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The earliest Ethiopian wolf: implications for the
species evolution and its future survival
Bienvenido Martínez-Navarro 1,2,3✉, Tegenu Gossa 4,5,6✉, Francesco Carotenuto 7,

Saverio Bartolini-Lucenti8,9, Paul Palmqvist 10, Asfawossen Asrat11,12, Borja Figueirido 10, Lorenzo Rook 8,

Elizabeth M. Niespolo13,14,15, Paul R. Renne 14,15, Gadi Herzlinger5 & Erella Hovers 5,16✉

In 2017, a hemimandible (MW5-B208), corresponding to the Ethiopian wolf (Canis simensis),

was found in a stratigraphically-controlled and radio-isotopically-dated sequence of the

Melka Wakena paleoanthropological site-complex, on the Southeastern Ethiopian High-

lands, ~ 2300m above sea level. The specimen is the first and unique Pleistocene fossil of this

species. Our data provide an unambiguous minimum age of 1.6–1.4Ma for the species’

presence in Africa and constitutes the first empirical evidence that supports molecular

interpretations. Currently, C. simensis is one of the most endangered carnivore species of

Africa. Bioclimate niche modeling applied to the time frame indicated by the fossil suggests

that the lineage of the Ethiopian wolf faced severe survival challenges in the past, with

consecutive drastic geographic range contractions during warmer periods. These models help

to describe future scenarios for the survival of the species. Projections ranging from most

pessimistic to most optimistic future climatic scenarios indicate significant reduction of the

already-deteriorating territories suitable for the Ethiopian Wolf, increasing the threat to the

specie’s future survival. Additionally, the recovery of the Melka Wakena fossil underscores

the importance of work outside the East African Rift System in research of early human

origins and associated biodiversity on the African continent.
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The Ethiopian wolf (Canis simensis) is an endemic species of
the Ethiopian fauna. Its census population of only ~500
individuals, ~200 of them adults, is spread over six dif-

ferent isolated populations restricted to elevations over 3000 m
above sea level in the Ethiopian highlands1–8. Given an estimated
minimum viable population size of 3876 individuals, with a 95%
confidence interval of 2261–5095 individuals9, C. simensis is
currently one of the most endangered carnivores on the African
continent. This animal and the large cercopithecid monkey
Theropithecus gelada are the most iconic faunal taxa of Ethiopia.
Although Theropithecus is now only present in the Ethiopian
highlands, the Pleistocene fossil record of this lineage is well-
known from eastern, southern and northern Africa, as well as in
the Indian Subcontinent, the Levantine Corridor and the Iberian
Peninsula10. In contrast, there is no Pleistocene fossil record of
C. simensis from Ethiopia or elsewhere. Thus, the origin of this
species and its time of arrival to Ethiopia remains unknown.
Extant C. simensis is more closely linked genetically with the
Eurasian and North American gray wolf, Canis lupus, the North
American coyote, C. latrans, the Asian jackal C. aureus, or the
African small golden wolf C. lupaster, than with any other African
canid such as the African painted dog, Lycaon pictus, or the
African jackals (Lupulella mesomelas and Lup. adusta) (Supp.
Note 3, Supp. Figure 3). The absence of a fossil record of C.
simensis led to the conclusion that the species arrived in the
Ethiopian highlands during the Late Pleistocene5,11,12. The dis-
covery of a fossil of C. simensis (MW5-B208) in a
stratigraphically-controlled and radio-isotopically-dated context
in the paleoanthropological site-complex of Melka Wakena13

undermines the latter hypothesis (Figs. 1 and 2). MW5-B208
represents the first—and (to date) the only—fossil of the Ethio-
pian wolf, testifying to its appearance and existence in its Afro-
montane habitat as early as the second half of the Early
Pleistocene.

The Melka Wakena site-complex is located at ~2300 m above
sea level (asl) (Supp. Figure 1) on the eastern shoulder of the
Main Ethiopian Rift (MER) (Fig. 1a, b). Eight archaeological and
two paleontological localities were identified to date, in a
chronostratigraphic sequence corresponding to the second half of
the Early Pleistocene, ~1.6 to >0.7 Ma13 (Fig. 1c, d; Supp. Notes 1
and 2, Supp. Figure 2). Currently, the vertebrate faunal list
derived from the stratigraphic sequence consists of Crocodylus cf.
niloticus, Hystrix sp., Canis sp., Elephas recki cf. brumpti, Equus
sp., Metridichoerus modestus, Hippopotamus gorgops, Giraffa cf.
jumae, Tragelaphus sp., Bovini indet. (Cf. Pelorovis sp.), Aepyceros
cf. melampus, Gazella sp., Alcelaphini indet., Reduncini indet.,
and Antelopini indet. This fauna is consistent with a late Early
Pleistocene age. A lower left m3 of the proboscidean Elephas recki
cf. brumpti, a Pliocene form, was found in a secondary deposi-
tional context, embedded in sediments younger than 1.3 Ma13.

Results
During the 2017 field season, a right hemimandible (MW5-B208)
of a canid was found eroding out of a conglomerate layer (Unit II:
Fig. 1c, d, Supp. Note 2, Supp. Figure 2) at the base of a cliff-section
of MW5-West, ca. 90 meters west of the archaeological locality
MW5. This conglomerate layer is found sandwiched between two
volcanic ash layers. The underlying ash flow (Unit-I) is dated by
single grain 39Ar/40Ar geochronology to 1626.6 ± 6.4 thousand
years ago (ka) and the overlying ash flow layer (Unit III) dates to
1372.5 ± 4.8 ka (Fig. 1d; all errors are reported at 1 sigma, including
systematic uncertainties)13. The fossil was initially classified as
Canis sp.13. It clearly belongs to a medium-sized canid similar to
the extant endemic Ethiopian Canis simensis (Figs. 2 and 3).

Anatomical and morphometric comparisons with other extant
and fossil canids. The dimensions and morphology of MW5-
B208 are more similar to the extant C. simensis than to other
extant African canids (both Canis and Lupulella species) or to
various fossil canids of Africa (Fig. 3, Supp. Table 1, Supp.
Note 4). The height of the corpus, the straight ventral margin,
the position of the mental foramina (especially the distal one,
under the diastema between p2-p3), the large diastemata
between canine and premolars, and between premolars them-
selves are similar between MW5-B208 and the extant C. simensis.
The shallowness and elongation of the mandible shows that
MW5-B208 falls within the range of variability of the extant
species C. simensis. The similarity extends to dental features: e.g.,
the oval shape of the p4, shortened in mesiodistal direction; the
reduced distal accessory cuspulid on the p4; the slender m1 with
reduced metaconid and entoconid; the similar-sized m2 proto-
conid and metaconid; and the squared distal shape of the m2
(Figs. 2 and 3).

Morphometrically, MW5-B208 takes a position on the
morphospace between the golden jackal and the Ethiopian wolf
(Fig. 4a). But the principal components analysis (PCA)
distribution pattern (cluster) does not help in clarifying the
morphological affinities of the fossil. As a result, a linear
discriminant analysis between the three living species of jackals
and the Ethiopian wolf based on six variables (i.e., Lp4, Bp4,
Lm1trig, Bm1tal, Lcm2, and JBp3p4) was employed (Fig. 4c).
The analysis reclassifies correctly all the specimens in their
respective groups after cross-validations using the leave-one-out
method (see Methods subsection “Comparative sample, pro-
grams, and software used for the morphological and morpho-
metric analyses”). This function classifies unequivocally the
Melka Wakena fossil as a jaw of C. simensis with a probability of
p= 0.997. The results of the bootstrapping cluster analysis
(BCA) confirm the general pattern of the PCA, with the
hypercarnivorous canids (C. lupus, C. alpinus, and L. pictus)
on one side of the plot, whereas the species of the genus Lupulella
(i.e., L. adusta, L. mesomelas), C. aureus, C. latrans, C. simensis
and the Canis from Melka Wakena are grouped in the negative
side of the first principal component. Indeed, the BCA results
identify two well-separated clusters composed of the same
species (Fig. 4b). Within the larger cluster, the hemimandible
MW5-B208 from Melka Wakena is grouped with the extant
C. simensis. The supporting value of the grouping is the highest
of the analysis (percentage p-value= 97%), thus testifying to the
strong similarity in the values of the two species. The results of
the BCA fully confirm the classification of the discriminant
function in clustering the fossil specimen close to the extant
Ethiopian wolf.

Biogeography and phylogenetic relationships with other
canids. Recent phylogenetic studies have demonstrated that
C. simensis is closely related to species of the crown-group Canis,
related to the extant gray wolf (C. lupus)14–17 (Supp. Note 3,
Supp. Figure 3). This might hint at the ancestry of extant
Ethiopian wolf populations, since true Canis species are well-
represented in the Eurasian fossil record from 2.5 Ma and are
commonly related to living canids, for example the lineage Canis
borjgali–C. orcensis–C. mosbachensis to C. lupus18–21 (Sup. Inf.),
supporting new interpretations17 and contrasting with previous
estimates based on mtDNA of a late Middle–Late Pleistocene
differentiation of C. simensis from a wolf-like ancestor at around
100 ka12. An alternative hypothesis based on molecular data—
that C. simensis’ time of divergence from other crown-group
Canis species was around −2.5 Ma—has thus far lacked
empirical evidence17 (Sup. Inf.). The discovery of MW5-B208 at

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04908-w

2 COMMUNICATIONS BIOLOGY |           (2023) 6:530 | https://doi.org/10.1038/s42003-023-04908-w |www.nature.com/commsbio

www.nature.com/commsbio


the time span of 1.6–1.4 Ma, with all the dentognathic peculia-
rities of its extant relatives and very few differences, constitutes
the first empirical support for the genetic interpretations of
C. simensis phylogenetic relationship with the crown-group
Canis.

The Early Pleistocene dispersal of C. simensis’ ancestors from
Eurasia to Africa appears to have been coeval with that of the
ancestors of the hypercarnivorous Lycaon pictus (African hunting
dog), which arrived to Africa later than 1.8 Ma22,23. At the same
time, 2.0–1.8 Ma, yet in the opposite direction, hominins
dispersed into Eurasia, as indicated by the record at the site of
Dmanisi24,25. In the absence of other earlier evidences, this
hypothesis fits with the new date of the fossil record of
C. simensis, 1.6–1.4 Ma.

Modeling the Canis simensis’ niche for past and future pro-
jections. The current regional topography of the Southeastern
Ethiopian Highlands was largely shaped by late Pliocene tectonic
uplift (ca. 4.5 Ma), after which the landscape stabilized to its
current topographic configuration26. By modeling the species’
bioclimatic requirements in the present, we were able to project
its ecological niche onto simulated past and future environmental
conditions, creating Habitat Suitability Index (HSI) maps that
identify the favorable bioclimatic conditions in Ethiopia through
time for C. simensis (Figs. 5 and 6). Given the species behavior
and ecological needs, this allows us to estimate potential fluc-
tuations in its geographic range. The reliability of these projec-
tions was guaranteed by checking for models’ transferability
(Supp. Table 2 and Supp. Note 5).

Fig. 1 Location and stratigraphy of the site of Melka Wakena (Ethiopia). a, b Relief map from Natural Earth (public domain): http://www.
naturalearthdata.com/. c Stratigraphy of the MW5-West sequence. Photo taken by author (T.G.) in 2021. d Stratigraphic position of MW5-B208 in relation
to the dated archaeological sequence at locality MW5. Stratigraphic log was created by author (A.A.).
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Nowadays, C. simensis is adapted to live in the alpine grassland
environments of the highest Ethiopian mountains, between 3000
and 4500 m asl4 and with cold climates during most of the year27.
The model predictions used in this study (see Bioclimatic
variables in “Methods”) are consistent with the empirical
information and indicate that the species occupies territories
with an annual mean temperature ranging from ~6 °C to 13 °C,
and an annual temperature excursion (i.e., highest temperature of
the warmest month minus the lowest temperature of the coldest
month) ranging from 15 °C to ~22 °C. Also, the annual mean
precipitation range is wide (from 890 to 1639 mm) with more
average rainfall occurring during the warmest months (Supp.
Note 5). Our models are consistent with the Early Pleistocene
palynological record of the Melka Kunture archaeological series28,
also in the Ethiopian highlands (Supp. Note 1, Supp. Figure 1),
which indicates that similar favorable environmental conditions
for the survival of the Ethiopian wolf already existed when its
ancestor arrived in Ethiopia (Figs. 5a and 6a, Supp. Note 5).

Within the radio-isotopic age interval for the Melka Wakena
site-complex, our results suggest that the time interval with the
highest percentage of highly suitable territories for C. simensis
was around 1657 ka (Fig. 5a), when favorable conditions occurred
throughout the Ethiopian highlands (Fig. 6b). Conversely, the
model suggests a drop in habitat suitability at around 1437 ka
(Fig. 5a), leading to a highly reduced potential geographic range
of the Ethiopian wolf (Fig. 5c).

According to our models, changes in the species’ potential
geographic distribution were less dynamic up to 1Ma, whereas it
contracted and expanded substantially and repeatedly with the
onset of 100-ka glacial cycles (Brown-Forsythe Test29: 422.1953,
p≪ 0.001, Fig. 4b). Our tests confirmed a significant and negative
relationship between the species’ potential geographic range and
both the mean temperatures (ARIMA regression: slope=−0.097,
p≪ 0.001) and altitude sampled by the species (ARIMA
regression: slope=−4.160, p≪ 0.001) during the last 2 Ma
(Supp. Note 5, and Supp. Figures 4 and 5). During periods of
warmer climate, its potential geographic range was drastically
reduced, forcing the species to move to higher elevations, and
during periods of cooler climate its potential geographic range
expanded into lower topographic elevations, favoring the
connection of previously spatially fragmented isolated popula-
tions (Fig. 5c). Interglacial periods, such as the Eemian (from
about 130 to 115 ka) in our models, represent times of maximum
deviation from the estimated favorable climatic conditions for the
species (Fig. 5a) and, in turn, of maximum reduction and
population fragmentation within its potential geographic range
(Fig. 6d). Thus, these periods of warm climate may have driven
the populations close to a bottleneck, and possibly led some of
them to extinction30. However, the general cooling of the climate
during the Middle and Late Pleistocene increased the potential
habitat area of C. simensis populations and may have allowed
them to move to lower elevations, connecting and exchanging

Fig. 2 The fossil from Melka Wakena and the extant Ethiopian wolf. a Canis simensis drawing by S. Bartolini-Lucenti. b the silhouette of C. simensis and the
photographs and 3D model of the right mandible MW5-B208 c in buccal, d lingual, e occlusal, and f detailed occlusal view of the p4-m2. Silhouette of Canis
simensis made by authors (S.B.L.).
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genes with adjacent populations. The overall population size
would recover when the different populations connected
physically. In summary, we show that the Ethiopian wolf’s
favorable conditions and geographic range as predicted from our
hind-sight models, expanded during cold phases of the
Pleistocene (Supp. Note 5); the Last Glacial Maximum (LGM
about 26–18 ka) could have been one of the most favorable phases
(Figs. 5b and 6e). These analyses show that C. simensis was always
an endemic species, with its maximum potential geographic range
restricted to the Ethiopian highlands (Fig. 6b–e), represented by
small populations, mostly fragmented during the warmer phases
of the Quaternary. This is coherent with the hypothesis of the
Long-term Small Populations Size and small genetic diversity of

C. simensis, with a succession of several bottlenecks during its
evolutionary history31.

By modeling its favorable climatic conditions, we infer suitable
territories at present and forecast the fate of C. simensis in the
Ethiopian highlands over the next 80 years. Our models imply that
present and future global warming constitutes a detrimental factor
for the Ethiopian wolf’s survival. In the past 2Ma, the Ethiopian
highlands never experienced the temperature increase forecasted
for the future (Fig. 5a). This increase implies a significant shrinkage
of the Ethiopian wolf’s habitat, which may drastically reduce its
geographic range and bring populations to the brink of a
bottleneck. There is also evidence that the current global climate
change has already induced phenological shifts in top predators,

Fig. 3 Buccal morphology of different Plio-Pleistocene and extant African canid mandibles. The fossil specimens are arranged in three lines in
geographic areas (i.e., North, East, and South African sites). Site numeration: (1) Ahl al Oughlam (Morocco); (2) Grotte de Rhinoceros (Morocco); (3)
Aralee Issie (Ethiopia); (4) Koobi Fora, Upper Burgi-KBS Members (Kenya); (5) Sterkfontein Member 4 (South Africa); (6) the red star, Melka Wakena
(Ethiopia). a right mandible MNHN.F.Th1-10728 of Lupulella mohibi from Grotte de Rhinoceros36. b, c right mandible fragments of Lupulella sp. from Koobi
Fora, Upper Burgi-KBS Members37: b KNM-ER 332, and c KNM-ER 895. d Canis brevirostris from Sterkfontein Member 439: 3D model of left hemimandible
fragment DNMNH.STS137 (courtesy of Dr. M. Tawane and J. Adams, see Adams et al.40). e, f buccal views of right mandible fragments of Lupulella paralius
from Ahl al Oughlam36: e MNHN.F.AaO-4119, and f MNHN.F.AaO-3499. (g, h) left mandible fragments of Eucyon kuta from Aralee Issie38: g left
hemimandible fragment MSD-VP-4/438, and h left hemimandible ARI-VP-1/64038. i–k buccal views of mandibles of Lupulella adusta: i right mandible
AMNH-216344, j left mandible, reversed, MZUF 8496, and k right mandible AMNH-52049. l–n buccal views of mandibles of Lupulella mesomelas: l right
mandible MZUF 2834, m right mandible MZUF 1707, n right mandible MZUF 1843. o–q buccal views of mandibles of Canis lupaster: o right mandible NHM
7434, p left mandible, reversed, MZUF 1851, q right mandible MZUF 2110. r–t buccal views of mandibles of Canis simensis: r right mandible CE 818, s right
mandible CE 17801, t right mandible CE 17800. Map and Silhouettes of canids made by authors (S.B.L.).
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with drastic consequences for their reproductive success32. Current
climatic conditions already determine very restricted contiguous
areas suitable to the species (Fig. 6f and Supp. Table 3). For the
future, even optimistic projections, taking into account adequate
climate policies (Models: CNRM-CM6-1 and CNRM-ESM2-1, ssp:
126, with mean global temperature increase lower than 2 °C in
2100, Supp. Note 5), indicate that the most favorable habitats will
be reduced up to about 65% of its current extent by 2080 (Supp.
Note 5) and that they will totally disappear afterward (Supp.
Note 5, Supp. Tab. 4). Indeed, more pessimistic projections of
faster increases of temperature and CO2 emissions predict a habitat
loss of ~95% (Model: BCC-CSM2-MR, ssp: 585, year: 2100, Supp.
Note 5) and up to 100% (Model: CNRM-CM6-1, ssp: 370 and 585,
year: 2080; Model: CNRM-ESM2-1, ssp: 585, year: 2100) of the
most suitable territories (see Supp. Note 5, Supp. Table 4, for
intermediate scenarios). By considering an intermediate-
pessimistic increase of temperature (BCC-CSM2-MR, ssp: 370),
we forecasted a reduction of the species’most suitable conditions of
about 28% by 2040 (Fig. 6g), ~63% by 2060 (Fig. 6h), ~74% by
2080 (Fig. 6i), and ~87% by 2100 (Fig. 6j). In general, the preferred
conditions for the Ethiopian wolf will be confined to the mountain
tops but will be highly reduced geographically (OLS regression,
Supp. Note 5) and fragmented into many patches with poor

physical connections (MIROC6 model, GLM regression, Supp.
Note 5 and Supp. Table 5), although different future climatic
projections may impact differently on the species’ habitat (Supp.
Note 5 and Supp. Table 6).

Discussion
Our comparative analysis of the extant specimens of African
canids shows that MW5-B208 belongs to a fossil form of the
Canis simensis lineage (Figs. 3 and 4; Supp. Tab. 1, Supp. Note 4).
Both anatomical and morphometric analyses confirmed similarity
between the specimen from Melka Wakena and the extant
Ethiopian wolf. It is worth noting that the fossil takes a dis-
criminant score that situates it in the lower limit of the range of
values shown by Ethiopian wolves in the discriminant function.
This may be tentatively interpreted as indicating that while
MW5-B208 shows the metric features of the lower dentition and
jaw of a specimen of C. simensis, it does not represent the fully
evolved condition of this species. Given that the Early Pleistocene
altitude of Melka Wakena was similar to the current situation
(~2300 m above sea level)26, the specimen MW5-B208 constitutes
the first-ever evidence that C. simensis was present on the
Ethiopian highlands from at least 1.6–1.4 Ma.

Fig. 4 Morphometric comparison analyses of the mandible MW5-B208 from Melka Wakena as opposed to extant canids. a Principal component
analysis on dentognathic variables. The graph shows a clear separation between the mesocarnivorous canids (on the left) and the three species of pack
hunting hypercarnivores (on the right). Yellow star represents the position of MW5-B208 from Melka Wakena. b Bootstrap cluster analyses on PCA
scores, confirming the similarity of MW5-B208 to extant Canis simensis. Numbers represent the percentage p-values supporting the node: values b above
95% are reported in bold red. c Linear discriminant function between the three species of jackals and the Ethiopian wolf. This function reclassifies correctly
100% of the specimens of the living canid species and assigns the Melka Wakena fossil jaw to the group of C. simensis. However, the score of the specimen
in the discriminant function is closer to the limit between the groups compared (R0) than to the group centroid of Ethiopian wolves (R1), which suggests
that the fossil jaw does not show the fully evolved condition of a mandible of C. simensis. Silhouettes of canids made by authors (S.B.L.).
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The geographic position of Melka Wakena coincides with the
territory where our model identifies some of the highest values of
the HSI (i.e., indicating highly favorable conditions for the spe-
cies) throughout Ethiopia over the last 2 Ma (these values were
higher than 99% of the area of the whole region). Since habitat
suitability is typically correlated with population abundance33, the

likelihood was high that the species’ fossilized remains would
have been found in this area34.

Our study renders the absence (until the current discovery) of
C. simensis from the fossil record a likely result of the scarcity of
documented archaeological and paleontological sites on the
Ethiopian highlands. The bulk of the Quaternary fossil record in

Fig. 5 Temporal trend of ecological and environmental parameters of C. simensis in Ethiopia and Melka Wakena. a Temporal trend of Habitat Suitability
Index (HSI) values computed for the last 2Ma at the site of Melka Wakena (violet line), as mean value in the whole Ethiopia (blue line). At the base of this
panel (a) a sequence of green points indicates the temporal intervals with environmental conditions in Ethiopia better than the present time interval; below,
the sequence of orange points indicates temporal intervals with conditions similar to the current climate in Ethiopia. In some cases, these two different
sequences of green and orange points apparently overlap in time, thus generating time bins that seem to include both better and similar conditions to
present Ethiopia. This is only a graphical issue due to limit of minimum pixel size in the image. In order to make present and past time bins comparable,
current climatic conditions were determined by using the Raia et al.55 raster layer for the present. b Temporal trend of the species’ geographic range’s
Log10 surface area. For species’ geographic range computation, see “Methods” section. c Temporal trend of the Log10 mean altitude sampled by the
species in the reconstructed geographic range. Orange vertical dashed lines indicate time intervals important to the fossil localitity of Melka Wakena:
1690 ka, the maximum estimated radiometric age of the site; 1657 ka, age with the highest HSI value reconstructed for the site in the estimated age range;
1437 ka, age with the lowest HSI value reconstructed for the site in the estimated age range; 1324 ka, the minimum estimated radiometric age of the site;
LIG, Last Interglacial (~123 ka); LGM, Last Glacial Maximum (~22 ka).
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eastern Africa derives from the rich paleoanthropological and
paleontological sites in the rift valley, where C. simensis most
probably would not be present, given its adaptation for highland
environments. The discovery of MW5-B208 thus underscores the
importance of paleoanthropological research outside the East
African Rift System.

The Ethiopian wolf is one of the most iconic species on the
African continent. While our study is not aimed to outline con-
servation strategies, it does underscore the urgent need for such
programs in order to safeguard the remaining habitats of this
ecologically specialized, highly endangered species and to prevent
its reproductive depression. Since its adaptation to the Afroalpine
environments, at least 1.6–1.4 Ma ago, C. simensis most probably
has been at the brink of extinction several times due to climate
changes, yet it has always recovered. This species is a true bio-
logical legacy that belongs to the world’s nature heritage. It is an
ethical as well as a scientific duty to preserve and draw the
Ethiopian wolf from the brink of extinction and turn it into a
persistent animal.

The discovery of the ~1.6–1.4Ma specimen MW5-B208, coupled
with the genetic data that suggest its speciation at an even earlier
date, suggests that populations of the Ethiopian wolf likely survived
unfavorable environments throughout a number of climatic cycles

since their arrival to the Ethiopian highlands. Additional informa-
tion, with the application of new methods to reconstruct the geo-
graphic distributions of past species35, is needed to understand how
C. simensis overcame past periods of habitat loss, which might help
in building conservation programs for this iconic animal.

Methods
Comparative sample, programs, and software used for the morphological and
morphometric analyses. The present study describes and analyses a canid
mandible (MW5-B208) recovered from the Early Pleistocene site Melka Wakena
(Ethiopia), comparing it taxonomically to other African Plio-Pleistocene medium-
sized canids and to selected extant species of the genera Lupulella and Canis. The
subject fossil is housed at the Ethiopian Heritage Authority (EHA) in Addis Ababa.
The Villafranchian and Epivillafranchian canids from Africa housed at Musée
National d’Histoire Naturelle (MNHN, Paris) as well others from the literature
were utilized as comparative fossil material. This fossil comparative sample
includes specimens of Lupulella paralius Geraads, 2011 from Ahl al Oughlam,
Morocco36; Lupulella mohibi Geraads, 2011 from Grotte de Rhinoceros,
Morocco36; Lupulella sp. from Koobi Fora, Upper Burgi-KBS Members37; Eucyon
kutaWerdelin et al., 2015 from Aralee Issie, Ethiopia38 and Canis brevirostris Ewer,
1956 from Sterkfontein Member 4, South Africa39 (digital data obtained thanks to
the courtesy of Dr. M. Tawane and Dr. J. Adams from Morphosource40). Extant
specimens housed at the American Museum of Natural History (AMNH, New
York), “La Specola” Museo di Zoologia di Firenze (MZUF, Florence), Nat-
urhistorisches Museum Basel (NMB, Basel), Musée National d’Histoire Naturelle
(MNHN, Paris), and EHA (Addis Ababa) were also used for morphological and

Fig. 6 Temporal trend of climate in Ethiopia and of habitat suitable to C. simensis. a Reconstructed Annual Mean Temperature (BIO 1) averaged for the
whole Ethiopia territory during the last 2Ma, based on Raia et al.55, the present and future forecasts in 2040, 2060, 2080, and 2100 (based on the model
BCC-CSM2-MR with ssp: 370, see Supp. Note 5 for further information). Before averaging temperature values, present and future temperature raster were
upscaled to a resolution of 50 × 50 km, as for the past bioclimatic rasters. Blue dots indicate the temperature values for the present, for 2040, 2060, 2080,
and 2100 (see Supp. Note 5 for other future models and scenarios). The Last Interglacial (LIG) and the Last Glacial Maximum (LGM) are also indicated by
the dashed-gray vertical lines at 123 and 22 ka; b–emaps of the reconstructed Ethiopian wolf’s Habitat Suitability Index in Ethiopia for 1657 Ka (b), 1437 Ka
(c), 123 ka (LIG, d), and for 22 ka (LGM, e); and f–j Habitat Suitability Index map of the present (f) and forecasted maps for the 2040 (g), 2060 (h), 2080
(i), and 2100 (j) according to the CMIP6 model BCC-CSM2-MR with the shared socio-economic pathway 370 (see “Methods” for further information
about CMIP6 models). Map of Africa modified by the authors (F.C.) from https://neo.gsfc.nasa.gov/view.php?datasetId=BlueMarbleNG, credits to NEO
(Nasa Earth Observations, https://neo.gsfc.nasa.gov/). Maps showing the C. simensis spatial distribution through time generated modified by authors
(F.C.) by applying Maxent models to the bioclimatic variables’ rasters.
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metrical comparisons. We examined specimens of Lupulella adusta (Sundevall,
1847), Lupulella mesomelas (Schreber, 1775), Canis lupaster Hemprich and
Ehrenberg, 1832, and Canis simensis Rüppell, 1840. Moreover, a wide dataset of
craniodental measurements of modern canids, taken by Prof. Blaire Van Valk-
enburgh, was used also in some statistical comparisons, including a discriminant
analysis between omnivorous (i.e., meso- and hypo-carnivorous) and hypercarni-
vorous canids, in order to reach paleoecological inferences for the Melka Wakena
canid. Cranial and dental measurements were taken with a digital caliper to the
nearest 0.1 mm41. Photographs of the specimens were taken with a camera Canon
EOS 200D and with a Canon 60D and subsequently processed with Photoshop CC
2017 (release 2017.0.1). Inkscape ver 0.92.4 was used to compose and finalize the
figures. Three-dimensional data of specimen MW5-B208 were acquired using a
handheld high-resolution 3D scanner EinScan Pro HD (www.einscan.com) located
at EHA. Scanning was carried out by one of the authors (T.G.) with the help of
EHA curator Sahlesellasie Melaku. This hand-held scanner is compact and highly
suitable for in situ scans of small to medium-sized objects. Its field-of-view (FOV)
ranges between a maximum of FOV= 31.0 × 24.0 cm and a minimum of
20.9 × 16.0 cm with an adjustable scan speed between 10 to 30 frame per seconds.
Its accuracy is around 0.1–0.3 mm depending on the chosen preset (respectively
“scan” or “rapid scan”), making it suitable for small objects. In order to obtain the
3D model of the specimen, raw data were acquired with multiple passes of the
scanner on the mandible, which was oriented in different views and positions to
allow a full coverage of the surface of the specimen. Acquisition and subsequent
elaboration of the data were performed in the native software EinScan-Pro series
ver. 3.1.0.2. This program enabled cleaning, alignment, and refinement of the data
prior to the creation of the 3D mesh of the specimen. The rapidity and quality of
the scanner allowed obtaining a valuable digital reproduction of the fossil in a
short time.

Morphometric analyses42–47 of the metric affinities of the Melka Wakena
specimen were carried out using nineteen metric variables, measured on the teeth
and on the portions of the mandibular ramus preserved in the fossil jaw. The latter
include: the anteroposterior length and buccolingual breadth of the lower canine
(Lc and Bc, respectively) measured at the base of the tooth crown, the length and
breadth of the fourth premolar (Lp4 and Bp4, respectively), the length of the
trigonid blade in the lower carnassial (Lm1trig), the maximum breadth of the
carnassial (Bm1), the length and breadth of the talonid basin in the carnassial
(Lm1tal and Bm1tal, respectively), the length and breadth of the second molar
(Lm2 and Bm2, respectively), the length between the anterior tip of the canine and
the posterior border of the second molar (Lcm2), the height and breadth of the
mandible at the posterior border of the canine (JDc and JBc, respectively), the
height and breadth of the mandible at the contact between the third and fourth
premolars (JDp3p4 and JBp3p4, respectively), the height and breadth of the
mandible at the contact between the fourth premolar and the carnassial (JDp4m1
and JBp4m1, respectively), and the height and breadth of the mandible at the
contact between the carnassial and the second molar (JDm1m2 and JBm1m2,
respectively). Abbreviations are also reported in a separate section.

A principal components analysis (PCA) was performed after logarithmic
transformation of these metric variables on a sample of seven species of living canids,
which includes four mesocarnivorous species [the Ethiopian wolf (Canis simensis,
n= 20), the golden jackal (C. aureus, n= 19), the side-striped jackal (Lupulella adusta,
n= 21), the black-backed jackal (Lup. mesomelas, n= 21) and the coyote (C. latrans,
n= 21)]. The sample also includes three hypercarnivorous, pack hunting species [the
gray wolf (C. lupus, n= 22), the African painted dog (Lycaon pictus, n= 19), and the
dhole (Cuon alpinus, n= 21)]. Two other tests were performed to assess the similarity
of MW5-B208 to the other fossil species in our sample. Firstly, we performed a linear
discriminant analysis between the three species of jackals (n= 61) and the Ethiopian
wolf (n= 20), using the Wilks lambda criterium for selection of variables (λwilks =
0.132, c2= 153.912, p < 0.0001). The linear function obtained incorporates six variables
(Φ=−0.577Lp4+ 1.545Bp4+ 0.277Lm1trig− 0.839Bm1tal+ 0.256Lcm2− 0.623
JBp3p4− 14.966) attempting to reclassify each specimen via cross-validations with the
leave-one-out method. A second classification algorithm performed on the resulting
data of the PCA is a permutation cluster analysis: bootstrapping cluster analysis
(hereafter BCA) is a partitioning method, helpful to test the robustness of the
clustering results. We briefly outline the way the methodology works: a preliminary
clustering of observations is performed via an UPGMA algorithm (unweighted pair
group method with arithmetic mean)48 to be used as a reference cluster in which the
fossil species are grouped according to similarity in their values. Subsequently, the
algorithm assigns a probability value to each partitioning level in the reference
clustering. Then a sample of the original data (i.e., rotated a) is randomly chosen and
used to feed a new UPGMA cluster analysis, which yields a new cluster. The
comparison between the reference and the sample clusters yields a similarity index (G)
that ranges between 0 (if the two clusters are totally different) and 1 (if the clusters
generated with the original and sampled data coincides). The G* is then compared
with the expected similarity value between reference and sample-based clustering (G°)
under the null hypothesis that the sampled dataset is a truly random sample of the
original data. The resampling the original dataset was reiterated 1000 times. In the end,
if the probability that G* is higher or equal to G° is higher than the significant level
(P(G° ≤G*); α= 0.05), the partitioning levels of the reference cluster analysis are sharp
(for a detailed explanation of the algorithm, see DePatta Pillar49).

Abbreviations for the morphometric analyses: B: maximum buccolingual breadth
of the tooth measured at the base of the tooth crown; JBc: breadth of the mandible

at the posterior border of the canine; JDc: the height of the mandible at the
posterior border of the canine; JBp3p4: breadth of the mandible measured at the
interalveolar space between the third and fourth premolars; JDp3p4: the height of
the mandible measured at the interalveolar space between third and fourth
premolars; JBp4m1: breadth of the mandible measured at the interalveolar space
between the fourth premolar and the carnassial; JDp4m1: the height of the
mandible measured at the interalveolar space between the fourth premolar and the
carnassial; JBm1m2: breadth of the mandible measured at the interalveolar space
between the carnassial and the second molar; JDm1m2: the height of the mandible
measured at the interalveolar space between the carnassial and the second molar; L:
maximum mesiodistal length of the tooth measured at the base of the tooth crown;
Lcm2: the length between the anterior tip of the canine and the posterior border of
the second molar; m1tal: trigonid portion of the lower carnassial; m1trig: trigonid
portion of the lower carnassial.

Modeling the bioclimatic niche through time. The reconstructions of past and
future spatial distribution of the Ethiopian wolf and related analyses require
mathematical modeling of the species’ bioclimatic niche followed by the projection
of this niche onto the geographic space. This procedure is known as Species Dis-
tribution Modeling (SDM)50 and is widely employed for both living51 and fossil
species35,52. The output of this projection is a map of the species’ Habitat Suitability
Index (HSI map), which is the reconstruction of the territories suitable to the
species’ habitat in the geographic space and that can be used to derive the species’
geographic range and metrics of the landscape connectivity structure. The proce-
dures used to model the bioclimatic niche of C. simensis, to forecast its geographic
range expansion or contraction in the next 80 years and to project these conditions
to the past 2 Ma are described in the following section. We present future pro-
jections for C. simensis’ under different scenarios of climate change. Using models
of past temporal intervals, we explored whether the habitat of Ethiopian wolf
already existed before and during the time span suggested for human occupations
at the Melka Wakena site-complex and to study the species’ temporal evolution in
the area of present-day Ethiopia; for the future, we aimed at estimating the degree
of habitat loss caused by global warming. Furthermore, the past and future habitat
reconstructions were built upon different environmental variables and at different
spatio-temporal resolutions. This means that past and future C. simensis’ habitat
reconstructions cannot be compared to each other although being accurately
reconstructed for their scopes. We named the models for projecting the bioclimatic
niche onto past temporal intervals the “Hindcasting Model” (HM), whereas the
models for projections onto the future the “Forecasting Model” (FM).

Species’ occurrences. Information about the present occurrences of C. simensis is
unsystematic and sporadic. GBIF public repository (www.gbif.org) registered 96
occurrences, but the error of the geographical positions was too high to allow an
accurate spatial modeling. Instead, we used the geographic range polygons pro-
vided by the IUCN (International Union for the Conservation of Nature, https://
www.iucnredlist.org/) for C. simensis as a framework for simulating species
occurrences. According to the most recent available estimates, there are 197 mature
reproductive individuals within the total census population4; therefore, we simu-
lated a total of 200 random points falling inside the polygons of the species’
geographic range. This procedure is widely used for modeling species distribution
in the absence of accurate true presence data53. Because the species is narrowly
distributed and the IUCN polygons are drawn from empirical data and the species
actual occurrences and movements, simulating presence points inside the polygons
approximates the populations’ general distribution. In our simulation, only one
presence point could occur in any single grid cell of the bioclimatic variables raster
used to model the specie’s niche. This procedure is helpful to reduce overfitting
during the modeling process. Since we used bioclimatic variables with different
spatial resolutions for the Hindcasting and Forecasting models we used (see below),
we produced two sets of simulated occurrences, one each for the past and for the
future models, with spatial grids of 4 × 4 and 1 × 1 km cell resolution, respectively.

Bioclimatic variables. We used different sets of bioclimatic variables to first model
the species’ bioclimatic niche on, and then to project it onto future and past time
intervals. The Forecasting models and the Hindcasting models derive from the
same set of current bioclimatic conditions, differing in the number of the variables
considered in the models. Following this, the Forecasting and Hindcasting models
were projected onto different temporal intervals, in the next 80 years and within
the past 2 Ma, respectively.

For calibrating the Hindcasting models, we used four of the nineteen
bioclimatic variables of the present time interval as provided by www.worldclim.
org54, with a spatial resolution of 4 × 4 km grid cell combined with a Net Primary
Productivity (NPP) layer (see the next paragraph for details). For past projections
of the species’ niche models, we used the improved version55 of the PLASIM-
GENIE paleoclimatic emulator data56 including four bioclimatic and NPP layers at
a spatial resolution of 50 × 50 km grid cell and a temporal step of 1000 years. The
PLASIM-GENIE bioclimatic dataset spans the last 5 Ma, including the
reconstruction of the current climatic conditions at the same spatial resolution, a
fact that makes past habitat reconstructions comparable with present habitat
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estimations (see below). We used these climate projections to reconstruct the
species’ spatial distribution from the present to 2 Ma.

For calibrating the Forecasting models for projection onto the future, we used
all the nineteen bioclimatic variables at a spatial resolution of 1 km side grid cell, as
provided at http://www.worldclim.org, in order to reconstruct the most detailed
current realized species’ niche. We used the bioclimatic variables provided by
http://www.worldclim.org at a 4 × 4 km grid cell resolution for the four future time
intervals: 2021 to 2040, from 2041 to 2060, from 2061 to 2080, and from 2081 to
2100. Future climates are simulated by different research institutions that are
coordinated by the Coupled Model Intercomparison Projects, now at its stage 6
(CMIP6). Each institution uses a specific emulator to predict future climate.
Nevertheless, all these future projections are modeled by taking into account
different shared socio-economic pathways scenarios (ssp). These scenarios
hypothesize future socio-economic projections and political environments which
would drive to different CO2 emissions’ rates in future years57. The CO2 emission
rate is a parameter used to forecast the future temperature variation. Each
institution’s emulator yields a climate forecast that has a specific response to the
above-mentioned CO2 emission scenarios. This means that each emulator
produces a climate forecast by considering a specific “climate sensitivity”, i.e., the
rate of temperature increase with the increase of CO2 in the atmosphere. The
CMIP6 project produced future climates with a sensitivity ranging from 1.8 and
5.6. The IPCC AR5 report58 considered as plausible a range from 1.5 and 4.5. For
our future projections of the Ethiopian wolf climatic niche, we consider four out of
all the available CMIP6 emulators: the MIROC6 with a sensitivity of 2.6; the BCC-
CSM2-MR emulator with a climate sensitivity of 3; CNRM-CM6-1 with a
sensitivity of 4.3; and CNRM-ESM2-1 with a more extreme sensitivity of 4.8. For
each CMIP6 model, we considered the four most important ssps with an increasing
CO2 emission rate through time (for further details, Meinshausen et al.57): ssp 126,
ssp 245, ssp 370, and ssp 585. Present, past and future bioclimatic variable rasters
were projected into a Lambert Azimuthal Equal Area projection with projection
centre at the African continent before performing Species Distribution Models
(SDM). We used all the bioclimatic data as provided at the downloading date,
13 June 2021.

Variables’ pre-processing. The model used to project the Ethiopian wolf climatic
niche onto past time intervals could not use all the present bioclimatic variables
since the raster dataset54,55 includes only four out of the nineteen bioclimatic
variables available for the present time interval, with an additional NPP layer. We
included in the Hindcasting Models the following variables: BIO 10 (Mean Tem-
perature of Warmest Quarter), BIO 11 (Mean Temperature of Coldest Quarter),
BIO 18 (Precipitation of Warmest Quarter), BIO 19 (Precipitation of Coldest
Quarter) and NPP. To reduce the effect of multicollinearity between these vari-
ables, we performed a Principal Component Analysis and considered the related
five PC scores for all the modeling processes. Santini et al.59 recommended to check
for exportability through time of the models, since models calibrated with present
variables might produce extrapolations when projecting onto climatic conditions of
different time intervals. We performed a Multivariate Environmental Similarity
Surface analysis (MESS)60 on all the variables of all the time intervals to detect
those raster’s pixels with values’ combinations not included in the present climate.
Before performing the MESS analyses, we first turned past variables into PCA
scores by applying on them the PCA model calibrated with the variables of the
present time interval. After the MESS analyses, we ruled out a specific past bio-
climatic variable if, considering all the temporal intervals, its mean proportion of
the out-of-the-range values in the total Africa raster would have exceeded 20%. We
anticipate here that none of the five PCA raster variables would be ruled out from
the modeling procedures.

For future projections of the climate, we performed the same MESS analyses
but, because future climate projections shared the same bioclimatic variables with
current conditions, we did not perform the PCA. Instead, we reduced the possible
effects of multicollinearity by removing from the set of present bioclimatic variables
those with a Variance Inflation Factor higher than 361. After this procedure, eight
out of nineteen bioclimatic variables proved useful for the modeling process. For
the future projections, too, none of the remaining bioclimatic variables showed
critical issues of extrapolation after the MESS analyses.

We performed the described analyses and pre-processing procedures with all
the CMIP6 future projections and ssp scenarios.

The hindcasting and forecasting modeling procedures. As mentioned above,
Hindcasting Models (HMs) are trained for past niche projections, whereas the
Forecasting Models (FMs) were employed for projecting species’ niche onto future
ones. Both sets of models were calibrated by combining the simulated species’
occurrences, as described above, with the climate of the present. For the calibration
of both Hindcasting and Forecasting models we employed the procedure called
“ensemble of small models”62. Rather than creating a single model with all the
available variables, this procedure combines a number of models built upon dif-
ferent combinations of a subset of the predictor variables. The authors suggest to
average the predictions of all the models by weighting them according to their
accuracy. This procedure is a strategy to model the bioclimatic niche of small-
ranged, endemic species, like C. simensis, in order to avoid model overfitting, an
issue that may result in an underestimation of the species’ niche breadth. For the

Hindcasting models, we only used five bioclimatic variables of past intervals. While
employing PC axes would have reduced variable’ collinearity, a small number of
predictors is not advisable because it could determine model’s overfitting. Hence,
the strategy of Breiner et al.62 was prioritized. We trained five small models, each
built upon a combination of four out of the five available PC variables. For fore-
casting, we built 28 models, each using a combination of six out of the eight
bioclimatic variables.

The Maxent model. The SDM we used to predict the species’ habitat suitability
was the Maxent algorithm63. Maxent belongs the family of presence-only methods
in which only species occurrences are required other than the environmental
variables. Being currently one of the most popular algorithms for presence-only
datasets, Maxent relies on the assumption that the observed species occurrence
locations represent a random sample of its true geographic distribution. The aim of
the algorithm is to find the true species probability distribution in the study area,
which is initially unknown. Further, since many theoretical assumptions are vio-
lated in the real world, the Maxent output is better interpreted as measure of the
species habitat suitability in the study area than its occurrence probability (for a
broad discussion about the Maxent output interpretation, see Merow et al.64 and
Elith et al.65). In Maxent algorithm the true (unknown) species’ occurrence
probability in the study area (the landscape, sensu Elith et al.65 is a function of the
Probability Density Function (PDF) of the environmental variables sampled at the
presence locations and of a prior hypothesis. Maxent aims to find an approx-
imation of this unknown true probability distribution. The theoretical framework
of this algorithm is given by the maximum entropy principle66, according to which
the best approach to approximate the true PDF of an event is to find the dis-
tribution with the maximum entropy, while still satisfying any known constraint63.
In other words, to assess the possible state of an event at an unknown location, we
have to maximize the number of possible choices of the state of the event. Max-
imizing the number of choices means maximizing the entropy of the system67. The
Maxent algorithm starts from the most maximized and unconditioned PDF, which
is represented by the uniform distribution63,64, and applies some constraints
determined by the characteristics of the PDFs of the variables at presence points. In
thermodynamic terms, finding the PDF with the maximum entropy equals to
expanding a gas into a larger volume after providing some energy to its molecules
(thus increasing the molecules’ chaotic movements) but controlling for the
volume’s shape. With a uniform distribution a species has the same chance to be
present in any location of the study area. In ecological terms, this means that the
probability of the species to be present in a location is a function of the relative
abundance in the landscape of the environmental conditions found there64. Hence,
the probability density function of environmental variable values in the study area
represents our prior hypothesis about the distribution with maximum entropy. If Z
is the set of predictor variables geographically distributed over the study, this prior
is defined as Q(z) and the Maxent algorithm can be explained by calculating the
probability of finding the variables’ values favouring the species’ presence. This
turns that Maxent algorithm has to find the distribution of predictor values that is
the closest to Q(z). The probability density function of these variables at the
locations where the species is observed is P(z), whereas P*(z) is the distribution we
want Maxent calculates by forcing it to be as closed as possible to Q(z). If we
remember the definition of maximum entropy described above, Maxent has to find
a P*(z) that also satisfies some constrains. These constrains are determined by the
statical characteristics of the environmental values at the presence points. Maxent
applies these constraints to the raw environmental variables and turns them into
“features”, i.e., functions of original predictors. The details about the features are
explained in Phillips et al.63 and Merow et al.64.

The mathematical formulation of Maxent model is the following, from Merow
et al.64, Equation 1.

P*ðzðxiÞÞ ¼
QðxiÞ expðzðxiÞIÞ

∑ iQðxiÞ expðzðxiÞIÞ
ð1Þ

where z(xi) is the vector of predictor/environmental values at location xi and I is
the vector of regressor coefficients. The aim of Maxent is to maximize the similarity
between the first term of the equation (the distribution of environmental vales
favouring the species’ presence/the prediction) and the second term, i.e., the
constrained prior distribution. The prior distribution of the environmental
variables is taken from a sample of the entire study area called background points.
The way we choose these points can strongly affect the Maxent predictions64. Since
the second term of the equation has as denominator the PDF of variables in the
whole study area, the sum of all the P*(z(xi)) is 164. This means that the final scores
yielded by the algorithm are very small and difficult to interpret. Maxent turns
these values into a logistic output that can be interpreted as Habitat Suitability
Index scores64,65.

Model cross-validation and parameter’ tuning. Classical calibration-testing
protocols require the splitting of the occurrence dataset into training and testing
data, the former used to build the mathematical model and the latter to measure
the model’s prediction accuracy. This procedure is known as cross-validation and is
particularly important when such models have to be transferred to different ter-
ritories for conservation strategies or for reconstructing the temporal evolution of a
species’ habitat, as in the current study. The calibrated model is then applied to
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reconstruct the known testing data and the related predictive performance is
measured by specific indices, like AUC, Boyce, and TSS. The cross-validation is an
iterative process, and its algorithm can be built according to the purposes of the
research. In machine learning protocols, the cross-validation procedure has the
important role of choosing the best combination of model parameters, thus
allowing control for the model’s accuracy and complexity, whose balance has a
prominent role for the model’s transferability59,68. The Maxent algorithm needs the
tuning of different parameters, such as the kind of features to combine and to apply
to the predictor environmental variables (i.e., the constraints discussed above)65

and a regularization multiplier, the function of which is to avoid model overfitting.
We applied the Maxent algorithm of Phillips et al.63, as provided in the package
“ENMeval” ver 2.0.369 of the R software environment42. This package allows to set
different cross-validation strategies for the tuning of all the model parameters
(features and the regularization multiplier). We followed the strategy suggested by
Helmstetter et al.68 and Santini et al.59, which resulted in the best way to tune a
Maxent parameters in order to ensure transferability of the model through space
and time. This procedure consists of dividing the occurrence data into different,
spatially separated folds, using subsets of the data to calibrate the model. The
remaining subsets of data were used to validate the model’s predictive performance
by means of the AUC metric. The algorithm builds many Maxent models itera-
tively by testing different combinations of parameters and then provides the related
performance metric. In the end, the user can choose the best performance model,
i.e., that which most correctly predicts the occurrences in the testing dataset. This is
a well-known “leave one out” strategy. Specifically, we divided the simulated
occurrence dataset into twelve spatially separated groups, roughly coinciding with
the polygons of the species’ spatial distribution provided by https://www.
iucnredlist.org/ (the same used to simulate presences, as described above). Since
these polygons have a north-south geographic distribution, we are sure that this
spatial block strategy is the one that can ensure temporal model’s transferability.
This strategy was used for both Hindcasting and Forecasting models.

Background record simulation. Maxent algorithm is a presence-only method and
only requires species’ occurrences and environmental data to work. As explained in
Eq. 1, the species occurrence PDF needs to be regularized by dividing it by the PDF
of environmental variables of the Landscape. Maxent uses a sample of the land-
scape represented by what are known as background point data. These points can
be simulated over the study area following different strategies and should be
sampled over the territory that could possibly host the species, although not found
there. The background points could be sampled randomly over the study area, but
this strategy implies that we know a-priori that the species could inhabit any area of
the territory being studied. Since this is far from a true species’ natural
distribution63, different strategies could be more suited to the ecology of the species
being studied. We followed a strategy that simulates a random distribution of the
background points but taking into account two constraints: (1) the occurrence
probability of background points is inversely proportional to the distance to pre-
sence points; (2) the territory where we simulated the background points was not
the whole of the area of present-day Ethiopia, but rather the territory enclosed by
the biomes actually inhabited by the Ethiopian wolf plus the geographic dis-
tribution of its main prey, the big-headed African mole rat Tachyoryctes macro-
cephalus. To build this territory we used the world’s ecoregion polygons70. The
range polygon of Tachyoryctes macrocephalus was downloaded from https://www.
iucnredlist.org/. Once we have identified the polygons of the ecoregions inter-
secting the Ethiopian wolf spatial polygons, we combined them with the polygon of
the big-headed African mole rat. Then we simulated several background points
inside this unique combined polygon, verifying that there was only one background
point per cell of the 4 × 4 km side resolution bioclimatic raster. We simulated
10,000 background points59.

Statistical analyses. We used the predictions of the hindcasting and forecasting
models to reconstruct the geographic range of the Ethiopian wolf through time and
to estimate how much of the conditions suitable for the species habitat was present
in the past and will be available to the species in the future scenarios.

Species geographic range and habitat suitability reconstructions in the past. At first,
after computing the continuous habitat suitability maps for each time interval from
0 to 2Ma, we extracted the HSI values corresponding to the geographic coordinates
of the Melka Wakena fossil site and to the territory of the whole Ethiopia for
comparisons. Then, we reported the time bins for which we recorded the highest
and lowest HSI values for Melka Wakena site during its estimated age range.

For estimating the species geographic range during past time bins, it is
important to remember that past bioclimatic rasters were provided by Raia et al.55

at a spatial resolution of 50 km side square cell—a rather coarse resolution
compared to the 4 × 4 km cell raster used to train the models (see above). Hence,
when comparing past and present habitat reconstructions, we used the projections
we made of the models onto the present bioclimatic layers as provided by Raia
et al.55. This allowed us to perform an informative comparison between the present
and past suitable territories available to the species. At first, we reconstructed the
temporal evolution of the species’ geographic range by binarizing the habitat
suitability map obtained for each temporal interval. The binarization is obtained by
considering all the cells in the raster map with a suitability index higher than a

threshold value as a species geographic range. There are many strategies to find the
most appropriate threshold value71, such as using the suitability value maximizing
the difference between correctly identified true presences and true absences.
Threshold values are computed by using the data for training the models and then
applied to the habitat suitability maps. In our very case, since the bioclimatic
variables of the present that were used for training the model and those of the past
time intervals have different spatial resolutions, computing the threshold value by
using the training data is not a valid strategy. Coarse-grained habitat suitability
maps of the past might not include all the HSI values computed for the present
temporal interval. Indeed, when we used threshold values computed with training
data, many past temporal intervals yielded no (i.e., zero) geographic range of the
species.

Here we used a special iterative strategy to compute a threshold value for
successfully binarizing coarse-grained HSI maps computed with the bioclimatic
rasters55. This strategy, which we dubbed Minimum Useful Threshold (MUT),
prevented us from computing a null species geographic range for the past time
intervals: (1) we created a vector of different thresholds ranging from 0.01 to 1,
with a step of 0.01; (2) we applied each one of these threshold values to binarize the
suitability maps computed from 0 to 2Ma; (3) we counted the number of raster cell
selected as species geographic range for each time bin. Then we chose as a valid
threshold the lowest suitability value higher than zero geographic range in the
complete considered time bin. We then applied this threshold to the continuous
habitat suitability maps of all the time bins, to derive the species’ geographic range
and to provide statistics about its temporal evolution. After computing the species’
geographic range, we tested if in the past time bins there were climatic conditions
as suitable—or more beneficial—to the species as those in the current territory of
Ethiopia. To this aim, we computed for each of the past 0.01 Ma-time interval a
Wilcoxon test between the habitat suitability values sampled by the species in its
estimated geographic range at the specific time bin and the same values sampled in
the current geographic distribution of the species. In addition, we counted the time
intervals for which we reconstructed statistically significant habitat suitability
values similar to, or higher than, the computed ones for the present in the territory
of Ethiopia. Since the amplitude of glacial cycles switched from a ~41 ka to ~100 ka
at about 1Ma, we hypothesized that the variance of the species’ geographic ranges
computed for the time intervals younger than 1Ma was higher than the variance
during intervals older than 1Ma. To test this hypothesis, we first averaged HSI
values within the species’ geographic range in each time bin and then performed a
Brown-Forsythe test for equality of variance, to compare the variances between the
bins younger and older than 1Ma. We performed the Brown-Forsythe test by using
the R package “onewaytests” ver 2.629.

Since Santini et al.59 warned about computing species’ geographic range by
binarizing the habitat suitability maps according to threshold, we also computed
for each time bin the surface area of cells in the maps with a specific range of
suitability values. Specifically, we divided the past Ethiopian territories into two
complementary spatial classes: one included cells with good-to-best habitat
suitability values (GB, HSI values higher than 0.5) and another included cells with
good-to-worst habitat conditions (GW, HSI values equals or lower than 0.5). Then,
we counted the number of cells in each of the two spatial classes per time bin. Since
our aim was to understand how many times in the last 2 Ma the species was in
better and in worse conditions than at present, when a time bin showed a
percentage of GB class higher than the GW we interpreted this information as a
species geographic range expansion, whereas the reverse result indicated a stage of
its range contraction.

This habitat suitability discrimination is important in order to understand
under which bioclimatic conditions the species was able to survive. The procedure
of HSI classification described above was applied to the portion of the territory of
Ethiopia where we reconstructed the species’ geographic range by binarizing the
habitat suitability map using the MUT strategy (described above). This geographic
limitation was necessary because, in all of the time bins considered in this study,
nearly the whole of the Ethiopia territory rendered very small suitability values, this
biasing the relative abundance of the two HSI classes.

The relationship among the species’ geographic range evolution, the temperature
changes, and the species’ altitude shift in the past. Since the Ethiopian wolf is known
to be adapted to the Afroalpine habitat72 we tested the relationships between the
changes in the species’ geographic range through time with the temperature var-
iation in the last 2 Ma and the altitudes at which the species dwelt as response to
climate change. Indeed, since the species currently inhabits high-altitude territories,
we hypothesized that any size variation of past geographic ranges was determined
by the species movement to higher elevations during unfavorable conditions during
warm climates, and towards lower altitudes during periods of colder climates, when
C. simensis expanded its territories. In order to obtain a value for average
temperature for each time bin, we extracted from the territory of Ethiopia the
raster values of the annual maximum and minimum temperatures provided in
Raia et al.55. Then, for each time bin, we averaged these two measures of tem-
perature and get an annual mean temperature in Ethiopia related to time bins. For
the geographic range of the species, we used the surface area of the HSI maps
binarized by the MUT strategy, whereas for the altitude, we recorded the mean
altitude value obtained by intersecting the species’ geographic range with the
altitude raster map of the Ethiopia territory as provided by http://www.worldclim.
org and rescaled to the same spatial resolution of Raia et al.55 bioclimatic raster
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maps. Then, we regressed the log10 of species geographic range surface area versus
both the mean temperature values and log10 mean altitude per time bin.

As ours are time series data, we had to account for issues related to temporal
auto-correlation in simple linear regressions’ residuals in order to have an accurate
calculation of the regression coefficients73. This was done by applying an Auto
Regressive Integrated Moving Average model (ARIMA)73. This model includes
three different components to properly compute the regression’s coefficients. The
auto regressive (AR) component allows to reduce the effect of auto-correlation in
the series of observations, thus complying with the simple linear regression premise
of independence of observations. Specifically, we calculated the order of the AR
component that tells the ARIMA model how many consecutive values in the time
series affect any single observation. For instance, an AR component of order 3
means that any observation can be predicted by considering the values of the 3
preceding observations in the time series73. The Integrated component of the
model (I) allows detrending the time series in order to have stationarity in mean
and variance of the measurements, whereas the moving average (MA) component
allows smoothing the series values to reduce the outliers’ effect. At first, we
performed an ordinary least square (OLS) regression between response (Log10
geographic range) and predictor variables (mean temperature and Log10 altitude).
Then, we measured the degree of auto-correlation in model residuals. In the case of
significant autocorrelations between these residuals, we used ARIMA models to
properly compute the relationship between the response and predictor variables
described above. We anticipate here that the residuals of the OLS showed
significant autocorrelations.

We carried out two different strategies to set the parameters of ARIMA model
components. In the first strategy, we used different combinations of parameters
based on the OLS residuals time series. Only the AR component order of the OLS
residuals was estimated automatically by means of maximum likelihood method.
As regards the I component, since the time series of OLS residuals showed a clear
auto-regressive component, we also used the first order (1) difference between
models’ residuals to confer stationarity to the residuals’ distribution73. As regards
the MA component, we performed six ARIMA models, each with fixed AR and I
components computed as described above, but with different MA component
values ranging from 0 (no moving average window) to 6 (i.e., by averaging up to 6
consecutive values in the time series). In the second strategy we estimated all the
three ARIMA components by means of maximum likelihood estimation as
implemented in auto.arima function in the package “forecast” ver 8.1674 of the
software R42. After computing all the ARIMA models described in the two
strategies, we chose the model with the lowest AIC.

Future suitable climatic conditions estimation. As mentioned above, since Santini
et al.59 discouraged the use of a unique binarized suitability map to estimate a species’
range size, we considered intervals of different habitat suitability values separately to
analyze the temporal evolution of some landscape metrics characterizing the terri-
tories suitable to C. simensis within the study area. For the present and for each of the
future time bin maps, we considered four classes of habitat suitability value pixels: the
first class, with the worst HSI values (HSI < 0.25); the second, with low values
(HSI ≥ 0.25 and HSI < 0.5); a third one with good values (HSI ≥ 0.5 and HSI < 0.75);
and a fourth class with the best habitat suitability conditions (HSI ≥ 0.75). For each of
the habitat suitability classes, we computed the following landscape structural con-
nectivity indices. We did not compute any measure of distance between patches since,
given that C. simensis occupies mountain tops, differences of HSI values between near
patches may be strongly affected by the steep altitudinal variation. The indices used in
this analysis were: the number of patches (“np”); mean patch surface area
(“area_mn”); Patch aggregation (“ai”) is the ratio between the number of the adjacent
patches of the same class and the maximum possible number of like adjacencies
involving the corresponding class, which is achieved when the class is maximally
clumped into a single, compact patch. Its values range from 0 to 100; Clumpiness
(“clumpy”) indicates how many equal-class patches are spatially adjacent if compared
to a totally random spatial distribution of all the available different classes and its
values can range from −1 to 1; Cohesion (“cohesion”) measures the physical con-
nectedness of the corresponding patch class (values ranging from 0 to 100); the
Division index (“division”, ranging from 0 to 1) is the probability that two randomly
chosen places in the landscape are not situated in the same undissected patch75. We
computed landscape metrics by using the R package “landscapemetrics” ver 1.5.476.

We then used these landscape metrics to test the statistical differences between
the CMIP6 future climatic projections while considering the related four shared
socio-economic pathways (ssp) as repeated experiments. For this, we set a two-way
permutational MANOVA (two-way PerMANOVA) in which the landscape metrics
were the explanatory variables, the four CMIP6 models and the related future time
bins were the factors and the four shared socio-economic pathways (ssp) were
experiment’s stratifications, i.e., repeated measures. PerMANOVA allows testing
differences between groups with small sample size and without the assumption of
normal distribution and equality of variance by relying on the computation of
between-groups distance matrix and permutations. We considered the Log10 of all
the used landscape metrics and computed the between-groups distance matrices by
using the Euclidean distance. p-values were computed after setting 9999
permutations. Where significant differences were detected, a pairwise version of the
two-way PerMANOVA with stratification was applied. We performed two-way
PerMANOVA by using the R package “vegan” ver 2.6-277 and the related pairwise
version by means of the “pairwiseAdonis” package ver 0.478.

The following analyses were performed for each of the considered CMIP6
future climatic scenario projections, separately, since these models come from
different starting hypotheses and physical processes the laboratories considered for
their modeling experiments. Then we used the landscape metrics to analyze the
temporal variation (including the metrics of the present time interval) of the mean
patch surface area (“area_mn”), while accounting for the differences between the
HSI classes. More specifically, we performed four simple linear regression models,
one for each of the CMIP6 future projections, in which we considered the Log10 of
the mean patch surface area as a response variable, the temporal step of the models’
projections (from the present to the future) and the HSI classes as explanatory
variables.

Further, we tested the relationships between the four HSI classes and the
landscape metrics to investigate if patches of species habitat suitability classes are
actually exploitable by the species in the present, and whether they will be so in the
future. We set four Generalized Linear Model (GLM) regressions in which the HSI
classes were the response variables, and all the landscape metrics were the
explanatory variables. In these regression models, in order to take into account the
temporal variation of the variables, all the explanatory variables were considered in
interaction with the time bins of the climatic projections, from the present to the
future. We emphasize that, since C. simensis exists in a very restricted territory of
the Ethiopian highlands, most of the geographic surface considered in this study
provides unfavorable bioclimatic conditions. Most of the area of Ethiopia shows
low HSI values (falling within HSI class 1; see above), i.e., are barely suitable for C.
simensis. This overabundance of raster pixels of low HSI values occurred in the
map of present conditions and in any of the considered future climatic scenarios
and might have masked any between-CMIP6 model differences and statistical
relationships. Therefore, we excluded the HSI class 1 values from PerMANOVA
and regression analyses. Moreover, since some HSI classes totally disappeared
(area_mn= 0) for two CMIP6 future projections, it was impossible to compute
landscape metrics for these cases and data for the analyses were unbalanced.
Therefore, we first standardized all data in a way such that all the CMIP6 model-
related projections had the same HSI classes computed and then performed all the
statistical analyses. We did not apply this correction to the four regressions
describing the relationship between mean patch area and time and HSI classes,
since these analyses do not require the computation of the other landscape metrics.
It is important to note that, for all the same analyses, we did not consider the
landscape metric “division” since it showed zero variance.

We emphasize that our present and future habitat suitability projections as well
as the computation of the landscape metrics were not conducted with the aim of
providing any strategy for the species conservation plans. They did turn out to
highlight the acute threat that the Ethiopian wolf is already subjected to and the
growing risks it would be exposed to in the near future.

Statistics and reproducibility
Morphometric study of the fossil. Morphometric analyses were performed with SPSS
statistics program ver. 25, and with Rv. 3.6.042 in RStudio ver. 2021.09.1+ 372
“Ghost Orchid” (Release 8b9ced188245155642d024aa3630363df611088a, 2021-11-
08) for Windows using the packages “ggfortify” (ver. 0.4.013)43,44, “ggplot2” (ver.
3.3.5)45, “pvclust” (ver. 2.2-0)46,47, and “stats” (ver. 4.1.2.)42.

Modeling the bioclimatic niche through time
Simensis polygon: We simulated 200 Canis simensis occurrences over the grid of
the bioclimatic variables by considering the geographic range polygon downloaded
from IUCN (https://www.iucnredlist.org/species/3748/10051312) as spatial
boundaries. For the present and future time intervals, we used the bioclimatic
variables at the spatial resolution of 1 × 1 and 4 × 4 km wide cell side (www.
wrldclim.org) combined with a rescaled raster of the Net Primary Productivity
(https://cmr.earthdata.nasa.gov/search/concepts/C1631984056-LPDAAC_ECS.
html), whereas for the past time bins, we used the variables as provided by Raia
et al.55 with the spatial resolution of 50 × 50 km wide cell side. To train and
calibrate Maxent algorithm for the Species Distribution Modeling, we used the
“ENMeval” v. 2.0.369.

The ARIMA regressions used for investigating the relationship among the
species’ geographic range evolution, the temperature changes, and the species’
altitude shift in the past were performed by using the “forecast” package v. 8.1674.

Habitat fragmentation metrics were performed by using the “landscapemetrics”
package v. 1.5.476.

We performed two-way PerMANOVA analysis by using the package “vegan” v.
2.6-2 and the related pairwise version with the “pairwiseAdonis” package ver 0.478.

All the statistical analyses were performed with the R statistical software v.
4.1.042.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The codes and all the information to run the analyses with ecological data and landscape
metrics for present, past and future time intervals, are freely available and stored at
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https://zenodo.org/badge/latestdoi/618339598. The codes run under the free R statistical
software and include the lines to install the necessary packages to perform the analyses.
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