a canine larynx. The prediction accuracy was
evaluated by comparing the 3D deformation fields and key
aerodynamic and acoustic quantities, including the mean and
maximum flow rate, intraglottal pressure, and sound pressure
level (SPL) and acoustic power. The algorithm was then validated
against experimental data of self-vibrating bird syringes. Because
3D kinematics of the vibrating mass in the experiments were not
available, a cross-validation was conducted by comparing the
resulted acoustic quantities, including the SPL and acoustic
power. We would like to note that the algorithm offers another
advantage to be able to infer many other quantities due to the
inclusion of the physics laws, such as tissue stress, which are
otherwise very difficult/impossible to measure in experiments or
clinics. The validation on these quantities was performed on the
synthetic dataset, but not on the experimental dataset as they are
not available. We would also like to note that even although the
algorithm is demonstrated in laryngeal/syringeal dynamics in this
study, it is designed for general 3D FSI problems for broad tissue
dynamics applications. The algorithm can advance disease diag-
nosis by going beyond 2D dynamic criterion and expanding
physical quantity metrics.

Results
The details of the network architecture and numerical schemes
can be found in the Methods section. In brief, to address the
inherent nonlinearities resulting from fluid-solid coupling, the
PINN loss is constructed purely based on the residuals of
the governing equations of solid mechanics. To compute the fluid
loading term on the right-hand side of the governing equation, a
fully differentiable numerical fluid solver is integrated into the
neural networks as a unified differentiable program. The inte-
gration of a differentiable numerical fluid solver into the neural
network allows us to efficiently compute the fluid loading term,
enabling us to achieve end-to-end differentiability and optimize
the model parameters effectively. To enhance the scalability and
convergence of the neural networks, the algorithm leverages the
prior knowledge in solid mechanics by projecting the governing
equation onto the numerical eigenmode space to reduce the
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infinite dimensions of the continuous solution space to a finite
dimension of discrete search space. The dimensions of the pro-
blem are further reduced by only using truncated eigenmodes,
which can effectively represent the whole dynamics with negli-
gible errors. To better capture the temporal dependence of the FSI
dynamics and enhance the predictive accuracy, a Long Short-
Term Memory (LSTM)-based recurrent encoder-decoder con-
nected with a FCNN is designed to learn the time history of
modal coefficients, which, combining with eigenmodes, enable
the spatiotemporal predictions of tissue dynamics.

Synthetic data test. We first tested the algorithm using synthetic
data which is high-fidelity simulations of 3D vocal-fold dynamics
in a canine larynx. The advantage of synthetic data test is that the
ground-truth values of quantities of interest are available for an
accurate comparison. Figure 1b shows a 3D canine laryngeal
model with components of realistic geometries reconstructed
from high-resolution MRI scans, one image of which is shown in
Fig. 1a. The model contains all the major cartilages, intrinsic
muscles, and vocal-fold tissues. The vocal fold with key dimen-
sions is shown to the right of Fig. 1b. FSI simulations of vocal fold
dynamics in this model were reported in a previous study, and the
simulations reproduced the key features of glottal aerodynamics
and vocal fold dynamics observed in experiments. The details of
the simulations are referred to ref. 30.

Figure 1c shows the simulation results of vocal fold dynamics
at six representative time instants during one vibration cycle
when the glottis is open. The figures are from the top view, which
is consistent with the endoscope/laryngoscope view in clinics. The
blue lines denote the projected 2D glottal shapes from the top
view, which are used as the input data to the PINN. Practically,
such input data can be obtained by segmenting the vocal fold
edges visible in endoscopic images, a task for which various
automated algorithms have been proposed31–33. The vibration
frequency of this model is 143 Hz. We extracted 20 time-labeled
2D glottal shapes over one vibration cycle for the training of the
PINNs, which resulted in a sampling rate of 2.5 kHz, on par with
the 1–4 kHz sampling rates of typical laryngeal endoscopes in the

clinical setting, e.g., flexible fiberoptic endoscope or high-speed
rigid endoscope. These 2D shapes were fed to the PINN for
computing the data loss during training. Additionally, a
numerical computation of the eigenmodes of the vocal fold
model was conducted and the lowest 100 eigenmodes along with
their eigenfrequencies were fed to the PINN for computing the
equation loss during training.

Figure 2 shows the PINN prediction results of 3D vocal fold
dynamics. Figure 2a shows that both the data and equation losses
of the PINN training converged after around 6´ 104 epoch. The
data loss is calculated based on the mean squared error between
the true and predicted 2D profiles. The PINN loss is calculated
based on the mean squared error between the left-hand side
(LHS) and right-hand side (RHS) of the modal dynamic equation
for each eigenmode. Figure 2b shows the prediction error of the
3D vocal fold shapes over one vibration cycle, represented by
the L2 norm of the difference of the displacement vectors between
the PINN prediction and FSI simulation normalized by the norm
of the displacement vector from the FSI simulation. The error is
between 2.0 and 5.1% over one vibration cycle with the mean
value of 3.8% and standard deviation (SD) of 0.97%. We also
examined the sensitivity of the prediction to the number of
eigenmodes adopted in the network by creating five more cases
with 20, 30, 50, 75, and 150 eigenmodes. Figure 2c shows that the
error decreases quickly with the increase of the number of the
modes. The error is highest at 7.3% with 20 modes and converges
to 3.8% with 100 modes.

Figure 2d compares the 3D vocal fold shapes and vertical
velocity component contour, and Fig. 2e compares the vertical
profile of the vocal fold at the mid-coronal plane between the
PINN prediction and FSI simulation (ground truth). These
figures show that the 3D vibratory dynamics and vertical velocity
contours are accurately predicted by the PINN. The maximum
amplitudes of the lateral and vertical motion on the medial
surface (see a summary in ref. 34) are 2.57 mm and 1.75 mm in
the ground truth, and 2.53 mm and 1.68 mm predicted by PINN.
The prediction errors and SD are −1.6 ± 2.9% and −3.6 ± 3.7%,
respectively. The maximum vertical velocity is 1.03 m/s in the
ground truth and 0.95 m/s predicted by PINN. The prediction

Fig. 1 A canine larynx model reconstructed from MRI scans and the representative 2D glottal shapes used for training the PINN. a An MRI scan of the
canine larynx in the mid-coronal plane, where different parts are annotated. b The reconstructed 3D model of the larynx. The vocal folds and cartilages are
shown. One vocal fold with key dimensions is shown to the right. c The simulation results of vocal fold dynamics from the top view at six representative
time instants during one vibration cycle when the glottis is open. The 2D glottal shapes are denoted by the blue lines. A total of 20 time-labeled 2D glottal
shapes were extracted from one vibration cycle and used as the input data to the PINN.
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error and SD is −7.7 ± 7.6%. Note that the standard deviation is
calculated using multiple measurements around the mid-coronal
region of the medial surface.

Due to the inclusion of the physics laws in the network, PINN
also allows inferring other physical quantities that are not
available in the training data. We demonstrate this ability by
comparing several important aerodynamics and acoustics quan-
tities predicted by our PINN algorithm to those available from the
FSI simulations.

Figure 3a compares the temporal history of glottal flow rate
over one vibration cycle and Fig. 3b compares the intraglottal
pressure distribution along the streamline at three representative
time instants between the ground truth and PINN predictions.
The three time instants are denoted in Fig. 3a, representing glottis
opening, maximum opening and closing, respectively. The PINN
accurately predicted the opening and closing quotients and the
peak flow rate. The time-mean error of the flow rate is 1.7% with
2.4% standard deviation. The distribution of the intraglottal
pressure along the streamline is also accurately predicted as
denoted in Fig. 3b. The time-mean error of the mean intraglottal
pressure is 2.1% with 1.6% standard deviation. Figure 3c
compares several important aerodynamics and acoustics quan-
tities, including the peak flow rate, mean flow rate, mean
intraglottal pressure, SPL, and acoustic power. The prediction
errors (and ±SD when applicable) are −1.35%, −4.72%,
2.10 ± 1.6%, 0.35%, and −0.39%, respectively, highlighting the
comprehensive predictive capability of the current algorithm.

Experimental data. We further tested the algorithm on the in
vitro experimental data of pigeon syringeal dynamics and sound

production. The bird syrinx was shown to exhibit a similar
dynamics as the human vocal fold, represented by a mucosal wave
propagation on the tissue surface. The bird syrinx also bears the
same underlying physics of voice production as the human
larynx35. Validating the algorithm on bird syrinx dynamics pro-
vides confidence on the applicability of the algorithm on human
larynx dynamics. We obtained high-speed images of lateral
vibratory mass (LVM, the vocal fold analog in syrinx) vibrations
in four pigeon syringes along with simultaneous acoustics mea-
surements. Figure 4a shows the photo of the excised syrinx of one
pigeon. Figure 4b is the DiceCT scan of the syrinx with the LVM
annotated. Figure 4c shows the 3D computational model of the
syrinx reconstructed from the DiceCT scans. The model includes
a pair of LVMs and the cartilages surrounding them. Figure 4d
shows representative snapshots of LVMs vibrations during one
vibration cycle extracted from high-speed videos. Contrary to the
laryngoscope view in the human larynx, the images were obtained
from the ventral-dorsal view. The blue lines denote the 2D pro-
files of the LVMs, which were manually annotated. These 2D
profiles were the input data for PINN training. The same
approach was applied to the other three pigeons. Detailed
information on the experiment, syringe models, and training
parameters can be found in “Methods”.

The PINN was trained on a single NVIDIA A100 GPU for
about 7 h and successfully converged for each syrinx model.
Figure 5a shows the convergence of the data and equation losses
of the network for one syrinx as an example. Different from the
synthetic data, the full 3D LVMs dynamics were not available
from the experiment, so a direct validation on 3D dynamics is not
possible. We thereby cross-validate the algorithm by comparing

Fig. 2 PINN training results of 3D vocal fold dynamics in the canine larynx. a The history of data (left) loss and equation (right) loss during the training.
b The prediction error of 3D vocal fold shapes over one cycle. The dashed line and the shaded area indicate mean and standard deviation (SD) over a cycle,
respectively. c The mean and SD of the prediction error of 3D vocal fold shapes versus the number of eigenmodes adopted. d Comparison of 3D vocal fold
shapes and vertical velocity component contour between the PINN prediction and ground truth at 5 representative time instants in a cycle (shown in Fig. 3a).
e Comparison of the vertical profile of the vocal fold at the mid-coronal plane between the PINN prediction and ground truth at the corresponding time instants.
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the acoustic quantities between PINN prediction and experiment.
Figure 5b shows the comparison of the SPL and acoustic power.
In each subfigure, the solid columns represent the mean values
over the four syringes, and the bars represent the standard
deviations. Good agreement between the PINN prediction and
experimental measurement is observed. The difference in the
mean values is 1.6% and 1.1% for SPL and acoustic power,
respectively. The SD for SPL and acoustic power are both ±1.4 dB

in the experiment, and both ±4.3 dB in PINN prediction. As the
sound production is mainly modulated by the syringeal dynamics,
it implies that the syringeal dynamics has been correctly
predicted.

Figure 6 shows the 3D LVM shape and flow rate predicted by
the PINN. These results demonstrate that the actual vibration
of the LVMs is highly 3D and the PINN provides an innovative
way to reproduce the 3D shapes and other physical data which

Fig. 3 Comparison of aerodynamics and acoustics quantities between the PINN prediction and FSI simulation (ground truth) in the canine larynx.
a Glottal flow rate waveform over one vibration cycle. b Intraglottal pressure at three time instants within a cycle. c Relative amplitude (RM) of key
quantities with errors.

Fig. 4 A syrinx model reconstructed from DiceCT scans and the representative 2D lateral vibratory mass (LVM) shapes for training the PINN. The
same type of data and models were generated for other three pigeon syringes. a The photo of the excised syrinx. b A DiceCT scan of the syrinx. One LVM
was annotated. c The 3D computational model reconstructed from the DiceCT scans including the pair of LVMs and the surrounding cartilages. A detailed
view of the left LVM is shown to the right. The red line shows the mid-coronal cross-section of the LVM. d Representative snapshots of LVMs vibrations
during one vibration cycle extracted from high-speed videos. The blue lines denote the 2D profiles of the LVMs which were manually annotated.
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otherwise are unavailable experimentally. Figure 6a depicts the
3D LVM shapes at five time instants over one vibration cycle. The
color contour represents the lateral velocity with negative values
(blue) indicating medial-ward motion and positive values
indicating lateral-ward motion. Figure 6b shows the predicted
syringeal flow rate with the numbers denoting the five
corresponding time instants in (a). Figure 6c shows the profile
of the two LVMs at a horizontal plane (indicated by the black
lines in (a)) at the same time instants, illustrating the motion in
the longitudinal (third) direction. Through the cycle, a strong
wave propagation in the inferior-superior (caudal-cranial) direc-
tion with the inferior aspect leading the motion can be observed.
Meanwhile, a strong motion in the longitudinal direction is
observed. The LVM generally assumes a half-wavelength mode in
the longitudinal direction while some phase differences can be
observed during the closing phase (instant 5).

Discussion
We presented a hybrid PINN-differentiable learning algorithm
that integrates a recurrent neural network model of 3D con-
tinuum soft tissue with a differentiable fluid solver to infer the 3D
flow-induced tissue dynamics and other physical quantities from
sparse 2D profile measurements. The algorithm addresses the
inherent challenges of PINN for inferring 3D FSI problems,
including the convergence difficulties associated with high com-
putational cost, the nonlinearity of FSI coupling, and lacking

direct correspondence between measurement and network out-
puts. With this hybrid PINN-differentiable learning framework,
we can reconstruct 3D FSI dynamics by matching the 2D image
data, which is an inverse data assimilation problem per se. In this
context, traditional numerical solvers fail to work alone, unless
they are combined with an inversion algorithm, e.g., adjoint
method, Bayesian sampling, or genetic algorithms, which are
either heavily code-intrusive or require massive forward numer-
ical simulations. Although the hybrid PINN model and tradi-
tional forward solvers are not directly comparable in scenarios of
data assimilation and inverse modeling, the computational costs
for training and evaluation of the hybrid PINN model are pro-
vided, which are 7 h and less than one second on a single GPU
card, respectively. Compared to forward FSI simulation using
traditional solver, which takes 2 CPU-hours, the proposed hybrid
PINN has significant computational advantages when large
number of model queries are required. The accuracy of the pre-
diction was tested using synthetic and experimental datasets of
canine laryngeal and bird syringeal dynamics. In the validation
against the synthetic simulation data of canine laryngeal
dynamics, we showed that the prediction errors and SD of 3D
displacement fields are 3.8 ± 0.97% and that key aerodynamics
and aeroacoustics quantities are all within 5% (Fig. 3c) with small
deviation showing that the errors are not statistically significant.
In the validation against the experiment data of bird syringeal
dynamics, due to the lack of 3D dynamics data, we did the cross-

Fig. 5 PINN convergence histories and cross-validations against acoustic measurements from excised syrinx experiments. a The history of data (left)
and equation (right) loss during PINN training for one of the syringeal models. Data loss and PINN loss converged after around 27,000 and 70,000 epochs,
respectively. b Comparison of acoustic parameters between PINN prediction and experimental data. The bar shows the mean value, and the error bar
represents the standard deviation for four subjects. The gray straight lines indicate the correspondence of each subject between experimental
measurement and PINN prediction. Individual data points are marked as red circles.

Fig. 6 PINN predicted 3D LVM dynamics and flow rate from the syringeal model shown in Fig. 4. a 3D LVM shapes and lateral velocity contour at five
representative time instants over one vibration cycle. The five time instants are denoted in (b) which is the flow rate over one cycle. c Syringeal opening
area at a horizontal section (indicated by the black lines in (a) at the same five time instants. The red lines depict the boundary of the LVMs.
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validation by comparing the acoustic predictions. We showed
that the prediction errors of acoustics quantities are within 2%.
Standard deviation of the errors among multiple pigeon subjects
are also small (Fig. 5b).

In the current study, we demonstrated the algorithm for its
application in predicting laryngeal/syringeal dynamics; however,
it is designed to be transformative for broad applications invol-
ving 3D FSI, such as cardiovascular dynamics, heart valve
dynamics, animal flight/swimming dynamics, etc. While more
rigorous validations against experimental and clinical datasets
are needed in future, the algorithm has potential to impact the
medical field by advancing disease diagnosis beyond the current
2D dynamics criterion. As the algorithm matures, it has the
potential to expand the range of measurable quantities in both
experimental/clinical research, therefore enhancing the research
capabilities.

Another important potential impact of the algorithm to the
medical field is that it allows inferring many physical quantities
that are otherwise very difficult/impossible to obtain in clinics,
such as glottal flow rate and vocal fold stresses in laryngeal
dynamics examination. Currently, the glottal flow rate is esti-
mated indirectly from pressure measurement at the mouth by
using Rothenberg mask36, which cannot be used when endoscopy
is performed, and no techniques are available for measuring vocal
fold stresses. Previous data-driven methods were developed for
automatic reconstruction of vibratory parameters from endo-
scopy images;37 however, the methods cannot predict other
physical quantities. A few attempts were made toward predicting
unmeasurable physical quantities using computer model inte-
grating with data assimilation, yet the works have been limited to
highly simplified vocal fold representations, e.g., lumped element
model38 or 2D FEA representation39. The goal of this algorithm is
to predict full 3D physical fields in anatomically realistic subject-
specific models by integrating limited measurement data. We
would like to note that once the algorithm is validated, the net-
work needs to be trained on each subject’s data to obtain subject-
specific coefficients in the model, which can then be used to
reconstruct full physical fields, including the 3D vibration, aero-
dynamics, and acoustics, and predict at other conditions for the
subject.

One critical aspect of the proposed algorithm is to project the
governing equations onto the reduced eigenspace to effectively
reduce the dimension of search space, facilitating network
training and convergence. We chose to use modal dynamic
analysis with reduced number of eigenmodes instead of a DNN
autoencoder (AE) for dimension reduction for several reasons.
First, our study deals with irregular 3D geometries represented by
unstructured mesh data, making it infeasible to use a CNN-based
AE as in ref. 40. Therefore, we need to apply graph neural network
(GNN)-based AE, which is still in the early stage of development.
Second, eigenspace methods have better generalizability com-
pared to DNN-based AE, particularly when training geometry
data is limited. Third, using a complex AE network could make
the training even more challenging by introducing additional
complexity to the overall structure.

Another critical aspect of our algorithm is to use a recurrent
encoding-decoding discrete PINN architecture to resolve the
convergence difficulty of stiff ODEs. After the projection to the
reduced eigenspace, the original PDEs were transformed into a
group of decoupled ODEs. Interestingly, the original continuous
PINNs-based FCNN formulations are even more difficult to
converge for stiff ODEs than some PDEs, which has been
reported previously in other studies41–43. We have comprehen-
sively studied the original continuous PINNs for given problems
and also experienced convergence difficulties regardless of neural
network structures. The difficulty may result from the stiffness of

ODEs and nonlinearity in time, which lead to unbalanced back-
propagated gradients between the loss of data and the loss of
equation residual during training. We found that this difficulty of
convergence on ODEs can be resolved by utilizing a recurrent
encoding-decoding discrete PINN architecture, suggesting that an
explicit representation of temporal dependence is essential for
modeling the nonlinear dynamical systems governed by the
ODEs. Another important aspect is the seamless integration of
physics-based numerical solvers with deep neural networks
within a differentiable programming framework, which allows
gradient back-propagation throughout the entire program,
enabling hard-encoded physics, training with partial/indirect
data, and improved learning performance.

Finally, we would like to point out the limitations of our
algorithm and suggest future works. First, the current algorithm
relies on the material properties of the vocal fold a priori for
computing the eigenmodes. In clinical settings, the in vivo
material properties are typically unknown, which limits the cur-
rent algorithm only to ex vivo studies. Yet, the algorithm can be
expanded to infer the material properties by including the
eigenmode computation in the training process. We are planning
to implement this capability in future study. Second, a one-
dimensional flow model is employed for simulating glottal
aerodynamics. While it is a widely-adopted flow assumption in
phonation models44–46, it poses constraints on its direct appli-
cation on other applications, e.g., heart valve problems, where the
three-dimensional vortex structures are inherently important.
This limitation can be solved by implementing a more compre-
hensive/accurate flow solver with differentiable programming,
where the fluid dynamics is described by the Navier–Stokes
equation with trainable parameters and components, which can
be learned from patient-specific data. Third, while the current
algorithm only takes the 2D endoscopic/lateral images as inputs,
it can be expanded to take synchronized multimodal inputs, such
as acoustic measurements, by integrating additional physics laws
and acoustic measurements. This will help to achieve faster
convergence, higher accuracy, and the ability to be trained with
even fewer 2D profiles as input. Fourth, a recurrent neural
network-based structure is designed to capture complex temporal
dynamics. While our hybrid neural solver effectively learns the
temporal coherence of the input 2D images and the 3D structure,
applying other state-of-the-art Seq2Seq network structures such
as the Transformer47,48 may further improve the performance.
Furthermore, some previous works have demonstrated the
potential of applying PINN to denoise the measurements49,
which can be helpful when the input 2D images are of low quality
and require noise reduction. Lastly, the validation on the 3D
dynamics in the current study is limited on the simulation data
from a canine larynx, which cannot be translated to real-word
vibrational behaviors of human larynx. Future studies are needed
for more rigorous validations against experimental or clinical data
from human larynx, such as high-speed video recording 3D vocal
fold vibration in hemi-larynx50.

Methods
The proposed algorithm tightly integrates a recurrent neural network model of 3D
continuum soft tissue with a physics-based fluid solver within a differentiable
programming framework to infer the 3D flow-induced tissue dynamics from its 2D
projection measurements.

Solid dynamics model. The equation of motion of a general system with damping
under external forces can be presented as follows:51

M½ � €U tð Þ� �þ C½ � _U tð Þ� �þ K½ � U tð Þ� � ¼ F tð Þ� �
: ð1Þ

where M½ �, C½ �, and K½ � are mass, damping, and stiffness matrices of the system,
respectively, and F is the external force. Using the Rayleigh damping, C½ � can
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defined as a linear combination of M½ � and K½ �:
C½ � ¼ α M½ � þ β K½ �: ð2Þ

where α and β are Rayleigh damping parameters. {U}, solution of Eq. (1), can be
represented in a compact form using eigen decomposition,

U tð Þ� � ¼ ∑
j
bj tð Þ Uj

n o
: ð3Þ

where fUjg are eignmodes and bj tð Þ are modal coefficients. While continuous
systems have infinitely many eigenmodes, only the lowest ones, usually the first 10
to 100 modes, are crucial in practice51. Considering that the intrinsic system
dimension is usually low, the eigenmode series can be truncated to a finite number
to approximate the solution fU tð Þg. By choosing a suitable number of eigenmodes,
this truncation error can be negligible. Eigenmodes and eigenfrequencies can be
numerically calculated using packages such as ARPACK52, which is adopted in this
study using the shift-invert mode. By substituting Eqs. (2) and (3) into Eq. (1), and
multiplying the derived equation by the transpose of eigenmodes, and due to the
orthogonality condition, Eq. (1) can be written as:

€bj tð Þ þ αþ βωj
2

� �
_bj tð Þ þ ωj

2bj tð Þ ¼ fUjgT F tð Þ� �
: ð4Þ

In Eq. (4), which is the central equation for the modal dynamics of the system,
only coefficients bj tð Þ and fFðtÞg are functions of time. For a system with known
properties, α, β, ωj , and fUjg, the equation can be solved to find bj tð Þ for each mode
j, and finally U tð Þ can be approximated by Eq. (3).

Differentiable flow solver. The right-hand side fluid loading fFðtÞg is computed
using a numerical fluid solver which is fully differentiable. For the phonation
problem, it has been shown that the glottal flow dynamics can be reasonably
represented by the modified (1D) Bernoulli equation53–55. In this model, fluid
pressure P y

� �
is a function of glottal channel area AðyÞ as depicted in Eq. (5):

P y
� � ¼ Psub �

1
2
ρair

Q

A y
� �

 !2

: ð5Þ

where P y
� �

is the intraglottal pressure at the vertical location of y, AðyÞ is the cross-
sectional area, Psub is the subglottal pressure, Q is the flow rate, and ρair is the air
density. The model assumes that flow separation occurs at the minimum glottal
area and the flow pressure equals zero gage pressure downstream of the flow
separation. Based on this assumption, the flow rate was calculated as:

Q ¼
ffiffiffiffiffiffiffiffiffiffi
2Psub

ρair

s
Amin: ð6Þ

where Amin is the minimum glottal area. The implementation of the fluid solver is
purely in PyTorch56, which supports automatic differentiation, enabling automatic
computation of gradient for any computational graph. By leveraging the auto-
differentiation backend of Pytorch, the differentiable fluid solver can be seamlessly
coupled with neural networks, which can be trained as a unified program. This
paradigm is also known as differentiable programming. The strength of differ-
entiable programming is that the gradient for trainable parameters could pass
through the numerical solvers to neural networks, which enables a sequence-to-
sequence (Seq2Seq) training. When compared to next-step models, Seq2Seq
training could significantly improve the error accumulation issue and leads to a
much more stable long-term prediction. Therefore, the fluid solver can be seam-
lessly integrated into the LSTM neural architecture and trained as a whole dif-
ferentiable program to achieve better learning performance.

Contact model. Except the flow loading, VFs are also subjected to the collision
forces between each other during the phase of vocal closure. In current study, left-
right symmetry of VFs vibration is assumed and only the left side of VF was
modeled. A penalty force contact model is applied at the midline. A contact
pressure along the lateral direction is computed using Eq. (7):46

pc ¼ kc1dx 1þ kc2dx
2� �
: ð7Þ

where kc1 and kc2 are the contact coefficients, and dx represents the penetration
distance crossed the midline.

Discrete PINN architecture. The overall PINN algorithm is illustrated in Sup-
plementary Fig. 1. A detailed network layout is illustrated in Supplementary Fig. 2.
The inputs of the network are the sequential 2D profiles in time extracted from the
high-speed images. The network consists of a Long short-term memory (LSTM)-
based recurrent encoder-decoder connected with a fully connected neural network
(FCNN). Specifically, the LSTM encoder first encodes the whole 2D image
sequence into a hidden vector, which is then passed to the LSTM decoder as the
initial hidden state and cell state. Moreover, the decoding LSTM also takes the 2D
profile at each time step as the input features, and it will output a sequence of
hidden vectors to the following FCNN, which predicts the time history of modal
coefficients bj tð Þ of the structure eigenmodes. The network-predicted bj tð Þ are then

used to reconstruct full 3D dimensional shapes using Eq. (8):

X tð Þ� � ¼ X0

� �þ U tð Þ� �
: ð8Þ

where X0

� �
represents the initial shape of VF and fX tð Þg represents the current

shape of VF. A fully differentiable projection operation will be applied on the
reconstructed 3D shapes to obtain the 2D projected profiles. Thanks to the dif-
ferentiable computer program, the data loss, Ld ; is constructed as the difference
between the predicted and measured 2D profiles and the gradients can be back-
propagated to trainable network parameters. The reconstructed 3D shapes are also
used to compute the glottal area AðyÞ and penetration distance dx. Using Eqs. (5)
and (7), both fluid pressure and contact pressure can be computed, which con-
stitutes the overall fluid loading fFðtÞg. Using the predicted bj tð Þ and fFðtÞg, the
equation loss Le, can be computed by summing the residual of Eq. (4) over all the
eigenmodes utilized. The total loss constitutes the data loss and equation loss using
Eq. (9):

Lf ¼ WeLe þWdLd : ð9Þ
where We and Wd stand for the weight of the equation and data loss, respectively.
It is worth noting that, every intermediate subroutines of the whole process is
differentiable, which enables the neural network training in the reduced eigenspace
with indirect (partial) 2D observation data.

After the convergence, other physical quantities such as f 0, flow rate, mucosal
wave-speed, glottal opening, SPL, acoustic power, medial surface pressure, contact
surface area and shape, stress, etc. can be computed, which could provide new
metrics for better diagnosis and deeper insight into the underlying mechanisms.
The structure of the hybrid algorithm is shown in Supplementary Fig. 1.

Network hyperparameters. For the cases presented in this study, we used 128
features in the hidden state with 1 hidden layer for LSTM. The FCNN is a standard
four-layer multilayer perceptron (MLP) with residual connections and layer norms,
and each layer has 128 neurons. The output layer of the MLP takes 128-
dimensional hidden features and predicts Ni-dimensional eigen coefficients. The
ReLU activation function is used for the entire network. For the training, Adam
optimizer is adopted with the ReduceLROnPlateau scheduler to dynamically adapt
the learning rate when trapping at local minima. The initial and minimum learning
rate were set to be 1:0 ´ 10�2 and 5:0 ´ 10�5, respectively. The weight of equation
and data loss are 104 and 10�5, respectively. We choose the parameters to make the
magnitudes of the data loss and equation loss to be comparable. These hyper-
parameters have not been specifically tuned, and further fine-tuning may further
improve the learning performance.

Dataset preparation. To demonstrate the ability of the presented algorithm, we
examined the performance of the algorithm on two datasets: synthetic canine
simulation and experimental pigeon data.

For the synthetic canine dataset, we simulated the flow-induced vibration of the
left VF (Fig. 1b) using 1D Bernoulli flow solver coupled with 3D Navier equation,
assuming the left-right symmetry of VF vibration to reduce the training
computational cost. The VF geometry was discretized into 20643 4-node
tetrahedral elements. The VF was modeled as a two-layered structure: a cover layer
and a body layer, both of which were modeled using transversely isotropic
materials. (The material properties are listed in Supplementary Table 1). Rayleigh
damping are used with the parameters: α= 60.0 s and β= 6.0 ´ 10−5 s−1. The 3D
solid dynamics are solved using the finite element method. The glottal flow channel
was discretized into 100 horizontal sections, where Bernoulli’s equation was solved.
The subglottal pressure of 1.0 kPa was considered, and the air density was
1.1 kg/m3. The simulation was conducted for 200 ms.

For the experimental pigeon datasets, we used the biological data from a
previous study57, in which high-quality kinematic data of the lateral vibratory
masses (LVMs, the VFs analog in syrinx) in in vitro self-oscillating rock pigeon
syringes was obtained. The detailed information of the experiment can be found in
ref. 57. Briefly, the anatomical models were constructed using DiceCT scans on
4 syringes. Figure 4b shows a scan for subject 1. The vibrations of the LVMs were
captured using high-speed videos from the frontal view and their 2D profiles were
annotated in each frame. The annotation can be approximated by the intersection
of the mid-coronal plane with the left LVM (The red line in Fig. 4c). The acoustics
of sound production were measured simultaneously with the video recording. The
key kinematics and acoustic quantities were reported. For all subjects, the
subglottal pressure, air density, number of sections in the flow direction, and
number of epochs for training are the same as those of the canine simulation. The
network predicts the modal coefficients of the first 50 vibration modes to
reconstruct the 3D shape. Other information for the training of synthetic (canine)
and experimental (pigeon) cases are summarized in Supplementary Table 2.

Acoustic analysis. To measure the acoustic pressure, we used the linear source-
filter theory58 by assuming that the vibration has not been affected by the acoustic
pressure and by considering a monopole source of sound:

p0 ¼ ρair
4πr

dQ
dt

: ð10Þ
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where p0 is the acoustic pressure, r stands for the distance from the source of the
sound, and dQ

dt represents the first temporal derivative of the flow rate.
To compare the acoustic features of the model with the experimental data57, we

followed the same steps and calculated SPL and acoustic power from the acoustic
pressure. The acoustic pressure was resampled to 48 kHz, and then low-pass
filtered at 20 kHz. SPL, which is commonly used to indicate the strength of acoustic
wave, was defined at 1 meter from the source as follows:

SPL ¼ 20 log10
p
pref

 !
þ TL: ð11Þ

where pref = 2.0 ´ 10−5 Pa, p is the root-mean-square of the pressure, and TL
stands for transmission loss calculated by TL ¼ 20 log10 dð Þ with d= 12 cm.
Moreover, acoustic power was calculated by

PA ¼ AI: ð12Þ
where I is the sound intensity, and A is the area of sound radiation (A ¼ 4πd2).

Statistics and reproducibility. In Fig. 3b, c, the standard deviation was calculated
using 16 data points within one vibration cycle. In Fig. 5b, the standard deviation was
calculated using data derived from 4 independent pigeon subjects. When comparing
the prediction of the network model with the ground truth, the training was not
repeated for statistical analysis because the results are highly reproducible. Repeated
runs of the training are expected to produce statistically the same results, given
convergence is achieved. When applying the neutral network model to a different
tissue model, the 3D error of the prediction is expected to be comparable to what is
presented in this paper for the synthetic data. For experimental datasets, the accuracy
also depends on how well the 2D profiles are segmented from imaging data.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The major output datasets generated and analyzed during the current study are available
as Source Data File in Supplementary Data 1–6.

Code availability
The custom code for this study is available at https://github.com/xudongzheng77/
pinn202259.
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