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Interplay between alpha and theta band activity
enables management of perception-action
representations for goal-directed behavior
Paul Wendiggensen 1,2,5, Astrid Prochnow 1,2,5, Charlotte Pscherer 1,2,5, Alexander Münchau3,

Christian Frings4 & Christian Beste 1,2✉

Goal-directed behavior requires integrated mental representations of perceptions and

actions. The neurophysiological underpinnings of these processes, however, are not yet

understood. It is particularly undetermined, which oscillatory activities in which brain regions

are involved in the management of perception-action representations. We examine this

question with a focus on response inhibition processes and show that the dynamics of

perception-action representations reflected in theta band activity (TBA) are particularly

evident in the supplementary motor area and the occipito-temporal cortex. Mental repre-

sentations coded in alpha band activity (ABA) during perception-action integration are

associated with the occipito-temporal cortex. Crucially, perception-action representations are

exchanged between theta and alpha frequency bands. The results imply that ABA functions

as dynamic top-down control over binding, retrieval and reconfiguration processes during

response inhibition, which in turn are reflected by TBA. Our study thus highlights how the

interplay of oscillatory activity enables the management of perception-action representations

for goal-directed behavior.
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The integration of perceptions and actions is central to goal-
directed behavior. This is especially the case when
ambiguous sensory information complicates response

selection processes. Nevertheless, the question of how changes in
the mental representations of stimulus-response associations are
processed in cortical structures and which neurophysiological
dynamics underlie these aspects remains elusive.

This conceptual question is important because influential
cognitive science frameworks on the integration of perception
and action focus on the representation of stimulus-response
associations. The Theory of Event Coding (TEC), for example,
provides a theoretical framework1,2, which delineates how per-
ceptions become integrated (bound) with actions on a cognitive
level and states that so-called event files (i.e., integrated repre-
sentations of stimuli and their associated responses) are the
mechanistic element behind goal-directed actions2–4. This bind-
ing of stimulus and action features facilitates performance if the
same action is required in response to the (partially) same sti-
mulus. However, on the contrary, if a different action is required
in response to a similar stimulus, the features bound in the pre-
viously established event file need to be rebound to enable per-
formance. This reconfiguration process is time-consuming and
error-prone, leading to performance decreases which are called
partial repetition costs2,5. Furthermore, the Binding and Retrieval
of Action Coding (BRAC) framework4 emphasizes the dynamic
handling of integrated perception-action representations (i.e.,
event files). Building on these theoretical frameworks, the neu-
rophysiological and functional neuroanatomical basis of
perception-action integration during response selection6–10 and
inhibition11–15 have recently become increasingly well under-
stood. Previous studies on event file coding processes in inhibi-
tion were able to validate the predictions regarding behavioral
performance of TEC in this cognitive domain, i.e., the worse
performance of Go and Nogo stimuli shared features than if they
were completely distinct11–15. Further, these previous findings
demonstrated the relevance of the theta and alpha frequency
bands to event file coding in inhibition on the one hand by
showing a seesaw-like relationship between both frequency
bands12,13, and underlined the assumption that an event file can
be understood as a mental representation of specific stimulus and
response features11,15. Yet, the role of oscillatory brain activity in
the management of event file representations remains elusive. It is
therefore unknown how essential mechanisms regulating brain
function (i.e., oscillatory activity)16 enable representational
dynamics driving goal-directed actions.

It is assumed that representations integrating stimulus and
response require distributed processing of stimulus and response
features in network-like structures2,3,9,12. Thus, multiple cortical
regions, concomitantly involved in goal-directed behavior, should
show similar dynamics of stimulus-response representations.
Even though this central conceptual aspect is evident for a long
time, it has not been examined directly.

We investigate this hypothesis by combining EEG-beamforming
methods and multivariate pattern analysis (MVPA) with a focus on
theta and alpha band activity (TBA and ABA). TBA is relevant
because the biophysical principles of low-frequency/high-ampli-
tude oscillations are optimally suited to enable long-range inte-
gration processes17,18. In fact, they have already been shown to be
involved in perception-action integration as conceptualized by
TEC9,13. Yet, as regards the inhibition of responses, not only TBA19

but also ABA is relevant20. Both frequencies seem to be differen-
tially engaged during response inhibition, depending on
the necessity of reconfiguring stimulus-response associations while
deciding whether or not to respond12,13. This suggests that it is not
sufficient to examine the representational dynamics across different
functional neuroanatomical structures within only one frequency

band (i.e., TBA or ABA). Rather, representational dynamics must
be examined across frequencies with the question of whether
representations of stimulus-response bindings are “exchanged”
between frequency bands to accomplish goal-directed behavior
through the management of event files. To this end, participants
completed a Go/Nogo task derived from the TEC framework. The
stimuli consisted of different combinations of letters and font
colors. In this way, two different conditions of Go or Nogo trials
were created, which either had completely different features (let-
ters, color) in Go and Nogo trials (non-overlapping condition) or
shared features between Go and Nogo trials (overlapping condi-
tion; see Fig. 1). Thus, in the overlapping condition, reconfiguration
of representations of the stimulus-response bindings was required,
whereas in the non-overlapping condition such a reconfiguration
was not required14. We used beamforming21 to reconstruct TBA
and ABA time courses at their sources from the EEG data recorded
during the Go/Nogo task. MVPA approaches were applied based
on the source-reconstructed TBA and ABA time courses to analyze
whether cortical regions concomitantly involved in response inhi-
bition reveal similar dynamics of mental representations of
stimulus-response bindings. The goal of the study was to reveal,
which neuroanatomical regions within an activation pattern con-
tribute strongest to the discrimination between different com-
plexity levels of perception-action integration and whether a
transfer of representations between TBA and ABA enables the
dynamics driving goal-directed actions.

An overview of the neurophysiological analysis steps as a brief
summary of the methods is provided in Fig. 1 (for details see the
methods section at the end of the manuscript).

Results
Behavioral results. Shapiro-Wilk tests22 showed normal dis-
tribution of the Nogo false alarm rates in the overlapping con-
dition (p= 0.343). However, none of the other behavioral
outcome variables were normally distributed (p ≤ 0.038). There-
fore, the comparisons between the conditions were performed
using Wilcoxon tests. The Go hit rates were significantly higher in
the non-overlapping (99.3 ± 0.9%) than in the overlapping con-
dition (98.7 ± 1.4%; Z=−5.17, p < 0.001, r=−0.581). Further-
more, the Go reaction times were significantly faster in the non-
overlapping (439 ± 52 ms) than in the overlapping condition
(450 ± 54 ms; Z=−4.29, p < 0.001, r=−0.483). Importantly, the
Nogo false alarm rate was significantly higher in the overlapping
(37.5 ± 17.1%) than in the non-overlapping condition (2.2 ± 3.0%;
Z=−7.72, p < 0.001, r=−0.869).

Sensor-level activity. A cluster-based permutation test on the
theta frequency band (4–7 Hz) power between the overlapping
and non-overlapping condition on the sensor-level revealed a
significant positive difference (overlapping > non-overlapping);
tsum= 21489.55, pcluster= 0.002. A cluster in the observed data
extended from approximately 250 to 1000 ms (relative to stimulus
onset) and extending across almost all EEG electrodes. The
topographic distribution shows that the effect in the theta fre-
quency band was most pronounced at central electrode locations
(Fig. 2a). In the alpha-frequency band (8–12 Hz), cluster-based
permutation testing on the sensor-level between the overlapping
and non-overlapping condition revealed a significant negative
difference (overlapping < non-overlapping); tsum=−17856.50,
pcluster= 0.002. A cluster in the data was observed between 290
and 830 ms (relative to stimulus onset) and spanning across
almost all EEG channels. The topographic map highlights that the
largest difference in alpha-band activity between the two condi-
tions was located at occipito-central electrodes (Fig. 3a).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04878-z

2 COMMUNICATIONS BIOLOGY |           (2023) 6:494 | https://doi.org/10.1038/s42003-023-04878-z | www.nature.com/commsbio

www.nature.com/commsbio


MVPA on source-level theta-band activity. The MVPA on the
source-reconstructed theta power time course (i.e., averaged over
the 4-7 Hz frequency bands) with theta-band training and pre-
diction sets and subsequent cluster-based permutation testing
showed that at all time points during the trial (0–1000 ms), the
MVPA was able to distinguish between the overlapping and
the non-overlapping condition significantly above chance level.
The AUC values ranged from 0.601 to 0.646 (AUCmean = 0.628;
pcluster < 0.001; Fig. 2b). The temporal generalization had an
average duration of about 663 ms around the diagonal. 66% of the
classifications yielded a significant AUC value, with AUCmean=
0.57 for the significant classifications. Subsequently, the time
points at which the conditions differed significantly (i.e., the
entire trial) were submitted to a spatial MVPA as features,
resulting in AUC values for all individual voxels. The AUC values
for each voxel were tested against the chance level of 0.5 in a
cluster-based permutation test, where all voxels exhibited a

significantly positive performance difference (tsum= 8232.07,
pcluster= .002; for voxels with a classification performance sig-
nificantly above chance level: AUCmax= 0.563, AUCmin= 0.524,
AUCmean= 0.541; Supplementary Fig. 1). The DBSCAN ana-
lysis on the AUC-values in the individual voxels revealed that
within the top 2% of the AUC values, voxels within two clusters
seemed to contribute most to the MVPA performance. One
cluster was constituted by voxels in the right hemispheric middle
temporal and occipital cortex (BA19), whereas the voxels in the
other cluster were located in the left and right-hemispheric sup-
plementary motor area (SMA) and the frontal superior cortex
(BA6, BA8; Fig. 2c).

MVPA on source-level alpha-band activity. The MVPA on the
source-reconstructed alpha power time course (i.e., averaged over
the 8–12 Hz frequency range) with alpha-band training and

Fig. 1 Visualization of the stimuli used in the task and the EEG analysis procedure. The top-panel shows the stimuli used in the non-overlapping and
overlapping Go and Nogo conditions, respectively. The center panel shows the EEG analyses on the electrode-level. In the wavelet analysis, the difference
between the overlapping and non-overlapping condition was assessed using cluster-based permutation testing. The lower panel visualizes the analyses on
the source-level. The data were projected onto the source-level using LCMV beamforming. The head and brain images in this figure have been generated
using the open-source FieldTrip software package, which was also used to run the analyses. Cerebellar and unlabeled voxels (AAL atlas) were excluded
from this analysis. For each voxel, theta and alpha band activity time courses were computed with wavelet analyses. The temporal and spatial MVPA as
well as the DBSCAN algorithm (gray box) were run for each of the three classifications. Subsequently, a regression analysis between the behavioral binding
effect and the averaged AUC value in each cluster was conducted.
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Fig. 2 Results of the analyses on theta band activity of N= 79 subjects. a Time-frequency representation of the theta-band power difference on the
significant electrodes on the sensor-level. The significant time frame is highlighted by the dotted black square, while the significant electrodes are
highlighted in the topographic plot. b Results of the temporal MVPA. The plot on the left shows the AUC curve over time while the right plot shows the
temporal generalization. The shaded area shows the standard deviation of the AUC. c Clusters of best performance in the top 2% of the AUC values of all
significant voxels as identified by the DBSCAN algorithm.
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Fig. 3 Results of the analyses on alpha band activity of N= 79 subjects. a Time-frequency representation of the alpha-band power difference on the
significant electrodes on the sensor-level. The significant time frame is highlighted by the dotted black square, while the significant electrodes are
highlighted in the topographic plot. b Results of the temporal MVPA. The plot on the left shows the AUC curve over time while the right plot shows the
temporal generalization. The shaded area shows the standard deviation of the AUC. c Clusters of best performance in the top 2% of the AUC values of all
significant voxels as identified by the DBSCAN algorithm.
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prediction sets and subsequent cluster-based permutation testing
showed that at all time points during the trial (0–1000 ms), the
MVPA was able to distinguish between the overlapping and the
non-overlapping condition significantly above chance level
(pcluster < 0.001; AUCmax= 0.647, AUCmin= 0.582, AUCmean=
0.616; Fig. 3b). The temporal generalization had an average
duration of about 429 ms around the diagonal. 43% of the clas-
sifications yielded a significant AUC value, with AUCmean= 0.56
for the significant classifications. Subsequently, the time points at
which the MVPA differed significantly between both conditions
(i.e., the entire trial) were submitted to a spatial MVPA as features
in order to obtain an AUC value for each individual voxel. The
resulting AUC values for each voxel were tested against the
chance level (0.5) in a cluster-based permutation test, where all
voxels exhibited a significantly positive performance difference
(tsum= 9767.12, pcluster= 0.002; for voxels with a classification
performance significantly above chance level: AUCmax= 0.577,
AUCmin= 0.535, AUCmean= 0.553; Supplementary Fig. 1).

The subsequent DBSCAN analysis on the AUC-values in the
individual voxels revealed that the voxels with the highest
performance in the MVPA were located in two clusters: one
cluster was comprised of voxels in the left-hemispheric middle
and inferior occipital and temporal cortex (BA19), the second
cluster was located in the right-hemispheric middle and superior
temporal cortex (BA21, BA22; Fig. 3c).

MVPA with source-level TBA to ABA prediction. A MVPA
with TBA training data and ABA testing data was conducted to
reveal overlapping patterns between the different frequency
bands. The TBA training was applied to the ABA data during
testing, as the peak of power difference in TBA preceded the peak
of power difference in ABA in the time-frequency decomposition
on the sensor level (see Fig. 2a, b). In order to statistically evaluate
the temporal difference of power peaks between TBA and ABA,
the largest local maxima within the two frequency bands in the
time period from 0 to 1 s were determined for each participant.
Shapiro-Wilk testing showed that the data was not normally
distributed (p < .001). A Wilcoxon signed-rank test showed that
there was a significant difference between the temporal location
of power peaks in TBA and ABA (p= 0.01, Z=−2.31), indi-
cating that the TBA peak (M= 0.52 s, SD= 0.16 s) was sig-
nificantly earlier than the ABA peak (M= 0.59 s, SD= 0.21 s;
Fig. 4a). Individual data points on this parameter are given in
Supplementary Data 1.

The MVPA on the source-reconstructed power time course
with theta-band training and alpha-band prediction sets and
subsequent cluster-based permutation testing showed that the
MVPA was able to distinguish between the overlapping and
the non-overlapping condition significantly above chance level
over the entire trial duration (pcluster < 0.001; AUCmax= 0.578,
AUCmin= 0.541, AUCmean= 0.562; Fig. 4b). The temporal
generalization had an average duration of about 540 ms around
the diagonal. Additionally, there was a significant off-diagonal
AUC cluster within 0-200 ms training (TBA)/400–600 ms testing
(ABA) time. 54% of the classifications yielded a significant AUC
value, with AUCmean= 0.54 for the significant classifications.
Next, a spatial MVPA was performed using the significantly
distinguishable time points (i.e., the entire trial) as input features.
The resulting AUC values for each voxel were tested against the
chance level of 0.5 in a cluster-based permutation test, where
almost all voxels exhibited a significantly positive performance
difference (tsum= 5087.23, pcluster= .002; for voxels with a
classification performance significantly above chance level:
AUCmax= 0.540, AUCmin= 0.510, AUCmean= 0.523). A subse-
quent DBSCAN analysis on the AUC-values in the individual

voxels revealed that the voxels with the highest performance in
the MVPA were located in four clusters (Fig. 4c): one cluster was
comprised of voxels in the left-hemispheric fusiform gyrus
(BA37), the second cluster was located in the left-hemispheric
middle temporal cortex (BA21), the third cluster was composed
of right-hemispheric voxels in the middle frontal, caudate,
inferior opercular frontal and the precentral cortex (BA46), and
the fourth cluster was located in the left-hemispheric supple-
mentary motor area (BA6).

Relationship between behavioral and neurophysiological
parameters. Starting with the AUC values of the obtained eight
clusters (2 clusters in TBA, 2 clusters in ABA, 4 clusters in TBA-
to-ABA) as predictors, the set of predictors could be reduced to
two clusters (superior frontal/SMA theta cluster, middle frontal
theta-alpha cluster) by the backward elimination procedure
during the multiple regression analysis. The obtained regression
model was statistically significant (adjusted R2= 0.061,
F(2,76)= 3.54, p= 0.034). The data contained no outliers (Std.
Residual Min=−2.26, Std. Residual Max= 3.03) and met the
assumption of independent errors (Durbin-Watson value =
1.87). Tests to determine whether the data met the assumption of
collinearity showed that multicollinearity was not a concern in
any of the steps of the backward elimination procedure (VIF ≤
1.79). Only the mean AUC value in the middle frontal theta-
alpha cluster significantly predicted the binding effect in false
alarm rates in Nogo trials (β= 0.256, p= 0.025), whereas the
mean AUC value in the superior frontal/SMA theta cluster did
not ((β=−0.196, p= 0.084). In other words, the higher the
classification accuracy of the transfer of representations from
theta to alpha frequency band, the larger the behavioral binding
effect in Nogo false alarm rates (i.e., the larger the difference in
false alarm rate in overlapping vs. non-overlapping Nogo trials).

Discussion
The current study aimed to identify the time periods and brain
regions, in which differences in the mental representation of dif-
ferent perception-action integration demands in response inhibi-
tion are particularly pronounced and in which a potential
“transfer” of these mental representations between frequency bands
occurs. For this purpose, subjects performed a modified Go/Nogo
task, where one condition only required retrieval of perception-
action integration (non-overlapping condition), while the other
condition required reconfiguration of already formed perception-
action bindings (overlapping condition)14. Based on the source-
reconstructed time-frequency data, differences in the spatial
representation of the conditions over time in the alpha and theta
frequency bands were examined with an MVPA approach. A fur-
ther (spatial) MVPA served to investigate differences in the time
course of the representation of the conditions over brain regions.
These approaches were subsequently also adapted to investigate the
interleaving of different frequency bands and thus the transfer of
mental representations of the different event file coding require-
ments between them, which seems particularly relevant given the
theoretical assumptions of TEC2,3 and previous findings12,13.

Concerning the behavioral data, we replicate previous
studies11–15, i.e., participants’ performance was better in the non-
overlapping condition compared to the overlapping condition.
This was particularly evident in the Nogo false alarm rates, which
were considerably higher in the overlapping condition than in the
non-overlapping condition. These results are consistent with the
theoretical assumptions of the TEC predicting that feature over-
lap between Go and Nogo trials, i.e., using the same stimulus
features for different response requirements, leads to partial
repetition costs that are reflected in performance impairments2,5.
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Also for the sensor-level neurophysiological data, the comparison
of the Nogo conditions replicated the pattern of results in the
time-frequency data of previous studies12,13, i.e., higher TBA in
the overlapping compared to the non-overlapping condition, thus
the TBA binding effect reflecting more demanding event file (re)
configuration processes. This finding is well in line with the
general notion of stronger TBA during cognitive control
demands9,18,19. The ABA binding effect occurs at its maximum
after the TBA binding effect maximum and has an opposite
pattern compared with the TBA binding effect. Previous
findings suggest that ABA likely reflects inhibitory gating
mechanisms20,23,24 that are more pronounced in the non-
overlapping condition compared with the overlapping condi-
tion. This implies that task-irrelevant processes are more strongly
inhibited in the non-overlapping condition, which facilitates the
processing of relevant information such as the required event file,
probably due to the unambiguous stimulus categorization23,24.
On the other hand, the less pronounced inhibitory gating in the
Nogo condition with feature overlap with Go trials might reflect a
broader encoding of information25,26 which includes potentially
irrelevant event files.

MVPA classification within frequency bands. The MVPA on
the source-level data, i.e., the power time courses in each defined
voxel, yielded successful classifications across time within the
alpha and theta frequency bands, respectively. In both MVPAs,
the representations of the non-overlapping and overlapping event
files could be distinguished over the entire time window. More-
over, there was also a successful temporal generalization MVPA
in both frequency bands, indicating that the representational
differences in event files between the Nogo conditions were sus-
tained for several hundred milliseconds within both frequency
bands27. Importantly, for the theta frequency band, the spatial
MVPA yielded the best classification results in the right occipito-
temporal cortex as well as in the supplementary motor area
(SMA) and superior frontal areas. Particularly in the SMA, dif-
ferences in TBA due to event file coding demands and inhibitory
performance have been localized in previous studies, but thus far
only with respect to the power of activity (differences)12,13,28–30

and therefore unrelated to effects related to representational
content. Based on these previous results on the relevance of the
SMA for event file coding and response inhibition, the current
results demonstrate that event file binding representational

Fig. 4 Results of the analyses on the relationship between theta and alpha band activity of N= 79 subjects. a Temporal distribution of the difference
peaks in theta band activity (red) and alpha band activity (blue). Figure parts b and b show the results of the classification theta band activity to alpha band
activity. The MVPA was run with a TBA training set and an ABA test set. b Results of the temporal MVPA. The upper plot shows the AUC curve over time
(with the shaded area showing the standard deviation) while the lower plot shows the temporal generalization. c Clusters of best performance in the top
2% of the AUC values of all significant voxels as identified by the DBSCAN algorithm.
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dynamics reflected in the theta frequency band significantly differ
in their time course depending on the complexity of perception-
action integration. Intriguingly, occipito-temporal TBA power
differences were also associated with event file coding dynamics
in response inhibition in a previous study, however, in the pre-
trial interval and not after stimulus presentation13. Occipito-
temporal TBA is related, for example, to color categorization in
the ventral stream31–33, which in the present paradigm is of
crucial importance for the classification of the stimulus as Go or
Nogo due to overlapping stimulus features (e.g., color). Moreover,
attentional selection processes have been attributed to this
region34–37. It is thus reasonable that the dissimilarity of the
mental representation of the different Nogo conditions is parti-
cularly evident in this area, which encodes a crucial feature for
distinguishing the conditions. Of note, event file coding has been
shown to be dynamic in a sense that brain structures specialized
for stimulus features are involved in event file coding processes7.
The current findings provide an important extension to this
knowledge by showing that these dynamics are supported by
representational content coded in TBA.

Regarding the alpha frequency band, the spatial MVPA revealed
the best classification results in the left occipito-temporal cortex
and in the right superior and middle temporal gyri. Among other
things, these areas are associated with encoding and retrieval of
short-term memories38–40, as which event files can also be
understood due to their episodic nature3. These areas are also part
of the ventral stream encoding stimulus information such as
color31–33 and thus a decisive perceptual feature to inform response
execution or inhibition in the current study. One characteristic of
ABA is that it represents an inhibitory filter, in the sense that ABA
reflects inhibition of irrelevant information and processes (i.e., top-
down control)20,23,24. The current findings on the most successful
classification of the time courses of ABA into either a representa-
tion of no overlap or overlap in areas responsible for retrieval of
episodic memories (i.e., event files) and color categorization (which
is a decisive feature in the current task) suggest that particularly
top-down control over these two cognitive functions is adjusted
depending on the degree of overlap. Based on previous findings12,13

and the current results of the sensor-level data on the direction of
power differences, it can be assumed that the control of these
functions in terms of suppression is more pronounced (as reflected
in higher ABA) in situations requiring pure retrieval compared to
situations requiring reconfiguration. Thus, it is likely that in these
situations with pure retrieval, the recall of irrelevant episodic
memory content is suppressed, i.e., retrieval of irrelevant event files
is prevented.

MVPA classification between frequency bands. Based on the
timing of the power difference peaks in previous studies12,13,
which was replicated and statistically validated by the current
results on the sensor level, the MVPA for linking TBA and ABA
was performed with TBA as training data and ABA as test data.
Notably, the differential voxel patterns that distinguished between
conditions in TBA were also relevant to distinguish between
conditions in ABA over the entire time course. Given the timing
of the observed power difference peaks, this not only indicates
similarities in both frequency bands regarding the mental
representations involved in the binding effect, but suggest a
transfer of mental representations from TBA to ABA during the
whole time period of a trial. Furthermore, the temporal gen-
eralization of MVPA from TBA to ABA revealed that repre-
sentational differences from TBA could also be found in ABA
over a longer time course27. Moreover, TBA right after the sti-
mulus presentation could predict ABA around the time of the
maximum ABA binding effect, indicating a recurrent activation

of mental representations27. This finding further supports the
presumed direction of transfer from TBA to ABA. The data
exhibited an interleaved patterning of representations in TBA and
ABA in several brain regions, some of which overlapped with
brain regions, in which representations of varying degrees of
overlap also differed within each frequency band. Importantly,
the relevance of the SMA to event file coding was evident again,
as was the case when the theta frequency band was considered
separately. Additionally, these results provide converging evi-
dence across methods12,13,28, demonstrating that the involvement
of the SMA in event file coding can be considered a robust
finding. The involvement of the left posterior middle temporal
gyrus as well as the left fusiform gyrus also fit into the previously
drawn picture, as these two areas map parts of the ventral stream
associated with color categorization and semantic categorization
(e.g., of written letters), respectively41–43. Both colors and letters
are features with a central importance for the assignment of the
presented stimuli to an action alternative (reaction vs. non-
reaction). However, the largest contiguous cluster of voxels with a
large extent of transfer of mental representations between TBA
and ABA was found in the right middle frontal gyrus (rMFG),
which is, among others, associated with episodic memory
retrieval44 and its monitoring45. In particular, the monitoring of
memory retrieval likely differs substantially between conditions,
as the requirements for this monitoring are probably higher in
conditions requiring reconfiguration than in conditions where
retrieval of the initially activated event file leads to success. The
interplay of TBA and ABA in this process underpins its particular
relevance to successful inhibition under varying event file coding
demands. Importantly, only the extent of the transfer of mental
representations from TBA to ABA in the rMFG predicted
behavioral performance, that is, a more successful transfer of
mental representations from TBA to ABA was associated with an
increase in the behavioral binding effect (i.e., an increase in false
alarm rate). Thus, it could be questioned whether the close
intertwining of the two frequency bands is beneficial when it
comes to event file coding. It is particularly plausible that there is
a transfer of mental representation from TBA to ABA against the
theoretical background of TEC and the closely related BRAC
framework4. After stimulus presentation, automatic activation of
event file content is triggered3,46, which might be reflected in the
theta frequency band. Thus, TBA might be of functional rele-
vance for the binding and retrieval of event files, probably due to
its biophysical principles providing communication across large
spatial distances17,47. However, in order to then make a selection
between competing event files and choose the one that is
appropriate given the current requirements, top-down control is
needed to dynamically handle event files, which might be
represented in the alpha frequency band. Thus, ABA may mod-
ulate processes of event file coding, retrieval and reconfiguration,
which are most likely reflected by TBA. This may potentially even
explain the ambiguously beneficial effects of this interplay on
behavior, as the closer interleaving between the two frequency
bands may suggest that the top-down control reflected in ABA
“takes over” the mental representations of TBA before the
reconfiguration of the event files is adequately completed, which
then increases the binding effect, i.e., the magnitude of the effect
of the degree of feature overlap. The pattern of findings corro-
borates recent theoretical work on the role of ABA and TBA
during action control according to which it is the interplay of
both frequency bands that is central for the dynamic management
of integrated perception-action representations48. Future studies,
for example using methods to examine effective connectivity, may
investigate the precise transfer of information between brain
regions involved. Against the background of the theoretical
framework1,3,4, a further question would be to what
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extent different features differ in their contribution to costs due to
feature overlap. Although, according to the theoretical
background1,3,4, all present features are bound in the event file, a
weighting of features is assumed. Thus, future studies may
examine in how far there are specific combinations/contributions
of low-level features (e.g., color, visual appearance, word vs. non-
word, meaning) possibly determining representational dynamics
more than other low-level features – for example using repre-
sentation similarity analysis (RSA)49,50.

Conclusions
Overall, the prediction of mental representations encoded in the
alpha frequency band from mental representations encoded in the
theta frequency band reveals a close interplay of both frequency
bands in perception-action binding and retrieval in response
inhibition. Conceptually, this interplay implies different functions
of both frequency bands in the context of event file coding: while
the theta frequency band seems to represent general event-file
associated processes such as binding, retrieval, and reconfigura-
tion, the alpha frequency band seems to represent a top-down
control over these processes, implying that the alpha frequency
band may play an important role in the handling of perception-
action representations These functions can be interpreted against
the theoretical background of the BRAC framework, which
considers top-down processes to have an important role in the
dynamic management of perception-action representation during
their establishment (binding) and their retrieval.

Materials and methods
Sample. We assessed N= 93 healthy participants aged 20 to 30 years between
April 2019 and June 2021. The task was conducted as part of a larger data col-
lection, consisting of two appointments of 3.5 hours each. Participants were
recruited as a convenience sample via advertisements and an in-house database.
After exclusions due to not meeting inclusion criteria (N= 11), technical problems
(N= 1), and outlier correction of the behavioral data (N= 2), the final sample
consisted of 79 subjects (33 females; age: 24.0 ± 2.8 years; IQ: 111 ± 13). There is a
partial overlap of this sample with previous studies of our workgroup investigating
the same task11–13,15,51. All included participants reported the absence of psy-
chiatric or neurological disorders during a brief telephone screening, which was
underpinned by the Adult Self-Report (ASR/18-59)52 and the Alcohol, Smoking and
Substance Involvement Screening Test (ASSIST)53. Before study procedures started,
the subjects provided written informed consent. They received financial compen-
sation of 60 EUR or course credits after completing both appointments of the larger
data collection. The local ethics committee of TU Dresden approved the study.

Task. To assess perception-action integration during response inhibition, partici-
pants were instructed to perform a TEC Go/Nogo task14. The task consisted of Go
and Nogo trials, which contained either overlapping features or non-overlapping
features. The conditions with overlapping features were characterized by the fact
that their properties (color or letters) were used for both the Go and the Nogo
conditions. Since the Go condition required a response, whereas Nogo trials
required to inhibit the response, this overlap in stimulus features led to partially
overlapping event files (i.e., coupling between stimulus features and responses),
which should induce a higher false alarm rate during Nogo trials. The conditions
with non-overlapping features, on the other hand, contained features that were
exclusively used for either Go or Nogo trials. In detail, non-overlapping Go trials
were defined by the green-lettered word “PRESS”, whereas non-overlapping Nogo
trials consisted of the red-lettered word “STOPP”. There were two types of over-
lapping Go and Nogo trials each. In the first overlapping Go condition, the word
“DRÜCK” (German word for “press”) was shown in white letters. The second
overlapping Go condition consisted of the letters “XXXXX” presented in blue.
Regarding the Nogo condition, the overlapping trials displayed either the word
“DRÜCK” presented in blue font or the letters “XXXXX” shown in white font.
Participants were asked to respond to Go trials by pressing the space key with their
right index finger as fast as possible. Prior to the task, a training session was
conducted to familiarize each participant with the task. In the actual task,
196 stimuli were shown for each Go condition (overlapping and non-overlapping),
whereas 84 trials were presented for each Nogo condition (overlapping and non-
overlapping). This 70:30 ratio of Go vs. Nogo stimuli was chosen to create a
prepotent response tendency54. The task consisted of seven blocks of equal length.
In all blocks, every condition was presented with equal frequency and in a pseu-
dorandomized order. Participants could decide on the length of the break in
between the blocks. Every stimulus was presented for a duration of 450 ms. A trial

hence started with stimulus onset and ended either with the participants’ response
or after 1700 ms if no response occurred. The inter-trial interval was jittered
between 700 and 1100 ms. When no stimulus was shown, a white fixation cross was
presented in the center of the screen.

For further analyses, the two types of overlapping Go conditions were
combined. The same was done for the Nogo conditions. For the behavioral
analysis, the false alarm rate (given as percentage) was averaged for overlapping
and non-overlapping Nogo trials each. Furthermore, the reaction time (RT; given
in ms) was averaged for overlapping and non-overlapping Go trials, respectively.
For the neurophysiological analysis, only Nogo trials were considered, because we
were specifically interested in event file dynamics during inhibitory control.

EEG recording and analysis. While the participants were performing the TEC Go/
Nogo task, their EEG was recorded with 60 equidistant Ag/AgCl electrodes, which
were embedded in an elastic cap (EasyCap Inc.). The reference electrode was
located at θ= 90, ϕ= 90, the ground electrode at θ= 58, ϕ = 78. For the recording,
the software BrainVision Recorder 2.1 (Brain Products) was used. The EEG was
measured with a sampling rate of 500 Hz and electrode impedances were kept
below 5 kΩ. After recording, the data were pre-processed offline with the software
BrainVision Analyzer 2.1 (Brain Products). We reduced the sampling rate from
500 Hz to 256 Hz and applied an infinite impulse response (IIR) filter from 0.5 to
40 Hz and a notch filter of 50 Hz. Data were then referenced to the average of all
electrodes. With a first raw data inspection, we removed technical and muscular
artifacts. A subsequent independent component analysis (ICA; restricted infomax
method) served to detect and exclude recurring artifacts, such as blinks and pulse
artifacts. Afterwards, we segmented the data locked to the onset of the overlapping
and non-overlapping Go and Nogo trials, respectively. Only correctly rejected
Nogo trials with no response until 1500 ms after stimulus onset were included in
the further data processing and analysis. The segments had a size of 4000 ms and
encompassed the time interval from 2000 ms before to 2000 ms after stimulus
onset. Remaining artifacts were removed by an automated artifact rejection that
detected segments containing amplitudes below -200 μV or above 200 μV and
segments with activity below 0.5 μV in an interval of 100 ms. To complete EEG
data preparation, a baseline correction was performed in the time window from
−200 ms to stimulus onset.

Time-frequency analysis. We conducted a time-frequency decomposition on each
participant’s single-trial electrode-level EEG data and averaged it across all trials
based on the condition. Accordingly, time-frequency activity was computed for
correctly rejected overlapping and non-overlapping Nogo trials. We applied a Morlet
parameter of 5. Subsequently, we compared the participants’ average theta band
power (4–7 Hz) in the time window from 0 to 1000ms after stimulus onset between
overlapping and non-overlapping Nogo trials with a cluster-based permutation test55.
First, paired t-tests were calculated to compare both conditions at each electrode. If at
least two pairs of neighboring electrodes showed a significant t-value (p < 0.05), they
were considered part of a sample cluster. The sum of the t-values in each cluster
represented the cluster-level statistics. As a second step, the significance probability
was calculated with the Monte Carlo method. From both conditions combined, 1000
random draws of trials were tested for significant differences to approximate the
reference distribution. Calculating the portion of randomly drawn trials that showed a
larger test statistic than the observed trials resulted in the significance probability, i.e.,
the p-value. If a cluster reached a p-value below 0.05, it was considered to significantly
differ in activity between conditions. By this means, channels with significant dif-
ferences in theta activity between the overlapping and non-overlapping Nogo trials
could be identified. This procedure was repeated for the participants’ average alpha
band power (8–12Hz). The purpose of the procedure was to check whether there
were any differences at all in the theta and alpha band between the conditions and
clusters. This was done to ascertain, whether the subsequent steps were justified,
especially because the MVPA applied later is suggested to complement, not replace,
classical statistical analyses56.

Beamforming analysis. Since we were interested in the source-reconstructed time-
frequency data of the participants, we applied a Linear Constraint Minimum
Variance (LCMV) beamformer21 on the pre-processed single-trial EEG data.
LCMV beamforming allows reconstruction of the time series data in the source
regions from the recorded scalp activity. It works by multiplying a spatial filter
(computed based on the covariance matrix of the time-locked averaged data of each
condition and cluster) with the EEG data. The LCMV beamformer was computed
for each subject and each condition (overlapping and non-overlapping Nogo trials)
from the information of all electrodes in the time frame from -2 to 2 s relative to
stimulus onset. For the LCMV computation, a leadfield of 1 cm grid resolution was
first created based on the Montreal Neurological Institute (MNI) coordinate system
provided in the FieldTrip toolbox. For each grid point (i.e., voxel) of the brain
labeled in the Automatic Anatomical Labeling atlas (AAL)57, the time series data
were reconstructed using the LCMV beamforming. In addition to unlabeled voxels,
voxels located in cerebellar structures were excluded from the source analysis,
resulting in time courses for a total of 1254 voxels. In order to receive TBA and
ABA activity time courses for each source, we computed a time-frequency analysis
in a frequency range from 2 to 15 Hz in steps of 0.5 on the time series data of each
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voxel. We used a Morlet parameter of 5. For theta power, activity from 4 to 7 Hz
was averaged; for alpha power, activity from 8 to 12 Hz was averaged. To reduce
the data load, we restricted further analyses to the time window from stimulus
onset until 1000 ms after stimulus onset. In conclusion, by applying the LCMV
beamforming method we obtained the source-reconstructed theta and alpha power
in each brain voxel per participant and trial at every time point from 0 to 1000 ms
after stimulus onset.

Multivariate pattern analysis (MVPA). The goal of the study was to investigate
the mental representations underlying stimulus-response binding via MVPA. In
particular, we aimed at examining which concomitantly active brain regions
(within a pattern of brain activity) contribute most to the classification into an
overlapping vs. non-overlapping trial based on the source-reconstructed time-
frequency information (i.e., the results of the LCMV beamforming). Further-
more, the transfer of representational processes between TBA and ABA was
analyzed. To this end, three different classifications were investigated: (1) A
classifier trained and tested on the source-reconstructed time course of TBA; (2)
A classifier trained and tested on the source-reconstructed time course of ABA;
(3) A classifier trained on the source-reconstructed time course of TBA and
tested on the source-reconstructed time course of ABA. The order of the third
approach (i.e., train on TBA and test on ABA) was chosen since previous
analyses have shown that the theta power difference between the overlapping
and the non-overlapping condition peaks before the alpha power difference after
the presentation of Nogo stimuli in the TEC Go/Nogo task13. Thus, it would not
be meaningful to train a classifier based on alpha band data and test it on theta
band data.

For each of the three investigated approaches, we computed multivariate
pattern analyses (MVPA) using the MVPA-light toolbox56 and trained a binary
classifier to discriminate between the overlapping and non-overlapping condition.
The chosen parameters and settings as well as the analysis steps are described in the
following: In general, we adopted the default settings of the toolbox except for
choosing a two-class L1-Support Vector Machine (SVM) classifier. We decided to
apply the SVM classifier because it is more robust to outliers and therefore better
suited to noisy and non-Gaussian data than the LDA classifier56. Furthermore, we
used a cross-validation method with five folds. The MVPA analyses were
performed on each participants’ dataset with the source-reconstructed time course
in each of the 1254 voxels (derived from the LCMV processing step) as feature
vector (i.e., as input). First, we performed an MVPA to investigate at which time
points after stimulus presentation the classifier can discriminate between both
conditions based on the pattern of the source-reconstructed time-frequency data
(i.e., theta power and alpha power, respectively) across all voxels. The results were
displayed via the area under the ROC curve (AUC). Additionally, a temporal
generalization analysis was carried out with the same feature vector to obtain
information on the temporal dynamics of the activation patterns. We performed
cluster-based permutation tests (based on Wilcoxon tests with a threshold set at
p= 0.05) to test at which time points the AUC differed significantly from the
chance level (i.e., 0.5). To approximate the reference distribution, 1000 random
draws were used. The statistical values of the cluster-based permutation tests were
computed as the sum of all Wilcoxon-values within the time points.

For the significant time windows of the first MVPA, i.e., the time windows in
which the AUC differed significantly from chance level, a spatial MVPA was
performed. In the spatial MVPA, the classifier was trained with time (i.e., the
time-frequency course) as feature vector. As the output, we received an AUC
value for each voxel. The spatial MVPA thus analyzed the classification
performance of each voxel based on the information about the source-
reconstructed time-frequency course. To test in which voxels the AUC value
differed significantly from chance level (i.e., a chance-level brain), we performed
cluster-based permutation tests with the same parameters as described above.
Importantly, however, from this analysis step onwards, we had to re-include
previously excluded voxels (see section “Beamforming Analysis”). As the source-
locations were flattened as one dimension of the MVPA analysis, a
3-dimensional structure had to be re-established for subsequent statistical
comparisons. Thus, the AUC values for each voxel were re-inserted into the
source data, and voxels at previously excluded positions were set to a value of 0,
resulting in a total of 2020 voxels. The corresponding voxels in the chance-level
brain were also set to a value of 0. As a final step, we investigated whether the
voxels with the highest classification performance (i.e., the highest AUC values)
form clusters and can thus be assigned to neuroanatomical regions. To this end,
we applied a Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm58. In detail, the DBSCAN identified the top 2% of AUC
values with at least one neighbor within a neighborhood search radius of ε= 1.5
* grid size that were located in gray matter regions labeled in the Automatic
Anatomical Labeling atlas (AAL)57. The applied analysis steps thus served to
reveal which neuroanatomical regions within an activation pattern contribute
strongest to the discrimination between overlapping vs. non-overlapping
conditions based on source-reconstructed time-frequency information.

Statistics and reproducibility. For the behavioral data, the analyses of the Go and
Nogo trials were performed separately. The Go conditions “white PRESS” and
“blue XXXXX” were combined into one overlapping Go condition, while the Nogo

conditions “blue PRESS” and “white XXXXX” were combined into one overlapping
Nogo condition. Thus, the contrast between overlapping and non-overlapping
conditions could be analyzed for the following parameters: accuracy of response
(hit rate) and reaction times (RT) on Go trials, and false alarm rate on Nogo trials.
The overlapping and non-overlapping conditions were compared using non-
parametric Wilcoxon tests, as the Shapiro-Wilks tests22 were significant
(see behavioral results). For significant comparisons, the effect size r was calculated
according to Rosenthal59. For the neurophysiological analyses, only the Nogo trials
were used because this condition measures response inhibition. For both the
behavioral and neurophysiological data, the difference of overlapping minus non-
overlapping condition is referred to as the binding effect. Moreover, we aimed to
predict behavioral performance from the results of our spatial MVPA. Following
the study of Petruo et al.60, multiple linear regression with a backward elimination
procedure was used to find the optimal predictor set out of the clusters obtained in
the spatial MVPA for predicting the binding effect in the false alarm rate of the
Nogo trials. The mean AUC values of the clusters were used as predictors in the
model. At each step, predictors were removed based on the change of the coeffi-
cient of determination R², until the elimination of another predictor would
substantially decrease R2 (p < 0.10; default setting in SPSS).

The sample size is larger compared to previous studies using MVPA on data11,60

and comparably large compared to a recent study using MVPA in the same
experimental paradigm15. Details regarding the statistics for the MVPA are given in
the respective part of the methods section (see above). All data is available in OSF.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data can be downloaded from: https://doi.org/10.17605/OSF.IO/2HNYK.

Code availability
Further custom code used to process the data can be found here: https://doi.org/10.
17605/OSF.IO/2HNYK.
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