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Copy number alteration features in pan-cancer
homologous recombination deficiency prediction
and biology
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Homologous recombination deficiency (HRD) renders cancer cells vulnerable to unrepaired
double-strand breaks and is an important therapeutic target as exemplified by the clinical
efficacy of poly ADP-ribose polymerase (PARP) inhibitors as well as the platinum che-
motherapy drugs applied to HRD patients. However, it remains a challenge to predict HRD
status precisely and economically. Copy number alteration (CNA), as a pervasive trait of
human cancers, can be extracted from a variety of data sources, including whole genome
sequencing (WGS), SNP array, and panel sequencing, and thus can be easily applied clini-
cally. Here we systematically evaluate the predictive performance of various CNA features
and signatures in HRD prediction and build a gradient boosting machine model (HRDcna) for
pan-cancer HRD prediction based on these CNA features. CNA features BPTOMB[1] (The
number of breakpoints per TOMB of DNA is 1) and SS[ > 7 & <=8] (The log10-based size of
segments is greater than 7 and less than or equal to 8) are identified as the most important
features in HRD prediction. HRDcna suggests the biallelic inactivation of BRCAT, BRCA2,
PALB2, RAD51C, RADSID, and BARDT as the major genetic basis for human HRD, and may also
be applied to effectively validate the pathogenicity of BRCA1/2 variants of uncertain sig-
nificance (VUS). Together, this study provides a robust tool for cost-effective HRD prediction
and also demonstrates the applicability of CNA features and signatures in cancer precision
medicine.
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double-strand break (DSB) is the most hazardous type of

DNA damage which can be repaired by error-free
homologous recombination (HR) pathway!. In cancer, accurate
detection of homologous recombination deficiency (HRD) is of
clinical relevance as HRD tumors are reported to be sensitive to
poly ADP-ribose polymerase (PARP) inhibitors?, as well as to
platinum chemotherapy drugs?.

Germline BRCA genes testing* and the genomic instability
score (GIS) are the currently widely used HR status diagnostic
schemes. Germline BRCA testing could overlook the epigenetic
silencing”~8, and other pathogenic somatic mutations?, and at the
same time strongly relies on the completeness and accuracy of
clinical variant annotation databases. GIS, also named as “HRD
score”, mainly consists of three SNP array-based methods: telo-
meric allelic imbalance (TAI)!, loss of heterozygosity (LOH)!!,
and large-scale transition (LST)!2. One disadvantage of HRD
score is that the optimal threshold is not consistent in patients
with different types of cancer!3-1°, Recently, HRDetect!®17 and
CHORD? have been constructed for HRD prediction, however,
these tools need whole genome sequencing (WGS) or whole
exome sequencing (WES) data, which is expensive and lacks
clinical applicability.

Copy number alteration (CNA) is an important type of cancer-
driving genetic alteration, and CNA signatures and features are
emerging cancer-inherent patterns. Recently, patterns and
mutational processes of CNA signature have started to be
revealed!8-21. CNA information can be obtained from a diverse
type of data, such as shallow WGS, WES, SNP array, and panel
sequencing, and could represent a cost-effective type of bio-
marker for cancer diagnosis and clinical response prediction.
However, the efficacy and application of CNA signatures and
features in HRD prediction have not been established yet.

D NA damage is a common hallmark of cancer, and DNA

‘ 1,340 HRP Samples

Here we develop a robust HRD predictor HRDcna (Homo-
logous recombination deficiency prediction by copy number
alteration features) based on CNA features. HRDcya model is
trained on the CNA data of 1,470 cancer samples generated from
WGS or SNP array and is validated with 831 samples generated
from WGS, SNP array, shallow WGS, or panel sequencing data.
HRDcn4 can precisely predict HR status using CNA features data
derived from different platforms or different cancer types with
consistent cut-off. HRDcna provides a new direction for effectively
validating the pathogenicity of uncertain important variants (VUS)
of BRCA1 and BRCA2, and suggests the major genetic basis for
human HRD. The applicability of CNA features and signatures in
cancer precision medicine is also well demonstrated in HRDcya.

Results

Data collection for HRD prediction model training and vali-
dation. For the development of the HRD prediction model,
1854 samples (WGS data) from the pan-cancer analysis of whole
genomes’ (PCAWG) and 560 breast cancer samples (SNP array
data)1© are collected. To obtain a high-confidence training dataset
of HRD, samples with BRCA1/2 deficiency are screened for
classifier training. In total, 130 cancer samples with loss-of-
function mutations in BRCA1/2 are labeled as HRD, while
1340 samples without inactivation mutations in known HR genes
are labeled as homologous recombination proficiency (HRP).
Then these samples are randomly split into training and held-out
datasets by the ratio of 8:2 for model training and testing
respectively. The performance of the HRD prediction model is
further evaluated on three independent validation datasets: a total
of 633 cancer samples, including 66 breast cancer samples with
WGS, 66 breast cancer samples with SNP array sequencing, and
501 pan-cancer samples with panel sequencing (Fig. 1).
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Fig. 1 HRDna is a gradient boosting machine for pan-cancer homologous recombination deficiency (HRD) prediction. Training and validation processes

of HRDcna, Which outputs the probability of being HRD.
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Selection of the method for HRD prediction model building.
To find the best HRD prediction model, a total of 9 machine
learning models (see Methods) are trained using the training
dataset, and the performances of each machine learning model
are reported as the area under the receiver operating character-
istic (ROC) curve (AUC) and the area under the precision-recall
curves (PR-AUC) in all datasets (Supplementary Fig. la-f).
Gradient boosting machine (GBM) model shows the best per-
formance in AUC and other metrics like accuracy, precision, and
F1 score on the held-out dataset (Supplementary Fig. 1g, h), thus
it is selected for subsequent HRD prediction model development
(Fig. 1).

HRDcna, pan-cancer HRD predictor based on CNA features.
CNA signatures and features are emerging cancer inherent
indicators. Wang et al.?%. classified CNA segments based on 8
types of CNA features, then performed the first CNA signature
analysis in prostate cancer using the non-negative matrix fac-
torization (NMF) algorithm with these CNA features, and the
CNA signatures developed with this method are named “Sig-
CNS” here?0. Ruben et al. conducted a pan-cancer CNA signature
study and reported 17 signatures (named “Sig-CX” here)!®. CNA
features are countable parameters developed in Wang et al
study?0. We compare the performance of three different models
using CNA features or using the reported two sets of CNA sig-
natures (Sig-CNS and Sig-CX). AUC and PR-AUC results show
that HRD prediction models construct with CNA features exhibit
improved performance compared with models built with CNA
signatures (Fig. 2a, b), thus CNA features are chosen for sub-
sequent HRD model development.

To ensure that the parameters identified are robust and
generalizable, 10-fold cross-validation (CV) strategy is used. Then

the relative variable importance is calculated??, and the features
with the top 10 relative influence score among all features in the
model are selected as the optimal modeling features (Fig. 2c).
Then we select the cancer types with higher HRD incidence to
analyze the differences in the 10 features (Supplementary Fig. 2).
The analysis results show that these features have significant
differences in HRD and HRP samples, not only in pan-cancer but
also in individual cancers. Finally, we trained an HRD model
using these selected CNA features (Fig. 2d). The BP10MBJ[1] and
SS[ > 7 & <=8] are found to be the top two important predicting
factors of HRD (Fig. 2c). The final model is named “HRDcna”.

HRDcna model validation and application. HRDcya shows
excellent performance in the held-out dataset and also three
independent validation datasets (Fig. 3a—f). The performance of
HRDcna model is not influenced by the CNA assay platforms
(Supplementary Fig. 3). ShallowHRD, a tool to evaluate tumor
HRD based on a CNA profile derived from WGS at low
sequencing depth?3, shows 0.88 sensitivity and 0.91 specificity for
HRD detection. Compared with ShallowHRD, HRDcna shows
consistently improved performance using CNA profiles derived
from different sequencing depths of WGS using downsampling
(Supplementary Fig. 4). Since HRD cases disproportionately
represented in some cancers, it remains to be verified whether
HRDcna model applies to all cancer types. We verified the per-
formance of HRDcna model in individual cancers separately. The
results show that the model had excellent applicability in breast,
ovarian, pancreatic lymphatic, prostate, and liver cancers (Sup-
plementary Fig. 5).

We compare the performance of HRDcya with HRDetect,
LOH, TAI, LST, and HRD score. HRDcya shows improved
performance compared with HRDetect in HRD prediction in an

a b c
i BP10MB[1]
— B , SSB7a <
—— O SS[>5 & <=6]
0-97 O o8 g ows
= e o
8 =z w CN[2]
i [
< a CN[1]
@
0.96 o £ CN[4]
0.7 z
—— z CNCP[2]
[ ] o
I 3 BPArm([4]
0.9 : ii _l_ CNCPI0]
CNA Feature Sig-CNS  Sig-CX CNA Feature Sig-CNS  Sig-CX 0 20 40
Model Model Relative Influence
d
100 BP10MB[1] BPArm[4] CNI[1] CN[2] CN[4]
s f_‘IL'k'GBO 80 q=22e-16 150 500 gmstess® 3004 fz2der®
60 400 .
2 50 + 0 1004 300 : 2004 : )
e _ 200 J
,.g 25 20 . 50 100 * 100 * I HR Status
(6} onl—
g 0 0 —— 0+ 0 0+ B3 HRD (130)
S CN[>8] CNCP[0] CNCP[2] SS[>5 & <=6] SS[>7 & <=8] B HRP (1340)
S 80 q =8.8e-52 3004 q=4.6e-27° 800 q=3.1e-20® =17e58
[ —| | e— La— o
8 60 . 600 90
200+ .
40 400 ° 601
100
20 * 200 l 304
od =4 01 * - o]
HRD HRP

HRD HRP

HRD HRP HRD  HRP

Fig. 2 HRDcna, choosing CNA features rather than CNA signatures to predict HRD. a, b Performance comparisons between the HRD prediction models
constructed using CNA features, or the activities of two sets of CNA signatures, Sig-CNS (Method from Wang et al.) or Sig-CX (Method from Ruben

et al.). The differences in the area under the receiver operating characteristic curves (AUC) a and the area under the precision-recall curves (PR-AUC) b on
the held-out dataset are shown. ****P < 0.0001. P values are calculated using Wilcoxon test. ¢ The features used by HRDcna to predict HRD and their
contributions. d The difference in 10 CNA features between HRD and HRP samples. Q values are calculated using Wilcoxon test.
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Fig. 3 Performance of HRDcya model. a, b ROC curves a and PR curves b analysis showed the performance of HRDcna built using CNA features on the
training and held-out datasets. The gray shaded area represents a 95% confidence interval. ¢ HRDcna scores for 1470 pan-cancer samples in training and
held-out datasets are ordered from lowest to highest. The HRDcna scores of almost all HRD samples are above 0.2. d, e The ROC curve d and PR curve
e showed the performance of HRDcya model in the independent validation dataset of 633 cancer samples. The gray shaded area represents a 95%
confidence interval. f HRDcna scores for 633 pan-cancer samples in three independent validation datasets are ordered from lowest to highest. The
horizontal dashed line shows a cut-off score of 0.2. g The performance of HRDcya model in training and held-out datasets is visualized with a confusion
matrix under cut-off score of 0.2. h Kaplan-Meier (KM) survival analysis. Patients for analysis included 85 patients who had received platinum
chemotherapy from 501 pan-cancer cohort. Samples are grouped based on HRDcna Scores. Patients with high HRDcya scores showed significantly
improved survival when treated with platinum chemotherapy. P value is calculated using log-rank test.

independent cohort of 71 TNBC patients (Supplementary Fig. 6a).
The scatterplot displays the relationship between HRDcya score
and HRDetect score (Supplementary Fig. 6b). Since HRD score is
not applicable to panel sequencing data, we use data from WGS
and SPN array sequencing to compare its performance with
HRDcna, including 66 breast cancer WGS and SNP array
samples. Compared with LST and HRD score, HRDcna has
similar performance but is better than TAI and LOH (Supple-
mentary Fig. 6¢c, d).

When evaluating the performance of the model, it is found that
HRDcpa scores of HRD samples are almost above 0.2, and HRP
samples mostly get lower scores (Fig. 3¢, ). Consequently, 0.2 was
chosen as the threshold for HRD prediction (Fig. 3g). To further
validate the performance of our model, we perform a Kaplan-
Meier (KM) survival analysis on patients including 85 patients
who had received platinum chemotherapy from 501 pan-cancer

cohort?*, Compared with patients with low HRDcya Scores,
patients with high HRDcy, scores show significantly improved
survival when treated with platinum chemotherapy (Fig. 3h).
Then we compare our model with HRD score, a widely used HRD
predicting method, and we define samples with HRD score > 42
as HRD according to previous study2” (Supplementary Fig. 7).
Survival analysis suggests that HRDcy,s shows similar perfor-
mance as HRD score.

BP10MBJ[1] and SS[>7 & <=8] as potential biomarkers of
HRD. The counts of CNA features significantly differ between
HRD and HRP samples (Fig. 2d). Among these 10 selected CNA
features for HRDna model construction, the top two important
components are BP10MB[1] and SS[>7 & <=8], and either fea-
ture could predict HRD with comparable performance to the
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Fig. 4 BP1IOMB[1] and SS[ > 7 & <=8] as potential biomarkers of HRD. a HRD prediction ROC curves of CNA feature BPTOMB[1] in training and held-out
datasets. b ROC curves showed the performance of CNA feature BPTOMB[1] in three independent validation datasets with different sequencing platforms,
a total of 633 cancer samples, including 66 breast cancer samples with WGS sequencing, 66 breast cancer samples with SNP array sequencing, and 501
pan-cancer cancer samples with panel sequencing. € BPTOMB[1] count for 633 cancer samples is ordered from lowest to highest. d ROC curves of CNA
feature SS[ >7 & <=8] in training and held-out datasets. @ ROC curves showed the performance of CNA feature SS[ >7 & <=8] in three independent
validation datasets. f SS[ >7 & <=8] count for 633 cancer samples is ordered from lowest to highest.

HRDcnys model (Fig. 4a, d, Supplementary Fig. 8). BP1IOMB[1]
indicates the number of breakpoints per 10MB of DNA is 1 and
SS[ > 7 & <=8] indicates the log10-based size of segments is greater
than 7 and less than or equal to 8. The performance of BP10MB[1]
and SS[ > 7 & <=8] is further verified with independent validation
datasets (Fig. 4b, e). The counts of BP10MB[1] and SS[ > 7 & <=8]
are enriched in HRD samples compared with HRP samples
(Fig. 4c, f). Altogether, these results suggest that these two features
BP10MB[1] and SS[>7 & <=8] may be potential biomarkers of
HRD. Then we compare BP10MB[1]‘s performance in HRD pre-
diction with LOH, TAI, and LST in a cohort of 80 new breast
cancers!® (Supplementary Fig. 9a). BPIOMB[1] perform better
than LOH and TAI, but similar to LST. LST, defined as chromo-
somal breaks between adjacent regions of at least 10 MB or larger,
is also considered a robust indicator of HR status!2, the difference
between LST and BP10MB[1] is shown (Supplementary Fig. 10).
And BP10MB[1] also perform well in individual cancer types
(Supplementary Fig. 9b).

Genetic basis for human HRD. BRCAness is functionally
defined as a defect in homologous recombination repair that
phenocopies loss of BRCA1/226. In addition to BRCAL/2,
pathogenic variants in BRCAness genes such as partner and
localizer of BRCA2 (PALB2) have been reported to contribute to
human HRD?27, We explore potential BRCAness genes using the
cancer genome atlas (TCGA) dataset by comparing the incidence
of biallelic pathogenic mutations in HR-related genes?® between
patients predicted as HRD and HRP using HRD ¢y (Fig. 5a). The
incidence of biallelic pathogenic mutations in PALB2 and RAD51
paralog C (RAD5IC) is observed to be significantly higher in
HRD, and the inactivation of these two genes have been

demonstrated in previous studies as the major genetic basis of
human HRD?°-31. Patients with biallelic inactivation mutations
in the following genes: RAD51 paralog D (RAD5ID) (n=4),
BRCA1l-associated RING domain protein 1 (BARDI) (n=3),
Chromosome 19 open reading frame 40 (C190rf40) (n=1) and
MREI11 homolog A (MREI1A) (n=1) are all predicted as HRD,
suggesting these genes, especially BARDI and RAD5ID inacti-
vation can be genetic basis of human HRD.

HRDcnp is applied to 33 cancers in the TCGA dataset, each
sample gets an HRDcnpa score. The scores widely vary across
different cancer types. The highest scores are observed in ovarian
cancer, and many cancer types also have subsets of samples with
high HRDcp4 scores. Some cancer types such as thyroid carcinoma,
thymoma, uveal melanoma, and acute myeloid leukemia do not
show high HRDcya scores (Supplementary Fig. 11). Similar pan-
cancer HRD distribution patterns have been reported previously®.

BRCA VUS classification. The majority of missense mutations in
BRCA1/2 have been classified as variants of uncertain significance
(VUS) with unknown functional consequences. We calculate the
HRDcna scores of 11,465 samples from 560 breast and TCGA
datasets. Samples with BRCA VUS mutations and LOH in BRCA
alleles are collected, and samples with known pathogenic HRD-
causing genetic alterations are removed. HRDcyy classified var-
iants with scores above 0.2 as “likely pathogenic” and those with
scores below 0.2 as “likely benign”. A total of 18 samples with
homozygous BRCA VUS mutations are found, and 4 of them are
classified as HRD based on HRDcna scores (Fig. 5b). Then we
include the labeling information from other tools such as Can-
cervar, CADD, etc. for the ClinVar VUS clarified with HRDcya
(Supplementary Table 1). Pathogenic BRCA1/2 missense
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Discussion

Here we developed a pan-cancer HRD prediction tool HRDcya
based on CNA features. This tool enables accurate and robust
HRD prediction using CNA profiles derived from a variety of
cost-effective platforms, such as shallow WGS, SNP array, and
panel sequencing. Furthermore, the CNA features BP10MB[1]
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Fig. 5 Genetic basis for HRD and BRCA VUS reclassification. a The incidence of biallelic pathogenic mutations in HR-related genes in samples that are
predicted to be HRD or HRP by HRDcna in the TCGA dataset. b The HRDna scores for TCGA and 560 breast datasets of cancer patients with BRCA1/2
VUS and LOH are shown. ¢ Distributions of VUS on BRCA proteins. BRCA1/2 amino acid loci of known pathogenic variants and pathogenic variants
predicted by HRDcna are shown. The position of functional regions of BRCA 1/2 proteins and interacting proteins are obtained from UniPort databases, and
pathogenic variants are defined based on ClinVar database. Vertical positions represent different kinds of amino acids. BARD1 BRCA1-associated RING
domain protein 1, NLS nuclear localization sequence, PALB2 partner and localizer of BRCA2, BRCT BRCA1 C-terminus, BRC repeats ~30-40 residue long
sequence regions in BRC2 protein, NPM1 nucleophosmin 1, RAD51 DNA repair protein RAD51 homolog 1, POLH DNA Polymerase Eta, HSF2BP Heat shock
factor 2-binding protein, FACD2 Fanconi anemia group D2 protein, SEM1 26 S proteasome complex subunit SEM1.

and SS[>7 & <=8] are identified as the major contributors to
HRDcna model, and also represent potential biomarkers for
HRD. In addition to biallelic inactivation of BRCAI and BRCA2,
PALB2, RAD51C, RAD51D, and BARDI inactivation are identified
as the major genetic basis for human HRD. HRDcy, tool also
provides a new direction for effectively validating the pathogeni-
city of VUS. Carrying BRCA1/2 mutations, earlier stage, and lower
levels of residual tumor after surgery have been proven as pre-
dictors of better prognosis for patients receiving platinum che-
motherapy in ovarian cancer’*3>. Here, survival analysis shows
that patients with high HRDcna scores have significantly
improved survival than those with low HRDcna scores in patients
receiving platinum chemotherapy. Over time, the application of
HRDcnpa would unearth a substantial cohort of patients without
BRCA1/2 mutations for chemotherapy using platinum drugs.

In addition to BRCAI and BRCA2, PALB2 and RAD51C bial-
lelic pathogenic mutations have been demonstrated in previous
studies as the major genetic basis of human HRD?°-31. Notably,
there is also a relatively high incidence of biallelic alterations in
BARDI and RAD5ID in HRD. BRCA1 partners with BARD1 to
mediate the initial nucleotide excision of DNA damage and the
recruitment of the recombinase RAD513¢. BARDI loss is suffi-
cient to confer an HRD phenotype and significantly increase
sensitivity to PARP inhibitors in prostate cancer cells>’. Triple-
negative breast cancer cells carrying RAD51D K91fs and V200X
variants are reported to be vulnerable to PARP inhibitors because
they lead to decreased HR function38. Together, our study sug-
gests BRCA1, BRCA2, PALB2, RAD51C, BARDI, and RAD51D
biallelic inactivation as the major genetic basis of human HRD,
and it provides a novel opportunity for the precision medicine
approaches in HRD and expands the population of patients who
may benefit from agents targeting HRD.

Collectively, accurate measurement of HR status to find HRD
patients has great clinical significance in precision medicine.
HRDcna model is a CNA features-based robust tool for HRD
detection. In the future, CNA features or signatures could be
combined with artificial intelligence to reveal clinically mean-
ingful CNA fingerprints for cancer precision diagnosis and
therapy response prediction, and the HRDcya model developed
in this study could represent one example of these clinically
meaningful CNA fingerprints. HRDcn is freely available as an R
package at https://github.com/XSLiuLab/HRDCNA.

Methods

Datasets. We have used CNA data from 1470 samples to develop the homologous
recombination deficiency (HRD) gradient boosting machine (GBM) model, called
HRDcna (Homologous recombination deficiency prediction by copy number
alteration features), which included 1159 samples (WGS data) from PCAWG
dataset?, 311 samples (SNP array data) from 560 breast dataset!®. In particular,
samples that were duplicated with PCAWG dataset in 560 breast dataset have been
excluded, so there are no duplicated samples in our datasets. The information
about the frequencies of cancer types in the training data for HRDcna model is
shown in Supplementary Table 2. Somatic copy number data for the international
cancer genome consortium (ICGC) portion of PCAWG dataset is downloaded at
https://dcc.icgc.org/releases/PCAWG/. BRCA1/2 status annotations for this dataset
are obtained from the supplementary data in Nguyen et al.%. Somatic copy number
data of the 560 breast dataset are downloaded from the department of medical
genetics at the University of Cambridge (http://medgen.medschl.cam.ac.uk/serena-

nik-zainal/). BRCA1/2 status annotations and mutation data for this dataset are
obtained from the supplementary data in Davies et al.lo.

130 samples carrying mutations in BRCA1/2 are detected with loss of wild-type
allele and labeled as HRD samples, and 1340 BRCA1/2 proficiency samples as HRP
samples. A sample with one of the following events in BRCA1/2 is defined as a
BRCAL1/2 deficient sample: (i) complete copy number loss, (ii) LOH in
combination with a pathogenic germline or somatic SNV/indel or structural
variations, or (iii) pathogenic SNV/indels or structural variations in both alleles’.
We select 80% of 1470 samples by random sampling as the training dataset, and
20% as the held-out dataset for model training. Copy number data, HR status
information, and survival data for the panel dataset are obtained from the
supplementary data in Wen H et al.?4. 66 breast dataset is publicly available in the
figshare repository provided by de Luca et al.®. Copy number data from ASCAT
(array data) are available from https://doi.org/10.6084/m9.figshare.9808496 and
ascatNGS (for original (https://doi.org/10.6084/m9.figshare.9808505) and
downsampled WGS data are available from (30x: https://doi.org/10.6084/m9.
figshare.9808511, 15x: https://doi.org/10.6084/m9.figshare.9808514, 10x: https://
doi.org/10.6084/m9.figshare.9808517)).

Somatic copy number data of TCGA pan-cancer dataset are downloaded from
genomic data commons data portal (https://portal.gdc.cancer.gov/). Allele-specific
copy number analysis of tumors is performed using ASCAT2, to generate integral
allele-specific copy number profiles for the tumor cells. Biallelic inactivation in HR-
related genes information for TCGA dataset is obtained from Riaz et al.?8. The
mutation data for TCGA dataset are obtained from the GDC Data Portal and
Legacy Archive (https://gdc.cancer.gov/). The information on the cohort of 71
TNBC patients in TCGA dataset is derived from the supplementary data in Liao
et al.40, The information on the cohort of 80 breast patients is derived from the
supplementary data in Davies et al.!%. Pathogenicity annotations are obtained from
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), CancerVar*! (https://cancervar.
welab.org/), CADD#2 (https://cadd.gs.washington.edu/), MutationAssessor?3
(http://mutationassessor.org/r3/) and PolyPhen-2%* (http://genetics.bwh.harvard.
edu/pph2/).

Downsampling of WGS data. Downsampling of the original normal and tumor
BAM files is performed using the samtools (version 1.3)4° library function: sam-
tools view -h -s x, where x represents the desired percentage of downsampling
required (The values we use that will result in an approximate coverage of 30x,
15x, and 10x, depending on the coverage of the original data).

Construction of machine learning models. To find the best performance model
among a multitude of methods, 9 machine learning models including extremely
randomized trees (Extra trees), random forest, logistic regression, support vector
machine (SVM), eXtreme gradient boosting (XGB), adaptive boosting (AdaBoost),
decision tree, K-nearest neighbor (K-Neighbor) and gradient boosting machine
(GBM) are trained, the AUC of the held-out dataset is selected as the performance
criterion. All the hyper-parameters are determined by the gradient search method
provided by the GridSearchCV function in Python package sklearn, and we use the
default 5-fold CV strategy. The GBM model has the best performance on the held-
out dataset. Thus, GBM is chosen to predict the probability of HRD. Gradient
boosting is a machine learning technique for regression and classification problems,
which produces a prediction model in the form of an ensemble of weak base models,
usually decision tree. R package gbm is used to implementation of the GBM.

Quantification of CNA signatures and CNA features. Sig-CNS is identified using
R package Sigminer?0, which is based on the tool SigProfiler*® caller. We pick up
8 signatures for our dataset due to its relatively high stability and low distance
(Supplementary Fig. 12). Identification of Sig-CX used R package
CINSignatureQuantification!®. Calling CNA features is performed using R package
Sigminer?. 8 fundamental CNA features are computed, including the breakpoint
count per 10 Mb (named BP10MB); the breakpoint count per chromosome arm
(named BPArm); the copy number of the segments (named CN); the difference in
copy number between adjacent segments (named CNCP); the lengths of oscillating
copy number segment chains (named OsCN); the logl0 based size of segments
(named SS); the minimal number of chromosome with 50% copy number variation
(named NC50); the burden of chromosome (named BoChr). Then we classified 8
CNA feature distributions into 80 different components??, and each copy number
component has a clear biological meaning, for example, BP10MB([1] indicates the
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number of breakpoints per 10MB of DNA is 1 (Details in Supplementary Table 3).
Three models are built using CNA features directly or using two CNA signatures,
Sig-CNS and Sig-CX, each of which is modeled repeatedly using Monte Carlo CV,
which is repeated 100 times on the 80% dataset. The difference in AUC and PR-
AUC of the three models is compared on the held-out dataset. CNA features are
finally chosen for model development.

HRDcna training procedure. The model training includes a 4-step training pro-
cedure to obtain the final model (named HRD ). Firstly, the HRDcya model is
developed based on 76 significantly different CNA features among 80 CNA features
(Supplementary Fig. 13) and the correlation matrix shows that no significant
correlation is observed between most features (Supplementary Fig. 14). We choose
bagging fraction 0.8 for more robust results. In addition, not to miss the optimal
solution, we use a small learning rate of 0.01 together with a large number of trees
(6000). We carry out 10-fold CV on the 80% training dataset and determine the
best number of trees (572) from the Bernoulli deviance (Supplementary Fig. 15a).
Then, from the relative influence score of features for the model, some CNA
features are fewer contributions to our model, so we reduce model features. To
calculate the contribution more accurately, we perform Monte Carlo CV on the
training dataset using 76 CNA features, which are repeated 500 times. To calculate
the relative influence of the specific variable, at each split in each tree, GBM
computes the improvement in squared error, then averages the improvement made
by each variable across all the trees that the variable is used?2. We choose 10 CNA
features with the top 10 relative influence scores among all features. Moreover, we
again perform 10-fold CV on the training dataset using these 10 CNA features and
determine the best number of trees (777) from the Bernoulli deviance (Supple-
mentary Fig. 15b). Finally, we train our final model using 10 significantly different
and important CNA features on the 80% training dataset.

Statistic and reproducibility. Data between two groups are compared using Wil-
coxon rank-sum test (also known as “Mann-Whitney” test) depending on the
normality of data distribution. In the survival analysis, the differences between dif-
ferent survival curves are compared using log-rank test, and the cut-off score is 0.14,
which is determined based on the youden index*”. All reported P-values are two-
tailed, and for all analyses, P<0.05 is considered statistically significant unless
otherwise specified. All statistical analysis is performed using R v4.1.0. The area
under the curves of the receiver operating characteristic curves (AUC) and the area
under the precision-recall curves (PR-AUC) are then calculated by R package precrec.

CNA data to develop HRDcny4 includes 1470 samples with 1186 in the training
dataset and 284 in the held-out dataset. 130 samples are labeled as HRD samples,
and 1340 samples are labeled as HRP samples. The independent validation dataset
consists of 633 cancer samples, including 66 breast cancer samples with WGS, 66
breast cancer samples with SNP array sequencing, and 501 pan-cancer samples
with panel sequencing, and 330 of which are HRD samples and 303 HRP samples.
TCGA dataset of 33 cancer types includes 10,906 samples. The cohort of 71 TNBC
patients in TCGA dataset consists of 71 TNBC samples, 43 of which are HRD
samples and 28 HRP samples. The cohort of 80 breast patients consists of 80 breast
samples, 7 of which are HRD samples and 73 HRP samples.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used in this study are obtained from publicly available sources and are described in
detail in Supplementary Table 4. The datasets generated and analyzed during the current
study are available at https://github.com/XSLiuLab/InterpretationAnalysisHRDCN A8,
Any remaining information can be obtained from the corresponding author upon
reasonable request.

Code availability

HRDcnj is freely available as an R package at https:/github.com/XSLiuLab/HRDCNA.
The code used for data processing and generating the figures to reproduce the main
results of this work is also publicly accessible at https://github.com/XSLiuLab/
InterpretationAnalysisHRDCNA*S.
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