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Weather anomalies more important than climate
means in driving insect phenology
R. P. Guralnick 1✉, L. P. Campbell2 & M. W. Belitz1

Studies of long-term trends in phenology often rely on climatic averages or accumulated heat,

overlooking climate variability. Here we test the hypothesis that unusual weather conditions

are critical in driving adult insect phenology. First, we generate phenological estimates for

Lepidoptera (moths and butterflies) across the Eastern USA, and over a 70 year period, using

natural history collections data. Next, we assemble a set of predictors, including the number

of unusually warm and cold days prior to, and during, the adult flight period. We then use

phylogenetically informed linear mixed effects models to evaluate effects of unusual weather

events, climate context, species traits, and their interactions on flight onset, offset and

duration. We find increasing numbers of both warm and cold days were strong effects,

dramatically increasing flight duration. This strong effect on duration is likely driven by

differential onset and termination dynamics. For flight onset, impact of unusual climate

conditions is dependent on climatic context, but for flight cessation, more unusually cold days

always lead to later termination particularly for multivoltine species. These results show that

understanding phenological responses under global change must account for unusual

weather events, especially given they are predicted to increase in frequency and severity.
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Much of our understanding of long-term trends in phe-
nology comes from examination of either onset or
mean timing of events. These studies have shown,

across a vast array of lineages and regions, that organisms are
shifting growth and reproduction early in the face of current
climatic changes (syntheses across animals and plants in refs. 1–3,
respectively). Such studies often focus on the yearly or seasonal
warming, and look for statistical associations between that
warming and trends in key phenological events such as leaf-out4

or flowering5 in plants, or timing of developmental phases such as
onset of the adult flight period for winged insects6–9. While a
proliferation of studies continue to show such associations, many
continue to rely on yearly or seasonal climatic averages8. Even
studies that directly use accumulated heat measurements such as
growing degree days (GDDs) often aggregate over seasonal or
annual periods, rather than directly tying fine temporal grain, e.g.
daily environmental conditions, to energetic trade-offs that are
highly likely to determine phenology outcomes10,11.

Unusual warm or cold events may be particularly important as
phenology cues12, and while less predictable than longer-term
climate changes, are likely to increase in the future13. Schemske
et al.14, for example, demonstrated that unusually warm condi-
tions occurring too early in the season did not trigger understory
woodland flowering, but were strongly associated with earlier
flowering timing later in the season. Unusually warm spring
temperatures resulted in earlier larval hatching of Karner blue
butterflies (Lycaeides melissa samuelis), leading to phenological
mismatches with its obligate host plant, wild blue lupine (Lupinus
perennis)15. Unusually warm spring temperatures and early
snowmelt resulted in early flight onset of Edith’s checkerspot
(Euphydryas editha) butterfly, leading to high mortality of adults
on at least two occasions over 30 years of a long-term study16. In
one of these years, high mortality was the result of phenological
mismatch with required nectar resources, and in the other the
cause was early peak emergence of butterflies that coincided with
a large snowfall event16. Unusual warming can conversely benefit
insect populations by reducing exposure to parasitoids17,18 or
extending length of time for development19 as has been docu-
mented for butterflies in the European Mediterranean region20.
Drivers of phenology offset, or termination are much less well
studied in either plants or insects compared to drivers of onset or
peak events. However, the few studies that have examined climate
variation, such as ref. 21, have generally found that reduced
temperatures increase longevity in cold-tolerant insects, and in
particular, that fluctuating thermal regimes delays development
and senescence. In summary, intermittent unusual cold may slow
metabolic processes without causing lasting damage21, as long as
later normal or warm conditions provide time for recovery.

It may also be that unusual weather events indirectly impact
phenology via interactions across trophic levels. It has been
shown that excluding pollinators from woodland understory
study sites delays individual flower senescence22, as plants may
continue making investment in reproductive structures until
pollination occurs. If unusual cold days act to reduce pollinator
flights, it may also lead to later flowering senescence, which may
also keep phenologies in sync. However, species within and across
trophic levels may instead have high variability in onset and
termination sensitivity to these anomalous events. If so, such
short-term anomalous events could disrupt synchronization of
activities, and cascade across trophic levels, as discussed by Butt
et al.23.

Even less is known if anomalous or unusual weather impacts
duration of phenophases. If unusual warm events lead to earlier
onsets, or unusual cold delays termination, then one or the other
should act to increase duration of phenophases. In situations
where there are both unusual warm and cold events, these may

act synergistically to strongly increase duration timing. However,
it may ultimately depend on the cadence and intensity of such
events and species’ physiological tolerances. It may also be that
the effect of unusual weather events on phenology are themselves
contextually dependent on the overall climatic conditions, such
that the impact is weaker or stronger in warmer regions versus
colder ones.

To our knowledge, the impact of anomalous events on insect
flight onset, termination and duration has not been examined at
broad spatial, temporal and phylogenetic scales. Here we use
carefully curated phenometric estimates for Lepidoptera (moths
and butterflies) of the Eastern USA generated from natural his-
tory collections (NHC) data. Lepidoptera are well-suited for
phenology studies24,25, given that they have been well collected
for centuries26, and have temperature-dependent developmental
rates27. Recent work has also elucidated how key Lepidopteran
life-history traits mediate phenological responses, providing a
framework for further examining the importance of anomalous
weather events. Our focus on using NHC data is intentional,
given their immense utility for generating critical phenometrics
needed for this work, and unique value for gathering estimates of
both phenology onset and termination that span decades and
broad spatial extents. This is critical for providing a rich set of
estimates of independent unusual weather events, capacity to
examine trends over time, and covering broad spatial and
environmental gradients.

Based on previous work and given what is already known
about butterfly phenological shifts in the face of climate warming,
we make four key predictions that we test using our unique
dataset. First, we predict that onset occurs earlier when there is
preceding unusually warm weather and that this effect is stronger
than delayed onset timing from unusual cold. Second, we predict
that increasing numbers of unusual cold days will increase delays
in adult flight termination. Third, duration of flight periods sig-
nificantly lengthens in cases where there is both unusually warm
and cold weather. Finally, how such unusual weather impacts
flight phenology of butterflies and moths is itself determined by
both regional climate context and key traits, such as
voltinism28–30.

Results
We compiled NHC records in order to estimate onset, offset and
duration phenometrics. After filtering to the Eastern USA and
performing final quality control checks for outliers and removing
singleton cells and species, we were left with 850 phenoestimates
for 18 unique grid cells covering 139 species, with a temporal
span from the 1940s to 2010s. Figure 1 provides a summary of
sampling intensity across grid-cells, showing density of estimates,
and temporal coverage.

The number of total unusually warm or cold days across all 850
phenoestimates averages was ~2 for both warm and cold (x̄=2.03
for warm, x̄=1.89 for cold), with a relatively high standard
deviation of also ~2 for both. The maximum number of unusually
warm or cold days for any phenoestimate was 11 and 13,
respectively. The maximum combined sum total of unusual warm
and cold days for any phenoestimate was 14. Total number of
unusually cold days only modestly positively correlates with GDD
for onset (r= 0.10) over the same time periods. The correlation
between GDD and unusual warm days is even lower (r=−0.02).
There was a slightly stronger, negative correlation between unu-
sual warm and cold days (r=−0.23) but all these values suggest
little collinearity.

We ran 2 sets of models, one that used yearly average tem-
perature that included all our phenology estimates, and one that
used accumulated GDD over a narrower time window and a
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subset of earlier flying species. We focus here on results from our
annual temperature analyses because the GDD results, while not
identical, tell the same story while more limited in the species
pool (see Supplemental Figs. 1–5 and Supplemental Table 1). We
present results of model fitting for onset and termination first,
before turning to duration, with a focus on the impact of unusual
cold and warm on phenoestimates. We note that phylogenetic
autocorrelation is low across all models based on our PGLMM.
We also found little evidence for meaningful temporal or spatial
autocorrelation (see Supplemental Figs. 6 and 7) based on resi-
dual plots. Here we opt to still present PGLMM model results,
which includes information about variance accounted for by
random effect terms, including phylogenetic structure, that are
retained in model fitting (Table 1).

Model results indicated that a greater number of unusually
warm days over a 60-day period prior to onset advances the start
of insect flight, while unusually cold days slightly delays the onset
of insect flight. However, the effect of unusually cold days is
highly dependent on temperature context—in the coldest regions,
unusual cold advanced flight onset phenology, while delaying it in
the warmest regions (Table 1—onset). The effects of unusual
warm days also have a strong association with temperature, with
a greater number of unusually warm days in cold regions strongly
driving advanced onset but having no effect in the warmest
regions (Fig. 2). Based on standardized coefficient estimates, the
strongest impacts on onset timing are not climatic, but simply
seasonality of flight, voltinism and overwintering stage. However,
one trait never included in top models for onset (or any other
phenophase) was nocturnal versus diurnal.

Our models for offset showcase an unexpected result. Both
unusually cold and warm days act to delay offset, with a stronger
effect of unusual cold based on standardized model coefficients.

We also find clear evidence that impacts of unusual warm and
cold on termination timing are conditional on climatic context
and species traits are also critical, mirroring results for flight onset
(Fig. 3A, B). Multivoltine species show much stronger impact of
cold days on offset timing, with delayed termination when there is
more unusual cold. Univoltine species show much weaker phe-
nological sensitivity to unusual cold, and show more evidence of
termination occurring later in colder regions, as opposed to warm
regions (Table 1—offset and Fig. 3A). By contrast, greater unu-
sual warm days advance offset in the warmest regions, but delay it
in colder areas for both uni- and multivoltine species (Fig. 3B). As
with onset models, the strongest predictors of offset timing are
trait-based, including season of flight, overwintering stage and
voltinism.

Duration models showcase the very strong impact of unusual
cold and warm days on insect flight phenology. Unusual cold is a
particularly strong driver leading to lengthening flight duration,
but as with offset models, unusual warm days also typically
lengthens duration. We also find a clear interaction between
unusual warm and cold days (Table 1—duration). Figure 4
illustrates the key relationship, showing that unusually cold days
drive longer durations, especially in warmer regions. However,
when there is both unusual warm and cold, durations lengthen
strongly across all climate contexts. As with flight termination
timing, the impact of unusual cold on duration is stronger for
multivoltine than univoltine species (Table 1).

There are multiple ways to gauge the impact of unusual cold
and warm on the duration of flight and here we focus on two
approaches. One is to examine rates of phenological change based
on model parameters, and the second is to ask how much does
model fit decline when key parameters are removed. Based on
model parameter estimates, a shift of one standardized unit of

Fig. 1 Coverage of phenology estimates across the Eastern USA. Map of coverage and sample size across the Eastern USA. Number of decades covered
(size of circles) and total number of phenoestimates (orange to black color ramp) are shown.
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both warm and cold days (~6 days total) will lead to ~20 days
longer duration of flight. Our model selection procedure using
AIC values always found that models that included unusual warm
and cold days outcompeted models without unusual warm and
cold days as predictors. The conditional AIC of our top linear
mixed effect models were considerably lower for models of onset
(16.75 ΔAIC), offset (36.91 ΔAIC), and duration (170.03 ΔAIC)
when unusual warm and cold days were included in the model.

Discussion
Recent work on plants (Li et al.31) and insects (Belitz et al.25) have
shown that flowering and insect flight durations are longer in

warmer areas in North America. Here we show that this general
climate context matters less than unusual weather in determining
many aspects of insect adult flight phenology. Lepidopterans, at
least, are far more phenologically sensitive to especially unusual
cold than to yearly average cold or warm conditions. As an
example, for models with annual values, one standardized unit
increase in both cold and warm days (~3 days each in unscaled
units) will lengthen adult flight duration by nearly 20 days; by
contrast, one unit of annual temperature change lengthens
duration by only ~8 days (Table 1). We suspect this result extends
to insects more generally. Further, the number of unusually warm
and cold days are not simply additive, nor are they correlated

Table 1 Model parameters for onset, offset, and duration models.

Predictors Onset Offset Duration

Intercept 164.5 (149.3 to 179.5) 262.1 (241.9 to 281.9) 101.2 (84.8 to 117.4)
Temperature −7.6 (−12.5 to −2.7) −0.9 (−4.4 to 2.7) 7.7 (5.8 to 9.7)
Precipitation 1.1 (−0.9 to 3.2) 2.4 (0.8 to 4.0) 0.5 (−1.1 to 2.1)
Unusual cold days 1.0 (−0.6 to 2.6) 5.8 (3.8 to 7.7) 15.8 (12.7 to 18.8)
Unusual warm days −2.0 (−3.4 to −0.6) 2.5 (0.8 to 4.2) 4.9 (3.3 to 6.5)
Temperature seasonality −4.3 (−7.4 to −1.3)
Precipitation seasonality −1.7 (−3.1 to −0.4)
Voltinism [Uni] −0.6 (−6.8 to 5.5) −43.0 (−50.9 to −35.3) −31.1 (−37.9 to −24.4)
Seasonality [Spring] −68.1 (−80.8 to −55.2) −55.0 (−73.5 to −36.2) 3.8 (−10.4 to 18.1)
Seasonality [Summer] −29.4 (−37.8 to −21.1) −31.2 (−43.6 to −18.7) −0.9 (−10.4 to 8.6)
Overwintering strategy [Egg] 36.0 (20.4 to 51.7) 14.7 (−5.3 to 35.0) −36.1 (−53.1 to −18.7)
Overwintering strategy [Larvae] 15.9 (2.5 to 29.2) −8.7 (−26.0 to 9.0) −31.2 (−45.9 to −16.2)
Overwintering strategy [Migratory] 25.8 (8.2 to 43.4) 15.9 (−8.1 to 39.9) −15.3 (−34.9 to 4.3)
Overwintering strategy [Pupae] 14.0 (0.3 to 27.7) −9.1 (−27.1 to 9.6) −30.8 (−45.8 to −15.4)
Temperature: precipitation 4.3 (2.1 to 6.5) 2.6 (0.8 to 4.4)
Temperature: unusual cold days 3.6 (1.5 to 5.8) 1.8 (0.3 to 3.3)
Temperature: unusual warm days 2.1 (−0.1 to 4.2) −2.6 (−5.4 to 0.1) 3.1 (0.5 to 5.6)
Temperature: voltinism [Uni] −5.1 (−8.7 to −1.4) −8.8 (−12.1 to −5.5)
Precipitation: unusual cold days −2.2 (−3.9 to −0.5)
Precipitation: unusual warm days 1.3 (−0.3 to 2.9) 4.6 (2.7 to 6.4)
Unusual cold days: voltinism [Uni] −4.4 (−6.9 to −2.0) −8.5 (−12.0 to −4.9)
Unusual cold days: unusual warm days 4.5 (2.7 to 6.3)
Distinct observation days −2.2 (−3.9 to −0.5) 4.4 (2.9 to 5.9) 5.8 (2.9 to 8.7)
Number of distinct collectors 3.6 (0.8 to 6.4)
Conditional R2 0.78 0.863 0.778

Except for Unusual Warm and Cold days, each model contained the same set of predictors. For onset models, we used 60 prior days of unusual warm and cold; for offset, these were measured between
onset and offset, and for duration, the sum of the first two. Below we simply refer to “unusual cold days” and “unusual warm days” to simplify presentation of results. Parameters with model coefficients
whose 95% Bayesian credible interval does not include zero are in bold. If a model parameter was dropped in the final model or not included, we left parameter estimate value blank.

Fig. 2 Model-based plots of flight start dynamics in relation to unusual warm days and annual temperature. Effect plots showing flight start dynamics
for uni- and multivoltine species in relation to number of warm days and annual temperature. Onset of adult flight period is much earlier when there are
more unusually warm days in cold regions, but not in warm regions. While univoltine and multivoltine species have similar sensitivities to unusually warm
conditions, onset dynamics across annual temperature gradients are stronger for univoltine species.
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Fig. 3 Model-based plots of flight termination dynamics in relation to unusual cold days, warm days, and annual temperature. Effect plots showing
termination dynamics for uni- and multivoltine species in relation to number of unusual cold and warm days and annual temperature. A Multivoltine
species’ flight termination timing is more sensitive to unusual cold days than univoltine, but both show longer durations with more unusual cold. As well,
multivoltine species flight durations do not differ across climate contexts, but univoltine species have later offsets in colder regions. B Unusual warm days
in warm contexts slightly advances offset, a result we never find for offset response to unusual cold. Otherwise, in colder contexts, more unusual warm
days also delay offset.

Fig. 4 Model-based plots of flight duration dynamics in relation to unusual cold days, warm days, and annual temperature. Effect plots showing
duration of flight in relation to number of unusual cold days and warm days in warmer and colder climate contexts. Warm and cold days together interact
to increase duration of adult insect flight, with the strongest sensitivity in the warmest regional context. unusual cold days without warm days still increase
duration.
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strongly with GDDs, a commonly used predictor of phenological
responsiveness. We instead found clear evidence of an interaction
between the two driving an even stronger response—more of both
unusually warm and cold days extend durations longer than
either separately.

These results emphatically suggest it is critical to consider
unusual or anomalous weather events when understanding
shorter or longer-term trends in phenology responses. Such
anomalous events are only predicted to be more frequent and
severe under climate change13,32, and thus simply extrapolating
average warming as a means to understand phenological change,
or potential for mismatch within or across trophic levels, is
insufficient. Surprisingly, while unusual weather events have long
been suspected to be critical for especially driving phenological
mismatch33, direct empirical demonstration has been limited (but
see a within trophic level example in hibernating ground
squirrels34). Our results clearly demonstrate that incorporating
unusual events into frameworks forecasting future phenological
changes is essential for informing adaptation strategies under
ongoing environmental change, a position that has been advo-
cated by others35.

The strong effect of unusual cold and warm on duration of
flight appears to be driven by differential dynamics and life-
history tradeoffs driving flight onset and termination. Lepi-
dopterans in cold regions of the eastern USA are sensitive to
unusually warm days prior to flight onset but are not strongly
sensitive to unusual cold. In warm regions, it is the reverse, with
cold days delaying onset but warm days having little effect. We
find similar results for offset, with one critical difference; more
unusually cold days always lead to later flight period termination,
whether in the warmest conditions or the coldest. In all cases, it is
critical to point out that unusually cold and warm conditions are
context dependent. That is, we measured unusual cold or warm
days against the averages for the region where the phenoestimate
was taken; thus unusually cold conditions in northern regions are
much colder than unusual cold in southern regions. The differ-
ential impact of unusual cold conditions on onset and offset
dynamics means that unusual warm days without cold days tend
either to lead to static or longer durations, while the converse case
of all cold days always extends duration via offset dynamics.

Extended durations driven by more weather anomalies was not
completely unexpected based on insect thermal biology. Fluctu-
ating thermal conditions, where periods of unusual cold or warm
are followed by normal conditions, have been shown to increase
developmental time36 and delay adult senescence21, although this
may be context dependent27. These factors may compound in
species with multiple clutches per year, as the likelihood for bouts
of especially unusual cold during the flight season additively
delays production of following generations. We do indeed see a
clear effect of stronger duration increases in multivoltine than
univoltine species. Still, our approach here does not directly
examine the exact timing of unusual weather. Instead, we simply
sum the number of unusual days over relevant periods (prior to
and during the flight period). The fact that we still see such strong
effects simply from summing suggests that even stronger impacts
may emerge if variables capturing the cadence and timing of
anomalous events were also included.

It is tempting to conclude that unusually warm and cold
weather driving longer durations could limit the possibility of
mismatches with lower trophic levels, such as plants. However,
we note that durations are generally the shortest in warm regions
that have a high number of unusual warm days in the absence of
unusual cold. As well, our work here is purely focused on phe-
nology of adults, and not earlier life-stage phenology or abun-
dance. Truly extreme events, where temperatures exceed (either
positively or negatively) critical survival temperatures for early

larval stages may have enormous impacts on the number of
caterpillars who survive to adulthood37, and on adults
themselves38. Moving beyond results here therefore requires
more careful consideration of across life-stage phenology and
abundance.

One challenge with interpreting the growing numbers of
phenology studies is choice of climatic summaries related to
phenological events20. We note that there are a surprisingly
limited number of studies that have attempted to examine how
weather anomalies impact phenology, and thus no standard
method for defining thresholds for “unusual” or “anomalous”
conditions. We chose days 2 standard deviations away from long
term averages, but one could also consider other ways to capture
anomalous events or climate variability (such as coefficient of
variation or alternative threshold levels, such as the lower 10th or
upper 90th percentile values) over a season.

As well, we found similar results regarding the impact of
unusual weather conditions whether using yearly averages and
our full dataset or GDDs over a narrower time window focusing
on earlier fliers. Still, and unsurprisingly, there are minor dif-
ferences, such as reduced strength of an interaction of cold and
warm days on flight duration. These differences may be due to
reduced sample size, effectively removing late fliers (and sea-
sonality as a covariate) in the GDD models. It is critical,
therefore, to consider how choices of predictors and filtering of
phenology data may matter since these can have consequences
for overall interpretation. The choice of climatic context vari-
ables may depend on the purpose of the study e.g., better ability
to predict phenology versus testing hypotheses or under-
standing trends. Providing clear and explicit rationale for
choices of climate context, along with community coalescence
regarding time window choices for climate data assembly, may
help especially when comparing across studies and seeking
commonalities. Overall, we hope this work motivates more
attempts to quantify unusual weather events and their cadence,
and how they impact population dynamics, in natural systems.
Equally important will be moving from phenomenological
studies to experimental ones incorporating climate events12, in
order to fully understand the impact of climate variability on
insect phenology and abundance.

We close here focusing on the strong value—and some of the
limitations—of using natural history collections data to examine
phenological response to climatic variability26. On the positive
side, NHC data provide a needed basis for generating estimates
of the full flight period and extending far back in time. Most
other historical datasets are limited to only capturing onset
dynamics, while reliance on purely recent data may limit capture
of climatic variability, and if weather events are widespread,
potentially increase spatiotemporal autocorrelation. On the
downside, our estimates are necessarily at relatively coarse spa-
tial grain due to data limitations, and thus our assessment of
unusual cold and warm is also over larger regions. This coarse
grain also ultimately spatially smooths signals, and thus misses
pockets of even more extreme weather conditions. How much
incorporating finer-scale phenoestimates and climate data unveil
a more nuanced story is an open question. Since climatic data we
used here is already fine-grained in both space (800 m × 800 m)
and time (daily estimates), the key step towards developing those
finer-grained estimates is via increasing density of phenology
data. Simulations have shown that our minimum data require-
ments for fitting phenoestimates are within usable thresholds39,
but even at this coarse spatial resolution, data remains sparse and
this has potential to yield imprecise and biased estimates39. We
encourage continuing, accelerated efforts to digitize insect spe-
cimens and linking them to ongoing citizen science collection
efforts such as iNaturalist40.
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Methods
Determining study area, temporal extent, and assembling phenometrics. We
used phenometric estimates that were generated by ref. 25, but subsetted these to
focus on the Eastern United States as defined by the location of the Mississippi
River but otherwise including all land area, with the exception of Southern Florida.
We chose to focus on the Eastern USA because it is a region where temperature is
known to be a strong control on phenology, while in the more arid Western region,
precipitation is likely to play a more critical role41. While we kept regions bor-
dering Canada, our daily climate data is limited to the conterminous USA. Finally,
we limited our temporal extent to 1948–2016 since we opted to use a daily climate
dataset with this temporal range, and because using daily data deeper in the past
has challenges with increasing, but unknown, uncertainty around climate estimates.

While the details of how phenometrics are estimated are covered in25, we
provide a short summary of the methods used, and note in particular the strong
focus on best practices, which is the focus of that work. NHC records were
assembled for all North American Lepidopterans from Global Biodiversity
Inventory Facility (GBIF), Integrated Digitized Biocollections (iDigBio), and
Symbiota Collections of Arthropods Network (SCAN), de-duplicated and filtered
for quality as described in ref. 25. Records passing these filters were joined to a grid
of 250 × 250-km equal area cells (North America Albers Equal Area Conic
projection). Our choice of this coarse spatial resolution reflects compromises
related to data availability of specimen records, but critically, our study focuses on
broad-scale patterns across wide gradients that are well-captured at this coarse
resolution. Phenometric estimates were generated for species-cell-year
combinations where the data were dense enough for usable estimates. We set
minimum thresholds separately for univoltine (5 observations, 4 distinct days of
collecting, and 3 distinct collectors) and multivoltine (10 total observations, 8
distinct collecting days, and 3 unique collectors) species. These differences reflect
the challenges with longer (multivoltine) versus shorter (univoltine) flight periods,
based on simulations from ref. 39 and empirical work42.

Phenometrics for cell-by-year-by-species combinations with enough data were
estimated using 5% (hereafter 5% onset or just “onset” or “emergence”), 50%, and
95% (hereafter 95% offset, offset or termination) continuous sample percentiles,
along with estimated confidence intervals, using the quantile_ci() function within
the “phenesse” R package39. Simulations have shown these estimates are relatively
robust under low to medium sampling intensity39 while still capturing a reasonable
metric of the bounds of the flight period. Even so, further checks for phenometric
outliers were performed by Belitz et al.25 to remove spurious estimates that may be
due to problematic records that cannot be removed via semi-automated means (e.g.
dates with transposed day and months, a common issue in digitized specimen
records). We added a final check to remove any phenometrics where estimates of
duration that were less than 3 days long as likely spurious. Flight duration was
calculated as the difference between the 95% termination and 5% onset timing in
units of days. Finally, we also assembled distinct days of collecting and number of
distinct collectors for each estimate to use downstream as a means to account for
sampling effort. We filtered all data to the region of interest (eastern USA)
defined above.

Collating climatic and trait data. We start by discussing trait data previously
collected by25 in brief. That work assembled two key traits from the literature,
“voltinism” and “larval overwintering stage” for each species included in final
analyses, which are thought to strongly condition phenology responses. That work
also categorized species as “nocturnal and diurnal”, which generally follows along
phylogenetic lines (diurnal for butterflies, nocturnal for most of the rest of the
species). A final key species’ trait was flight season, which was categorized into
Spring, Summer or Fall by calibrating timing against beginning of the frost-free
period, calculating a species mean flight time and binning species by 0–20 (Spring),
20–80 (Summer), and 80–100 (Fall) quantiles, as described in more detail by25.
Supplemental Table 2 provides a full list of species and traits (also available as a.csv;
see data accessibility statement below)25 also assembled key climatic metrics at the
spatial grain of the phenometrics (250 km × 250 km) by aggregating monthly
estimated maximum temperature, precipitation data for 1901–2016 at approxi-
mately 1-km spatial resolution from the Chelsea data product43. The final metrics
assembled were yearly precipitation in mm, and mean annual temperature values
in degrees C, along with temperature and precipitation seasonality matching bio-
climatic definitions (temp seasonality= standard deviation of all months × 100,
precip seasonality=coefficient of variation (CV) of monthly precipitation). These
were calculated at yearly temporal resolution for all grid cells in the study area. We
filtered to the cells and years used in this study.

Key new measurements calculated in this study were unusually or anomalously
(we use these terms interchangeably) warm and cold days, defined as days that fell
at least 2 standard deviations outside the normal conditions for that day and
location when compared to all years used in this study (1948–2016). In order to
assemble metrics for unusual warm and cold, we queried the TopoWX dataset44, an
800-m resolution gridded dataset of daily minimum and maximum air temperature
for the conterminous USA. We used the R package “climateR” and the associated
package “AOI” to gather daily data over all years for each grid cell where we fit
phenometrics and then used raster math to calculate an overall mean temperature
per day from 1948–2016 for that cell. We concatenated these data into a single
large data table and then wrote two bespoke functions that took estimated onset

and offset day of years and counted how many days prior to onset and between
onset and termination of flight were unusually warm (>mean of all years+ 2 SD)
or cold (<mean of all years− 2 SD). The function allows specification of the
number of days prior to onset to examine, and for this study we used 60 days prior.
We chose 60 days as a compromise; extending back too far may capture events that
are not relevant14, but too close to onset may miss lag effects. Finally, we used
standard “tidyverse” functions45 to create a sum of unusual warm and cold days for
each species-cell-year combination over the period from 60 days prior to onset to
flight termination. This approach smooths variation at finer spatial grain and
therefore captures spatially broad unusual events rather than localized effects.

We used the same daily data to calculate GDD accumulations in two different
ways. First, we were interested in determining the correlations between summed
GDD and unusual cold and warm over the same time intervals, to verify lack of
strong collinearity. Second, we calculated sum GDD values from March 21 to June
30 for each year and grid cell where we had a phenoestimate, defining the Spring to
early Summer period. We then also subsetted our phenometric dataset to only
those species, cell, and year combinations where onset was prior to June 30th and
determined if our results varied using this predefined window approach compared
to using annual temperature. Both GDD measurements used 5 °C as a base
minimum threshold and 38 °C as a base maximum threshold. We summed values
based on the classic formulation where daily GDD= [(Tmax+ Tmin)/2]− Tbase_min

(McMaster and Wilhelm 1997)46 and where if observed Tmin < Tbase_min, set to
Tbase_min, and if Tmax > Tbase_max set to Tbase_max. We chose these relative permissive
GDDs, slightly broader than those in ref. 47, given the multispecies approach used
here, where species-specific GDD thresholds are not known and the core goal was
to compare performance of GDD models and annual temperature models.

Statistics and reproducibility—modeling butterfly and moth flight onset,
termination, and duration. We initially used a linear mixed modeling approach
(LMM) to determine drivers of adult flight onset and termination of phenology,
along with duration, while accounting for potential biases in sampling effort.
Estimates of the 5% onset, 95% termination, and duration were the response
variables for three separate models, and we included mean annual temperature,
number of unusually warm and cold days (as separate variables), sum annual
precipitation, temperature seasonality, and precipitation seasonality as key climatic
predictors. We also included four key traits, flight season, voltinism, overwintering
stage and nocturnal vs. diurnal. Finally, we included two predictors capturing
sampling effort, number of distinct collecting days and number of distinct col-
lectors. We expected that increased sampling effort over more distinct days by
more independent collectors will drive earlier onsets, later terminations and
increased durations.

We fit these same models replacing annual temperature metrics with summed
GDD values during the narrower window of spring to early summer period. The
first set of models using yearly temperature are meant to capture climate context
(e.g., warmer years or regions versus colder ones) for unusual weather impacts
across all species, whenever they fly. Models incorporating GDD consider
accumulation of heat over a time period relevant to the phenology of a subset of
species, in this case those that fly earlier in the season, and thus provides a closer
link to extrinsic mechanisms impacting phenology. Our goal with fitting both
models was to assure that our main results were relatively consistent across
approaches and that unusual warm and cold conditions provide unique modeling
advantages when using either GDD or annual temperature variables. We carefully
checked for collinearity between GDD and unusual warm and cold conditions for
both sets of GDD values we assembled (see above).

Before model fitting, we removed grid cells and species with only a single
estimate and scaled all non-categorical variables to have a mean of zero and
standard deviation (s.d.) of 1 to ensure comparable model effect sizes across
variables. Grid cell identity and species were also included as random terms for
intercepts but not slopes. Because of the potential for multicollinearity and because
our main hypotheses relate to climate interactions and their conditional effects
across species with different traits, we focused on a smaller set of two-way
interactions between mean annual temperature, sum precipitation, unusual warm
and cold days, voltinism and flight season. The unusual warm and cold days sums
varied across our three models: for onset models, we used the sums of unusually
warm and cold days 60 days prior to onset; for termination models, we used the
sums between onset and offset; and for duration we took the overall sum from
60 days prior to onset to termination.

We used the R package “lme4”48 to fit our LMM models. While we did capture
year of phenometric estimate as a variable, we chose to not include this in our
models, since we had no direct hypothesis related to year for this work. We did,
however, examine potential for temporal autocorrelation post-modeling fitting
(Supplementary Fig. 7), as described in more detail below. After initial model
fitting, we used the package “lmerTest”49 to select the best subset model via
stepwise variable reduction. We chose lmerTest because it can simultaneously test
both fixed and random terms. We re-ran the best reduced models and checked
variance inflation using the R package “car”50. We found evidence of variance for
some interaction terms, removed cases where inflation was detrimental to model
parameter estimates (VIF > 5) and then re-fit models. We used the package
“performance”51 to examine pseudo-R2 values for model fits, in particular
Nakagawa’s R2 52, designed for mixture models. After fitting models with unusual
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warm and cold days included, we also fit a final onset, offset, and duration model
where those variables were removed, performing step-wise variable reduction as
above, to recover the best model. We then compared the two best models based on
Akaike Information Criterion (AIC)53.

Once we discerned the best models, we used these for a post hoc examination of
phylogenetic, spatial and temporal autocorrelation for 2 sets of models; one set with
yearly average temperatures and one with GDD. In order to account for
phylogenetic autocorrelation, we used an existing tree from25 subsetted to taxa used
just in this study. That tree was built from the Open Tree of Life with branch
lengths generated from calibrations from the TimeTree of Life database54 and
scaling of tree using the ph_bladj function from the R package “phylocomr”55. The
R package “phyr”56 function”pglmm” was used to fit linear mixed models that
incorporate covariance matrices containing the phylogenetic relationships among
species as random effects. We used the “bayes” option which fits the models in a
Bayesian framework with default uninformative INLA (Integrated Nested Laplace
Approximation) priors57. We calculated pseudo-R2 values using the method in
ref. 25. We used residuals from the phylogenetic linear mixed model (PGLMM) to
examine potential for spatial and temporal autocorrelation. Focusing first on spatial
autocorrelation, we calculated Moran’s I values across different spatial lags based
on a distance matrix of our grid cells. For temporal autocorrelation, we generated
autocorrelation function (ACF) plots to examine whether serial correlation in
phenology estimates predictably change over time (Supplement 2). Plots of effects
and confidence intervals around model estimates were generated from custom
code, as described in ref. 9. All phenometric data and code are available; see data
and code availability statements.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data (phenoestimates, traits, climate data, etc.) can be found on GitHub (https://
github.com/robgur/LepPheno_UnusualWeather), which is a fork of the Github
repository https://github.com/mbelitz/LepPheno_BestPractices, since phenoestimates
used here came from that other work. Raw occurrence records needed to replicate our
workflow can be downloaded and unzipped from our Open Science Framework project
(https://osf.io/wdzay/).

Code availability
The code to reproduce results and figures presented, including data and scripts, is
available on GitHub (https://github.com/robgur/LepPheno_UnusualWeather), which is a
fork of the Github repository https://github.com/mbelitz/LepPheno_BestPractices.
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