
ARTICLE

Distinct activation mechanisms regulate subtype
selectivity of Cannabinoid receptors
Soumajit Dutta1 & Diwakar Shukla 1,2,3✉

Design of cannabinergic subtype selective ligands is challenging because of high sequence

and structural similarities of cannabinoid receptors (CB1 and CB2). We hypothesize that the

subtype selectivity of designed selective ligands can be explained by the ligand binding to the

conformationally distinct states between cannabinoid receptors. Analysis of ~ 700 μs of

unbiased simulations using Markov state models and VAMPnets identifies the similarities

and distinctions between the activation mechanism of both receptors. Structural and dynamic

comparisons of metastable intermediate states allow us to observe the distinction in the

binding pocket volume change during CB1 and CB2 activation. Docking analysis reveals that

only a few of the intermediate metastable states of CB1 show high affinity towards CB2
selective agonists. In contrast, all the CB2 metastable states show a similar affinity for these

agonists. These results mechanistically explain the subtype selectivity of these agonists by

deciphering the activation mechanism of cannabinoid receptors.
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Cannabinoid receptors (CB1 and CB2) were first discovered
as a target of phytocannabinoids in the last decades of the
twentieth-century1,2. Important physiological and psy-

chological roles of these receptors were soon perceived by the
elucidation of the endocannabinoid signaling system3–5. CB1 is
majorly expressed in the central nervous system and has a role in
appetite control, neuroprotection, and neurotransmission6,7. CB2
is majorly expressed in the immune system; targeted for immu-
nomodulation and inflammation6,8. These receptors belong to the
lipid subfamily of class A GPCRs9–17.

Class A GPCRs are recognized by conserved motifs which
undergo structural changes during activation of the protein and
help to transduce intracellular signaling by β-arrestins, and
G-proteins18–20. GPCR are targets of more than 30% of FDA-
approved drugs21–23. Similarly, academic labs and pharmaceutical
companies have led drug discovery efforts to develop molecules
targeting cannabinoid receptors24–27. Earlier discovery campaigns
resulted in molecules structurally similar to the known phyto-
cannabinoids and endocannabinoids, which was followed by
generation of chemically diverse molecules28. Most of these
ligands bind to both the receptors and lead to non-specific side
effects29–31; only a few designed ligands are selective to CB1 or
CB232. Specifically, CB2 selective ligands can be used to explore
the biology of CB2, which has been described as “a cannabinoid
receptor with an identity crisis"33,34. Furthermore, CB2 selective
agonists hold a promise to be an important drug target for pain
and inflammation without the psychoactive side effects caused by
the binding to CB1. However, an explanation of mechanistic
underpinning for these ligands’ selectivity is still missing.
Understanding subtype selectivity between CB1 and CB2 would be
important for selective drug design35–37.

Lack of subtype selectivity is also a major issue in drug design
for other subfamilies of class A GPCRs. For example, the main
targets of ergotamine are 5-HT1B and 5-HT1D receptors; however,
its usage is very limited due to off-target actions on the other
5-HT subtype receptors, particularly on the 5-HT2B receptor that
causes life-threatening cardiovascular disorders38. Structure-
based approaches like docking studies or data-driven methods
like machine learning have been employed to tackle the subtype
selective drug design for class A GPCRs39–43. Large-scale docking
studies have been performed where ligands were docked into the
static crystal structure or homology models to explain specific
interactions crucial for subtype selectivity. For instance, impor-
tant protein residue difference in TM5 of 5-HT1B and 5-HT2B was
found to be an essential factor in drug design44. However,
docking does not take into account the large structural changes in
the receptor binding pocket. Therefore, docking might not reveal
the correct binding poses for ligands, especially when the binding
pocket undergoes a significant volume change. Previous crystal
structure studies show that selectivity between A1-AR and A2A-
AR appears due to structural rather than sequence changes45. On
the contrary, machine learning models (e.g., LiCABEDS) have
provided interpretability about the ligand scaffold that might lead
to subtype selectivity. However, these ML models fail to consider
receptor-ligand interactions, which leads to high false positive
rate in their predictions46,47.

In the last few years, crystal structures of inactive and active states
of CB1 and CB2 were determined, which revealed ligand binding
poses, and important structural changes during the activation of
CB1 and CB2 (Supplementary Table 1). Comparing the antagonist-
bound pose of inactive CB1 and CB2 shows the distinction between
binding poses of antagonist of CB1 and CB2 (Supplementary
Fig. 1a). However, structural comparison of agonist bound pose of
unselective ligands of CB1 and CB2 shows that binding pocket
residues have high structural and sequence similarity (Supple-
mentary Fig. 1b, e). Docking performed using the experimentally

determined structures did not reveal differences in the binding
poses nor could determine subtype selectivity for CB1 and CB29,11.
Furthermore, during the activation process, the CB1 binding pocket
undergoes large conformational changes due to the upward
movement of the N-terminus, whereas CB2 pocket retains its overall
shape (Supplementary Fig. 1c, d). Considering these two factors, we
hypothesized that CB2 selective agonists conformationally select for
the CB2 pocket shape. As the pocket shape remains similar through
out the activation process, these ligands have the higher possibility
of binding to the CB2 rather than CB1, where the pocket shape and
volume changes significantly during the activation thereby
decreasing the overall binding affinity (Fig. 1a, b).

Here, we compared the activation mechanism for CB1 and CB2
using molecular dynamics simulations to obtain their entire
conformational ensemble. Using 700 μs of aggregate unbiased
simulation data, we deciphered the similarity and distinction of
activation mechanism between CB1 and CB2. Analyzing the data
using markov state model, we found important allosteric com-
munications between different structural motifs, which facilitates
the receptor activation. By implementing deep learning based
VAMPnets architecture, we discretize the conformational space
into different metastable states48. Docking of the CB2 selective
ligands shows the docking affinities of these ligands are similar
for all the metastable states in CB2 whereas these ligands bind to
only specific metastable states in CB1. Binding of CB2 selective
ligands favorably to only specific metastable states might explain
the subtype selectivity of the ligands. This mechanistic under-
standing of ligand selectivity between CB1 and CB2 will aid in the
design of new subtype-selective drugs for cannabinoid receptors.

Results and discussions
Structural comparison of CB1 and CB2 crystal structures. In the
last few years, a plethora of CB1 and CB2 structures are reported
in different conditions as shown in Supplementary Table 1. A
comparison of these crystal structures shows major structural
changes in the receptors’ extracellular, transmembrane, and
intracellular regions during the activation. As both these receptors
belong to the lipid subfamily of class A GPCRs, some of these
changes are conserved between CB1, and CB29,11,12,16. For
example, both the receptors undergo large conformational
changes in intracellular TM6 towards the outward direction, as
shown in Fig. 2. Projection of intracellular TM6 movement
(R3.50-K6.35 distance) feature on one dimensional space shows
that this feature can distinguish active and inactive structures for
both CB1 and CB2 (Fig. 3 and Supplementary Fig. 2 and Sup-
plementary Note 1). Similarly, the sidechain of conserved Y7.53 in
the NPxxY region of intracellular TM7 moves towards TM5
during the full activation of the receptors (Fig. 2). Projection of
intracellular TM7 distance (I5.54-Y7.53 distance) also shows that
this feature changes during activation of CB1 and CB2 (Fig. 3).
Therefore, these two conserved intracellular features are used as
metrices to judge whether a structure is active or inactive.
However, other conformational changes are not conserved
between the CB1 and CB2. Structural overlap of a representative
active and inactive CB1 and CB2 structures show the following
non-conserved changes in CB1 and CB2.

(1) For CB1, in the extracellular region, N-terminus shows large
conformational differences in agonist bound structure as
compared to the antagonist bound structures (Fig. 2a). Agonist
and antagonist bound poses are also different for CB111,13.
Agonist binding lifts the N-terminus above the orthosteric pocket.
The N-terminus distance (MN-term-D2.50 distance) from the
ligand binding pocket clearly shows the difference in the agonist
bound structures as compared to the antagonist bound structures
(Fig. 3a). As agonist binding leads to the activation of CB1, active
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and inactive structures have distinct N-terminus feature values.
The exception to this rule is the agonist and Negative Allosteric
Modulator (NAM) bound structure (PDB ID: 6KQI14), where the
structure remains inactive because of NAM binding. On the other
hand, in the active and inactive structure, N-terminus always
remain above the orthosteric pocket; therefore, N-terminus
feature values do not distinguish between active and inactive
crystal structures for CB2 (Figs. 2b, 3b).

(2) In CB1, due to the extended structure of the antagonist,
TM1 moves outwards towards the membrane in the inactive
structures (Fig. 2a), whereas extracellular TM1 conformation of
CB2 stays relatively similar in the active and inactive state in the
protein (Fig. 2b). The higher variation in extracellular TM1
movement between active and inactive structures in CB1 as
compared to CB2 is shown in (Fig. 3a, b).

(3) Another major difference in activation of CB1 and CB2 is
observed in toggle switch residue movement. For CB1, twin toggle
switch residues (W6.48 and F3.36) undergo translational changes
(Fig. 2a). During the activation, W6.48 moves towards the TM5,
which leads to the displacement of F3.36 towards TM2. The
displacement is captured by the difference in the center of mass of
the sidechain of these two residues in the z-direction (Supple-
mentary Fig. 2). In the case of CB2, F3.36 does not undergo
conformational change (Fig. 2b). Instead, agonist binding to CB2
has shown to rotate the toggle switch residue W6.4816. This
rotational motion is captured by calculating the χ2 angle of W6.48.
Projection of translational and rotational movement features of
toggle switch show that former feature could capture the
distinction between active and inactive structures for CB1 and
latter for CB2 (Fig. 3a, b).

(4) For CB2, inactive structures in intracellular TM5, the
sidechain of Y5.58 faces towards the membrane and creates more
space for TM6 to move inside in the inactive structure. In the
active structure, Y5.58 side chain (I2.43-Y5.58 distance) moves
inside the transmembrane domain and faces towards the TM2
(Figs. 2b, 3b). No such conformational change is observed for
CB1. Y5.58 always remains inside the transmembrane domain
(Figs. 2a, 3a).

Thermodynamic relevance of structural features in cannabi-
noid receptors’ activation. All extracellular (N-terminus and
TM1 movements), transmembrane (Toggle Switch translation
and rotation), and intracellular features (TM5, TM6 and TM7
movements) that distinguish active and inactive states of the
receptors identified from different crystal structures may not be
thermodynamically and kinetically relevant (Fig. 3). Experimen-
tally determined side chain conformations occasionally do not
have good resolutions. Hence, it may over or under emphasize
some of the conformational changes. Furthermore, features that
do not distinguish between active and inactive state for respective
proteins (e.g., Toggle switch rotation for CB1; TM1 movement for
CB2) may obtain distinct stabilized values in intermediate states
during activation. Therefore, to check the thermodynamic rele-
vance of each feature in CB1 and CB2 conformational ensemble,
we compared the apo (without ligand bound) and holo (with
ligand bound) simulation of both proteins.

Compairing ~ 20 μs of unbiased MD simulation for agonist
bound active and antagonist bound inactive states of both CB1
and CB2 (Supplementary Table 1), it is observed that the
conformational ensemble of every feature remains stable

Fig. 1 Cartoon representation of the hypothesis describing the subtype selectivity of the CB2 selective agonists. a According to the proposed
hypothesis, binding pocket volume of CB1 (Color: Orange) changes during the activation process. CB2 selective agonists (Color : Blue) may bind into
specific intermediate states of CB1 decreasing overall binding affinity. b Contrastingly, these ligands prefer binding pocket shape of CB2 (Color: Green),
which retains this generalized shape during activation process.
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(Supplementary Fig. 3). It reinforces that the features observed in
the crystal structures are thermodynamically relevant. The
features that distinguish between CB1 and CB2 activation in
experimentally determined structures are stabilized with different
feature values.

The presence of intermediate states was judged by comparing the
conformational ensemble of important features obtained from apo
simulations with the ligand-bound active and inactive holo
simulation (Supplementary Fig. 3). Simulation details are shown
in Supplementary Tables 2 and 3. Three metrices are used to judge
the feature importance : (1) sum of the absolute value of the mean
difference between apo and holo simulations ∣E(Holoinactive)−

E(apo)∣+ ∣E(Holoactive)− E(apo)∣, where E(Feature) represents the
mean of the feature from simulation. (2) Kullback-Leibler
divergence (K-L divergence) of apo simulation with respect to
agonist bound active simulation (3) K-L divergence of apo
simulations with respect to antagonist bound inctive simulations49.
Here, features were normalized for better comparison using these
metrices. As expected, all the features which show distinction in
crystal structures for both proteins have larger values as shown in
Tables 1 and 2. This indicates that these features undergo large
changes during activation. On the other hand, features that were
found to be only important for CB1 or CB2 show higher values for
the metrices for only the respective protein. The only exception to

Fig. 2 Comparison of inactive and active structures of CB1 and CB2 highlighting the important motions during activation. Inactive crystal structure of
CB1 (a) (PDB ID: 5TGZ9, color: Orange) and CB2 (b) (PDB ID: 5TZY12, color: Green) are shown as cartoon representations in the central panel. Protein
residues in conserved motifs are shown as sticks and highlighted inside block boxes. Major conformational changes during the activation are shown as
separated box, where the active (CB1 PDB ID: 5XRA11, color: Blue; CB2 PDB ID: 6KPF16, color: Pink) and inactive conformations are superposed. Directions
of the conformational changes during the activation are shown as black arrow.
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this rule is the extracellular TM1 movement for CB2, where ligand-
bound active and inactive conformational ensembles show over-
lapping distribution, whereas apo activation conformational
changes much wider distribution of feature values (Supplementary
Fig. 3), which may reveal the newer conformations. Therefore,
using our simulation, we observe changes in the conformational
features of the proteins that are not deemed important from static
crystal structures. Overall, for CB1, features that undergoes
conformational changes during activations are N-terminus dis-
tance, extracellular TM1 movement, toggle switch translational
movement, intracellular TM6 and TM7 movements. Contrastingly
for CB2, conformational changes are observed in extracellular TM1
movement, toggle switch rotational movement, intracellular TM5,
TM6 and TM7 movements.

Allosteric communications between CB1 and CB2 structural
features. In the active state, conformational changes in the
intracellular part of GPCR proteins help to transduce signals by
secondary messenger (G protein and β-arrestin)20,50. These
intracellular changes are allosterically linked with extracellular
and transmembrane regions of protein19. To observe how the
conserved and non-conserved changes in CB1 and CB2 are
allosterically connected, we predicted whether the change in one
feature leads to the change in the other features. To estimate this,
the absolute difference of P(Featureactive∣Conditionactive) and
P(Featureactive∣Conditioninactive) was determined for every com-
bination of features. These conditional probabilities were mea-
sured by discretizing the features based on a threshold that
divides the features into active and inactive. The threshold values

Fig. 3 Conversed and unconserved feature movements captured in active and inactive PDB structures for CB1 and CB2. Distance and angle feature
values that undergo conformational changes during the activation for CB1 (a) and CB2 (b) are shown as scatter points on 1-D line. Markers are colored
based on the activation state of the protein (CB1 active: blue, CB1 inactive: orange, CB2 active: magenta, CB2 inactive: green). The shape of the marker is
based on the type of the ligand and downstream signaling partner (Antagonist bound: circle, Agonist bound: triangle, Agonist and NAM bound: star,
Agonist and G protein bound: rectangle). PDB structures of a receptor with same binding partner and activation state are distinguished with different
outline color of the marker.

Table 1 Comparisons of conformational feature values between apo (without ligand) and holo (with agonist and antagonist)
simulations of CB1 using mean difference and K-L divergence.

Features ∣E(Holoinactive)− E(apo)∣+ ∣E(Holoactive)− E(apo)∣ K-L divergence (Holoactive
and apo)

K-L divergence (Holoinactive
and apo)

N-terminus Movement 0.4 2.1 1.3
Extracellular TM1 movement 0.2 1.9 1.1
Toggle Switch translational
movement

0.3 1.3 1.8

Toggle Switch rotational
movement

0.1 0.3 0.4

Intracellular TM5 movement 0.0 0.7 0.9
Intracellular TM6 movement 0.3 1.4 2.2
Intracellular TM7 movement 0.4 0.3 1.7
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are taken as an average of active and inactive crystal structures.
For the conditional probability calculations, weight of each frame
was updated using equilibrium probability distribution estimated
using MSM with lag time 25 ns (More details in Method section).

Based on the calculations for CB1, it shows that N-terminus
movement is highly correlated with all the extracellular (TM1
movement), transmembrane (Toggle switch translational move-
ment), and intracellular features (TM6 and TM7 movement),
showing the importance of the N-terminus movement in
activation (Fig. 4a and Supplementary Fig. 4a). Projection of
MSM weighted free energy landscapes show that with the
N-terminus inside the pocket, other features remain mostly in the
stabilized inactive state (Supplementary Fig. 5a–d). On the other
hand, extracellular TM1 movement is not strongly coupled with
transmembrane and intracellular features (Fig. 4a and Supple-
mentary Fig. 4b). Free energy projection of TM1 movement with
respect to intracellular and transmembrane features shows those
features are able to obtain active and inactive forms without
depending on the TM1 value (Supplementary Fig. 5e–g).
Similarly, toggle switch translational movement also shows
relatively smaller values of coupling for intracellular TM6
movements and TM7 movements (Fig. 4a and Supplementary
Fig. 4c). However, the MSM-weighted free energy landscape can
explain this relatively smaller value. The free energy plots show an
L-shaped landscape between the toggle switch and intracellular
features depicting the change to be sequential (Supplementary
Fig. 5h–i). Thus, changes in the toggle switch can lead to changes
in the intracellular features. Lastly, both conditional probability
difference and free energy landscape show the intracellular
features are highly coupled with each other, which depicts that
the TM6 movement will lead to the TM7 movement (Fig. 4a,
Supplementary Figs. 4d, e and 5j). Based on the calculations for
CB1, it shows that N-terminus movement is highly correlated
with all the extracellular (TM1 movement), transmembrane
(Toggle switch translational movement), and intracellular fea-
tures (TM6 and TM7 movement), showing the importance of the
N-terminus movement in activation (Fig. 4a and Supplementary
Fig. 4a). Projection of MSM weighted free energy landscapes
show that with the N-terminus inside the pocket, other features
remain mostly in the stabilized inactive state (Supplementary
Fig. 5a–d). On the other hand, extracellular TM1 movement is
not strongly coupled with transmembrane and intracellular
features (Fig. 4a and Supplementary Fig. 4b). Free energy
projection of TM1 movement with respect to intracellular and
transmembrane features shows those features are able to obtain
active and inactive forms without depending on the TM1 value
(Supplementary Fig. 5e–g). Similarly, toggle switch translational
movement also shows relatively smaller values of coupling for
intracellular TM6 movements and TM7 movements (Fig. 4a and
Supplementary Fig. 4c). However, the MSM-weighted free energy

landscape can explain this relatively smaller value. The free
energy plots show an L-shaped landscape between the toggle
switch and intracellular features depicting the change to be
sequential (Supplementary Fig. 5h, i). Thus, changes in the toggle
switch can lead to changes in the intracellular features. Lastly,
both conditional probability difference and free energy landscape
show the intracellular features are highly coupled with each other,
which depicts that the TM6 movement will lead to the TM7
movement (Fig. 4a, Supplementary Figs. 4d, e, and 5j).

For the CB2, all the intracellular features are highly coupled
with the extracellular TM1 movement (Fig. 4b and Supplemen-
tary Fig. 6a). MSM weighted free energy landscape shows that
when intracellular features remains in the inactive states,
extracellular TM1 can have a wider range of movement. Whereas,
in active state, extracellular TM1 movement is restricted
(Supplementary Fig. 7a–d). From the experimentally obtained
structures, it has been shown that toggle switch residue rotates
when the agonist molecule binds to the receptor. Therefore, it has
been hypothesized that toggle switch rotation caused by agonists
leads to intracellular changes in the CB2 receptor15,16. However,
our calculations show that toggle switch rotation has minimal
effect on the intracellular movement (Fig. 4b and Supplementary
Fig. 6b). From the free energy projection, it is also clear that
intracellular features can adopt both active and inactive forms
irrespective of toggle switch rotation feature value (Supplemen-
tary Fig. 7e–g). Agonist-bound CB2 structure (PDB ID: 6KPC)
remains in an inactive state as there is no intracellular movement
observed, which supports our finding that there is a lack of
correlation between toggle switch rotation and intracellular
movement16. For CB2, intracellular TM5 movement is shown to
be important for canonical GPCR activation. The free energy
landscape shows that L shaped landscape between intracellular
TM5 movement with respect to the intracellular TM6 and TM7
movement, which depicts that TM5 movements may be the cause
of the activation of the GPCR, not the toggle switch rotation
(Supplementary Fig. 7h, i). Lastly, similar to CB1, intracellular
TM6 and TM7 movement are highly correlated with each other
(Fig. 4b and Supplementary Fig. 7j). Therefore, these analyses
show that most of these features (Except for TM1 movement for
CB1; toggle switch rotation in CB2), which are physically far away
in protein topology, are allosterically influence conformational
changes of other features resulting in protein activation.

Activation mechanism for CB1 and CB2. Previous sections show
the important conformational changes for CB1 and CB2 during
the activation. However, individual feature movements or pro-
jections of a few features do not reveal the activation mechanism
of the receptors and intermediate states involved in the process.
To better understand the activation mechanism, we clustered the

Table 2 Comparisons of conformational feature values between apo (without ligand) and holo (with agonist and antagonist)
simulations of CB2 using mean difference and K-L divergence.

Features ∣E(Holoinactive)− E(apo)∣+ ∣E(Holoactive)− E(apo)∣ K-L divergence (Holoactive
and apo)

K-L divergence (Holoinactive
and apo)

N-terminus Movement 0.1 2.1 0.7
Extracellular TM1 movement 0.3 0.9 1.1
Toggle Switch translational
movement

0.1 1.5 1.7

Toggle Switch rotational
movement

0.2 0.8 2.4

Intracellular TM5 movement 0.5 0.4 1.5
Intracellular TM6 movement 0.2 1.0 1.7
Intracellular TM7 movement 0.5 0.1 2.9
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protein conformational ensemble using neural network archi-
tecture, VAMPnets48. VAMPnets architecture discretizes the
protein conformational space into metastable states by building a
coarse-grain Markov state model (MSM). The number of meta-
stable states is decided by minimizing the error in implied
timescale with a condition that each metastable state will have
minimum population of 4% of entire ensemble (Supplementary
Figs. 8, 9, 10, and 11). Using these criteria, we built a six-state
model for both CB1 and CB2. These six states are projected on the
tic1 and tic2 dimensions, which are linear combinations of the
slowest features (Figs. 5 and 6). Here, two of the metastable states
are presented as active and inactive based on the projection of the
active and inactive experimentally determined structures onto
tics. Except for the active and inactive states, there are four
intermediate metastable states obtained from the model, named
I1, I2, I3, and I4 for both CB1 and CB2 (Figs. 5 and 6). For CB1, I1
and I2 are structurally similar to the inactive state of the receptor
(Supplementary Table 4 and Supplementary Fig. 12). Whereas, I3
and I4 are structurally similar to active state (Supplementary
Table 4 and Supplementary Fig. 12). The structural differences
between different metastable states are calculated using K-L
divergence based on the closest heavy atom distances between all
residue pairs with respect to the inactive state. In Figs. 5 and 6,
the calculated K-L divergence is shown as a color bar on the
representative protein structure, where the red represents struc-
tural divergence. Furthermore, normalized values of the impor-
tant features (that have been discussed in the earlier section) are
calculated for each metastable state as shown in Figs. 5 and 6.

Transition kinetics between the metastable states are shown as
mean free passage time (MFPT) if there is a direct transition.
Using the above analyses, it is observed that from the CB1 inactive
state, both I1 and I2 transitions are possible. I1 transitions are
kinetically more favorable compared to I2. Inactive to I1 transi-
tion involves the movement of intracellular TM1 region as shown
in K-L divergence analysis and bar plot (Fig. 5). In the case of
inactive to I2 and I1 to I2, the transition involves the movement
of the N-terminus in the upward direction. Movement of the
N-terminus is a slow timescale process as these movements are
related to the first eigenvectors of MSM (Supplementary Fig. 13).
Intracellular and transmembrane regions of I1 and I2 metastable
states remain similar to inactive states. Conformations of the I2
metastable state are similar to the agonist, and NAM-bound
crystal structure (PDB ID: 6KQI14), where the structure remains
in the inactive state in spite of the binding of the agonist in the
pocket (Supplementary Fig. 14). I1 to I3 transition involves
rearrangement of the intracellular and transmembrane features as
N-terminus starts to move out of the pocket. K-L divergence
analysis and bar plot show that the major difference occurs in N-
terminus, toggle switch region, intracellular TM6, and TM7
region (Fig. 5 and Supplementary Fig. 12). This step is the the
kinetically slowest process during the activation. Once the
intracellular and transmembrane rearrangement happens in I3,
the rearrangement of structural rearrangement happens between
I3 & I4 and I3 & active state of the receptor. In the case of the I3
to I4 transition, N-terminus moves slightly further upward the
pocket, and further intracellular features movement happens

Fig. 4 Allosteric dependances of the important structural feature movements during the activation. Absolute differences of conditional probabilities
(PðFiAjFjAÞ and PðFiAjFjIÞ) of structural features for CB1 (a) and CB2 (b). F

i
A denotes the ith feature is in active state. FiI denotes the ith feature is in inactive

state. Errors in the conditional probability calculations were calculated based on bootstrapping. 200 bootstrap samples were selected with 80% of the total
number of trajectories. Bar plots and error bars represent mean and standard deviation of the 200 samples, respectively. Each sample is shown on the plot
as black dot.
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(Fig. 5). During I3 to active state transition, the N-terminus
moves out of the binding pocket, which TM1 to come inside the
pocket; however, intracellular features remain relatively the same
(Fig. 5). Between these two transitions, the later transition is
kinetically faster as I3 to I4 transition involves N-terminus
movement (Fig. 5).

For CB2, intermediate states I1, I2, and I3 are structurally and
kinetically similar to the inactive state of the receptor, whereas I4
is structurally similar to the active state (Supplementary Table 5;
Fig. 6 and Supplementary Fig. 15). K-L divergence shows no
major structural changes between the intermediate I1 and I2 &
inactive metastable states. Therefore, these states can interconvert
with a faster timescale between each other (Fig. 6). The inactive
and I3 states are separated in tic one space. Intracellular TM6 and
TM7 features are correlated in the tic 1 space (Supplementary
Fig. 16). In this transition, TM6 moves out slightly, whereas Y7.53

moves towards the TM5 (Supplementary Table 5 and Supple-
mentary Fig. 15). From I3 to I4 and active state movement, this

TM6 movement leads the Y5.58 to move inside the transmem-
brane region. Both of these transitions are kinetically slower as it
involves rearrangement of the intracellular regions of the CB2.

MFPT calculations based on transition path theory (TPT)
clearly show that the transition between inactive to active state in
CB2 is much faster than CB1. A Kinetic monte Carlo (kMC) study
on MSM based transition matrices also verifies that inactive to
active transition is faster for CB2 transition (Supplementary
Fig. 17a, b). kMC analysis also indicates that transition between
inactive, I1, and I2 is kinetically much faster for CB1, compared to
I1 to I3 transition. I1 to I3 transition leads to the protein moving
from the inactive to the active region. Similarly, the kMC study
verifies that inactive, I1, I2, and I3 are kinetically closer to each
other for CB2. Therefore, the transitions between the states are
relatively faster. Once the transition happens from I3 to active or
active like I4, it remains stabilized in active-like proteins. The
above analyses reveal intermediate states during CB1 and CB2
activation, by which the sequential conformational change

Fig. 5 Mean first passage time and important structural changes in CB1 activation ensemble. Representative structures from six CB1 metastable states
obtained from VAMPnets are projected on tic 1 and tic 2 spaces. Cartoon representations of receptors are colored based on K-L divergence. Red color is
representing higher K-L divergence. K-L divergence of each metastable state was calculated compared to inactive metastable state. Transition between
metastable states are shown as arrows. Thickness of the arrows represents mean free passage time (MFPT) of the transition which was calculated using
transition path theory (TPT). Red dashed line is representing the slowest transition. The unit of MFPT is in microseconds. Bar plots per metastable state
shows the normalized values of important structural features, where [1], [2], [3], [4], [5] represent N-terminus movement, extracellular TM1 movement,
toggle switch translational movement, intracellular TM6 movement, intracellular TM7 movement respectively. Errors in bar plots were calculated based on
bootstrapping. 20 bootstrap samples were prepared by selecting 1000 frames from each metastable states. Bar plots and error bars represent mean and
standard deviation of the 20 samples, respectively. Each sample is shown on the plot as black dot.
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happens that leads the protein from the inactive to the active
state, and the distinction between changes between CB1 and CB2.

We also performed long-timescale MD simulations from the
representative structure of every metastable state of CB1 and CB2
(12 systems in total) to observe the stability of each state.
Simulation length for each system was approximately 600 ns
(Supplementary Note 2). RMSD and RMSF analysis (Supple-
mentary Figs. 18 and 20) on simulation data shows that RMSD of
each metastable state remains within 4 Å for both CB1 and CB2,
where RMSD for CB1 metastable states are lower than the CB2.
This can be explained by the timescale of the interstate transition
between CB1 and CB2. Transition path theory (TPT) (Figs. 4, 5)
and kinetic monte carlo (kMC) simulation (Supplementary
Fig. 17) on the MSM weighted simulation show that CB1
interstate transitions are much slower compared to CB2. There-
fore, CB2 structures can fluctuate more rapidly compared to CB1,

resulting higher RMSD. We observe the same phenomena with
time independent component (tIC) projection of long timescale
MD simulations. The tIC projections were calculated from the
distances between the residue pairs calculated based on residue-
residue contact score (RRCS) analysis (Method section). The tIC
projections for CB2 show that the simulations started in different
metastable states are overlapping with each other within MD
timescale (Supplementary Fig. 19b), whereas simulations of
different metastable states of CB1 remain separated due to larger
kinetic barriers (Supplementary Fig. 19a).

We further compared how the conformational changes in the
distinct metastable states lead to different allosteric communica-
tion networks. Allosteric pipelines in different metastable states
were obtained following the analyses described in Bhattacharya
and Vaidehi51. From these analyses, major distinctions in the
allosteric pipelines were observed for CB1 in the inactive and

Fig. 6 Mean first passage time and important structural changes in CB2 activation ensemble. Representative structures from six CB2 metastable states
obtained from VAMPnets are projected on tic 1 and tic 2 spaces. Cartoon representations of receptors are colored based on K-L divergence. Red color is
representing higher K-L divergence. K-L divergence of each metastable state was calculated compared to inactive metastable state. Transition between
metastable states are shown as arrows. Thickness of the arrows represents mean free passage time (MFPT) of the transition which was calculated using
transition path theory (TPT). Red dashed line is representing the slowest transition. The unit of MFPT is in microseconds. Bar plots per metastable state
shows the normalized values of important structural features, where [1], [2], [3], [4], [5] represent extracellular TM1 movement, toggle switch rotational
movement, intracellular TM5 movement, intracellular TM6 movement, intracellular TM7 movement respectively. Errors in bar plots were calculated based
on bootstrapping. 20 bootstrap samples were prepared by selecting 1000 frames from each metastable states. Bar plots and error bars represent mean and
standard deviation of the 20 samples, respectively. Each sample is shown on the plot as black dot.
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inactive intermediate states (I1 and I2) compared to active and
active intermediate states (I3 and I4) (Supplementary Fig. 21). In
inactive, I1, and I2 states, extracellular TM1, and TM2 are
allosterically connected to ECL2 via N-terminus. The downward
movement of the N-terminus can be explained to be responsible
for these allosteric pipelines as there is more interaction between
N-terminus and ECL2. There are fewer pipelines connecting
extracellular and intracellular domains. In contrast, major
pipelines are observed connecting these two domains in active
and active intermediate states. Especially all these three states
have an allosteric pipeline through TM6, which indicates the
outward movement of TM6 helps to create an allosteric path. On
the other hand, for CB2, no such clear distinction is observed in
allosteric pipelines between active like (active, I4) and inactive like
states (Inactive, I1, I2, and I3). Most of the metastable states
contains extracellular to intracellular communications (Supple-
mentary Fig. 22). This contrasting network pattern in CB2
compared to CB1 can be explained by the lack of the major
extracellular conformational changes in CB2. Hence, these
analyses show how conformational changes and the consequent
change in allosteric communications facilitate receptor activation.

Explaining selectivity of Cannabinoid receptors. Ligand binding
to a receptor can be explained using two distinct mechanisms, i.e.,
conformational selection and induced fit52. In the induced fit
mechanism, ligand binding leads to conformational changes in
the receptor. Without the ligand, it is kinetically and thermo-
dynamically hard to reach the bound conformation of the
receptor. On the other hand, in conformational selection
mechanism, the receptor can adopt many possible conformations.
However, the ligand preferentially binds to a particular protein
conformational state.

As active and inactive binding pocket volumes of experimen-
tally obtained CB2 structures are relatively similar, contrasting to
the dissimilarity between CB1 structures, we hypothesized that the
CB2 pocket shape remains similar throughout the activation
process. If so, then the binding of CB2 selective agonists would
demonstrate a conformational selection mechanism in preference
to this generalized binding pocket conformation seen during CB2
activation. On the contrary, the CB1 binding pocket shape
changes with the movement of the N-terminus during the
activation. Therefore, these selective ligands can only bind to
certain metastable states for CB1 which might have similar pocket
characteristics as of CB2, decreasing the overall affinity. To test
this hypothesis, we first calculated the binding pocket volumes of
the metastable states during CB1 and CB2 activation. Our analyses
show that CB1 metastable states have different binding pocket
volumes based on the position of the N-terminus (Fig. 7a). As the
N-terminus remains completely inside the pocket during inactive
and I1 states, agonist binding volume is comparatively smaller to
the other four metastable states. In the case of CB2, the binding
pocket volume does not change during the activation due to a
lack of N-terminus motion (Fig. 7b). Here our results illustrate
how CB2 maintains a competent conformational state for
selective ligand binding throughout all stages of activation.

To find whether CB2 selective agonist binding affinity depends
on the binding pocket shape, we docked CB2 selective ligands into
CB1 and CB2 metastable states (described in the method sections).
Four CB2 selective ligands (JWH-133, HU-308, JWH-015, AM-
1241) are selected from the literature32, which shows at least ten-
fold selectivity (Supplementary Fig. 23). Docking results of CB2
selective ligands to CB1 show that docking affinity differs for
different metastable states (Fig. 7c). For inactive and I1 states
where the binding pocket volume is small, the docking is hard
due to the steric hindrance of the N-terminus. In the other four

states, docking results show variational docking affinity, with
I2 states having the highest affinity for all the CB2 selective
ligands compared to the active state. Therefore, in the CB1 active
state, these ligands have a less binding probability. This
differential binding affinity is explained by the differential
binding pose of the ligands in I2 and active states. In I2, there
is a larger gap between TM2 and ECL2, which allow the ligands to
bind between the space of ECL2, TM1, and TM2 (Supplementary
Fig. 24a, b). In the active state, the ligands bind deep in the pocket
due to the movement of the toggle switch. Toggle switch
movement creates a space for ligand to bind (Fig. 8a, c, e, g).

To contrast the binding of ligands in different states, we
performed MD simulations on the ligand bound systems of
representative bound structures from intermediate state 2 and
active state of the CB1. Each system (in total 8 systems) was run
for approximately 200 ns (Supplementary Note 3). RMSD
analyses show that ligand RMSD remains within 2.5 Å of the
initial predicted docking pose, depicting the stability of the
predicted pose (Supplementary Figs. 25 and 26; Supplementary
Table 6). To show the difference in binding positions of the
ligands, we computed the stable dynamic contacts and corre-
sponding interaction energies between the ligand and receptor in
both the metastable states of the receptors. Calculations of the
dynamic contacts show that there are major differences in stable
contacts between the two states of CB1 (Supplementary Fig. 27).
In active state of CB1, the ligands are bound deeper inside the
pockets. Hence, in the active state, the ligands are forming major
interactions with the TM5 residues. The interaction energy
contributions for the residues reveals the important residues in
different metastable state (Supplementary Fig. 28). K1923.92

contributes to CB1 I2 state binding for every ligand, whereas
W2795.43 contributes distinctively to CB1 active state binding for
JWH-133, JWH-105 and AM1241.

On the other hand, the docking affinities for these ligands are
similar to each metastable state for CB2 as the receptor pocket
shape remains relatively similar (Figs. 7d, 8b, d, f, h). Further MD
simulations were performed for holo (ligand bound) active and
inactive states of CB2. RMSD calculations reveals the ligand
stability of the docking predicted poses in both the metastable
states (Supplementary Figs. 25 and 26; Supplementary Table 6).
As the ligand binding poses are relatively similar in distinct
metastable states of CB2, the differences in number of stable
contacts and corresponding energy contributions are also small
compared to CB1 (Supplementary Fig. 29 and Supplementary
Table 7). Therefore, these analyses show that how the difference
in pocket shape due to distinct activation mechanism of CB1 and
CB2 may lead to ligand selectivity towards CB2.

Conclusions
CB2 selective agonists are emerging as potential drug targets for
treating inflammation. A number of CB2 selective agonists have
entered clinical trial phase36,37. However, none of these molecules
has been approved as a drug by FDA. There are two of the major
drawbacks in developing CB2 selective drugs. First, high lipophilic
nature of the CB2 selective agonists are not suitable to be drug
target. Second, some CB1 activity may retain in those molecules
which leads to off-target side-effect. In this work, we mechan-
istically explain the selectivity of CB2 selective agonists by
hypothesizing that reason for selectivity lies in the difference of
activation mechanism. Here, we have studied the activation
mechanism of both CB1 and CB2 by with combinations of using
molecular dynamics, Markov state model and neural network.

Our results showed three major distinctions in conformational
changes in both receptors. (1) In the extracellular region due to
the movement of the N-terminus, we observe a large change in
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the binding pocket volume during the activation of the CB1,
whereas, for CB2 there are hardly any changes in the binding
pocket. (2) For CB1, toggle switch W6.48 undergoes translational
changes during the activation mechanism, which lead to the
changes in the intracellular matrices. While, for CB2, toggle
switch W6.48 only rotates in the same position. Our analysis also
shows that toggle switch rotation does not effect the movement
intracellular movements for CB2. (3) Intracellular TM5 move-
ment of CB2 affects the TM6 and TM7 movement critical for
receptor activation. On the other hand, no major conformational
change is observed in intracellular TM5 of CB1.

VAMPnets analysis further reveals the metastable states and
sequential transition of the structural features during the activa-
tion. During the CB1 activation, initial extracellular movements of
N-terminus, TM1 lead to the change in further change in the
transmembrane and intracellular features. Conversely, due to lack
of the extracellular changes, the activation of CB2 is kinetically
faster compared to the CB1.

Further analyses show that due to the lack of the extracellular
movement during CB2 activation, binding pocket volume remains
relatively same for CB2. Docking of metastable states show that
CB2 selective agonists show the similar high binding affinities for
each metastable states of CB2, depicting the preferential binding

of these ligands in the generalized CB2 binding conformation.
Whereas, these ligands can only be selectively bind to few
metastable states in CB1 due to the larger conformational change
in the CB1 binding pocket. This explains lack of overall binding
affinity of these ligands towards CB1. Overall, we provide
mechanistic knowledge about cannabinoid receptor selectivity by
studying the activation mechanism. This study will guide to
design new CB2 selective agonists with better druggability profile
by acting as virtual screening criteria for these ligands.

Methods
System preparation. To perform apo (without ligand) simulation, we started
molecular dynamics simulations from inactive (CB1 inactive state PDBID: 5TGZ9;
CB2 inactive state PDBID: 5ZTY12) and active (CB1 active state PDBID: 5XRA11;
CB2 active state PDBID: 6KPF16) state structures of CB1 and CB2. Non-protein
residues were deleted from the CB1 and CB2 crystal structure. The thermostabilized
mutations were mutated back to original residue using tleap. Hydrogen atoms were
added to protein amino acid residues using reduce command of AMBER
package53. To add consistency in the residue numbering, 4 residues (CB1 residue
number 99-103) were added in the truncated N-terminus for CB1 active structure.
Intracellular region between TM5 and TM6 was truncated for both CB1 and CB2.
Terminal end of N-terminus and C-terminus & unconnected residues of TM5 and
TM6 were neutralized with ACE and NME residue. Both CB1 and CB2 was
embedded in POPC bilayer with 150 mM NaCl solution in both extracellular and
intracellular direction. TIP3P water model was used for MD system as this water
model gives better performance in ref. 54. AMBER forcefield was selected to

Fig. 7 Binding pocket volume and docking calculations for metastable states of cannabinoid receptors. Binding pocket volumes for each metastable
state of CB1 (a) and CB2 (b) are plotted against N-terminus distance as a scatter plot. Docking affinity (kcal/mol) of the four CB2 selective agonists for each
metastable state of CB1 (c) and CB2 (d) are plotted as a bar plot. Docking and volume calculations were performed on 100 structures from each metastable
state selected based on the MSM probabilities. Colors for CB1 metastable states change from orange to blue gradually from inactive to active state. Colors
for CB2 metastable states change from green to magenta gradually from inactive to active state. For each protein structure, docking affinity is obtained as
an average of top three dock poses. Error shown in docking calculations is the standard error which the standard deviation of docking affinity distribution
obtained from 100 structures divided by
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parameterize the MD systems as the this forcefield was used to perform simulations
for other GPCRs and all the necessary parameters for molecules in MD system are
available in this forcefield55–57. AMBER ff14SB and lipid17 forcefield was used for
protein and lipid parameterization53,58. Agonist bound active (CB1 agonist:
AM11542, CB2 agonist: AM841) and antagonist inactive (CB1 antagonist: AM6538,
CB2 antagonist: AM10257) holo simulation were also performed. GAFF forcefield
parameters for the ligands are obtained using antechamber59,60. Similar mod-
ifications were made in the proteins using tleap and embedded in bilayer using
CHARMM-GUI61.

Simulation details. Atomistic unbiased molecular dynamics simulation was per-
formed with AMBER v18 MD engine62. Before running the production MD run,

prepared MD systems were minimized and equilibrated. Minimization was per-
formed for 15,000 steps; where the systems were minimized for 5000 steps with
gradient descent algorithm and followed by conjugate gradient algorithm for the
rest 10,000 steps. Minimized systems was heated and pressurized sequentially in
NVT and NPT ensemble, respectively. Heating step was performed for 2 ns where
system was heated from 0 K to 300 K in NVT ensemble. Anisotropic pressure was
applied to the heated systems to reach the constant pressure of 1 bar with NPT
ensemble. Pressurization step was also performed for 2 ns. Berendsen thermostat
and barostat was used to fix the temperature and pressure63. During the heating
and pressurization, protein backbone for each system was restrainted using a
spring force with a spring constant of 10 kcal/mol/Å2. Subsequently, restraint was
removed and each system was equilibrated for 46 ns for collecting data. Numerical
integration was performed using verlet algorithm to update velocity and

Fig. 8 Docking poses of CB2 selective ligands in metastable states of cannabinoid receptors. Differences in most stable docking poses between active
(color: Blue) and I2 (color: Brown) metastable states for CB1 for four different CB2 selective ligands (JWH-133 (a), HU-308 (c), JWH-015 (e), AM1241(g)).
Differences in most stable docking poses between active (color: Magenta) and inactive (color: Green) metastable states for CB2 for four different CB2
selective ligands (JWH-133 (b), HU-308 (d), JWH-015 (f), AM1241(h)).
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coordinate. Time step for each numerical integration is 2 fs. Shake algorithm was
implemented by constraint bond movement of the hydrogens to bonded to heavy
atoms64. Periodic boundary condition was applied to each MD system. Particle
mesh Ewald method (PME) was implemented for long-range electrostatic
calculation65.

Featurization of protein conformational ensemble. To perform adaptive sam-
pling and markov state model (MSM) building (Discussed in the following sec-
tions), protein conformations in MD system need to be represented by the
descriptors that can capture protein conformational changes. To find the
descriptors, we have implemented residue-residue contact score (RRCS)
analysis66,67. Using RRCS method, a score was assigned to each residue pair dis-
tances for a particular protein conformation which are more than one helical tern
away. This score was calculated based on the every atom pair distances between
two residues following the same algorithm of Zhou et al.66. To find the major
structural changes during activation for CB1 and CB2, we compared the change in
RRCS between the active and inactive structure. α-carbon distances of the residue
pairs, where the RRCS is changing more than 3, were used as a feature to describe a
protein conformation (Supplementary Tables 8, 9). As shown in Supplementary
Fig. 30, these descriptors can capture the extracellular, transmembrane and
intracellular changes for both CB1 and CB2.

Adaptive sampling. Previous experimental and computational studies depict that
GPCR activation occurs in a microsecond to millisecond timescale20,68–70. How-
ever, each numerical integration time step for MD simulation is of femtosecond
timescale71. Therefore, capturing the entire activation process by running a single
long trajectory is time consuming process. Furthermore, to capture the thermo-
dynamic and kinetics of the conformational changes better sampling is needed in
high energy transition states72. Thus, to capture the entire protein conformational
ensemble, adaptive sampling protocol was implemented72–75. Adaptive sampling is
a well established sampling technique used for studying ligand binding76–78, pro-
tein conformational change67,68,79–81 and ligand selectivity82. First, conformations
obtained from MD simulations are expressed in terms of collective variables.
Second, collective variable space are clustered into different states using k-means
clustering. Third, based on the population of the each state, MD frames are selected
from least populated clusters to start simulation for the next round. GPCRs consist
of the multiple allosterically coupled conversed motifs distributed in extracellular,
transmembrane and intracellular regions. These motifs structurally rearrange
themselves when protein conformational change happens from inactive to active.
Therefore, finding suitable adaptive sampling matrices to minimize the amount of
simulation time is difficult. Here, we used our preexisting knowledge of the
structural changes to select CVs and modify the CV based on the requirement. For
initial round of sampling, we selected the extracellular TM1-TM6 distance and
intracellular TM3-TM6 distance as a collective variable for adaptive sampling. For
both CB1 and CB2, sampling was performed from both active and inactive struc-
tures until energy landscape was connected. Next, 24 and 20 distinct features
(Extracellular distances, Toggle switch movements, Intracellular TM6 and TM7
movements) were selected for CB1 and CB2 to improve the speed of the sampling
(Supplementary Tables 10, 11). To check whether simulations able to observe the
transition between the inactive to active states in the RRCS descriptor space (as
discussed in previous section), we performed dimensionality reduction using time
independent component analysis. On the projection of slowest two tic components,
transition between active and inactive state was observed in CB2 conformational
ensemble. However, there was a disconnect between active and inactive minima in
tic projection of CB1. Therefore, additional rounds of sampling were performed
from the clusters that are closest from each other in the two disconnected regions
to observe the transition between active and inactive minima is observed for CB1.
In total, 490 and 278 μs simulations were performed to capture apo activation
process for CB1 and CB2 (Supplementary Fig. 34a, b). Adaptive sampling for holo
systems is performed on the 24, 20 structurally known features for CB1 and CB2
holo systems for approximately 20 μs.

Markov state models. From adaptive sampling, we generate plethora of short
trajectories that only capture the small changes in protein conformation. Markov
state model was developed to connect the information from individual trajectories
to by building transition network between distinct states83–85. In markovian pro-
cesses, the future step of the process should only depend on present states, not on
the past states86. Molecular dynamic simulations follow the same principle as the
position and velocity of the future step is calculated from the energy and force
calculation based on the current state. From MSM, we obtain stationary probability
distribution of the protein ensemble and timescales of the slowest process by
calculating transition probability matrix (TM). TM calculates probability of tran-
sition between discretized protein space by calculating the jump between different
states after lag time. Lag time is the minimum time at which markovian property of
the discretized states is valid. Building markov state model consist of four different
steps: featurization, dimensionality reduction, clustering and hyperparameter
optimization. Featurization of the protein conformational space was done from the
distances calculated from RRCS (discussed in previous subsection). Dimensionality
reduction was performed on the featurized space with time independent

component analysis (tICA)87. MSM captures the slowest timescale processes. Using
tICA, we obtain new representations of features which is a linear combination of
slowest features. Therefore, in the next discretization step, clustering algorithm can
discretize the protein space which are distinct in slowest timescale. K-Means
clustering algorithm was implemented in this case. The hyperparameters that needs
to be optimized are lagtime at which markovian property of the discretized space is
valid, number of tic dimensions on which clustering is performed and number of
cluster components or microstates that can distinguish the slowest components.
With a minimum lag time of 25 ns for both the systems, slowest timescales
obtained from MSM converges, atleast in the log scale (Supplementary Fig. 31a, b).
Hence, the markovian property is valid. For further testing of markovian property
of models at lag time of 25 ns, Chapman-Kolmogorov test (C-K test) was per-
formed (Supplementary Fig. 32a, b)88. To optimize other two hyperparameters, the
VAMP-2 score was calculated89,90. For reversible process, which follows the
detailed balance, VAMP-2 score is the sum of the squares of the highest
eigenvalues91. MSM with the highest VAMP-2 score better captures the slowest
timescale processes. To avoid overfitting for calculation of the VAMP-2 scores, 10-
fold cross validation process was used. The hyperparameters which maximizes the
VAMP-2 scores are considered for the final MSM estimation (Supplementary
Fig. 31c, d). Final optimized MSM reweighed the conformational populations
obtained from adaptive sampling (Supplementary Fig. 33a, b). Pyemma
v2.5.6 software package was used for entire MSM building process92.

Trajectory analysis. Features such as distances, angles are calculated using python
library MDtraj v1.9.893. VMD v1.9.3 software package was used for protein figure
making and trajectory visualization94. Ambertools CPPTraj v18.01 was used for
frame selection and trajectory modulations95. All the analysis codes (e.g. condi-
tional probability calculation) were written in python programming language and
matplotlib library was used for plotting the figures as a graph. POVME
v3.0 software package was used for volume calculation of the binding pocket96.

Metastable state estimatation using VAMPnets. VAMPnets is a deep learning
architecture used for building coarse grain MSM48,91,97. This architecture consists
of two parallel deep learning networks which take the input feature values at time t
and t+τ, where τ is the lagtime. This deep learning model is optimized by max-
imizing the VAMP-2 score. The output of the VAMPnets is the probability of the
each frame belonging to a certain metastable state. VAMPnets was implemented
using python library deeptime v0.4.398. RRCS calculated features were as an input.
Lagtime for the VAMPnets is selected as 25 ns. The number of the metastable states
for each system was selected by the two creteria : (1) Each metastable state should
have atleast 4 percent of the total population (Supplementary Fig. 10, 11). (2) error
bar in the timescale calculations is minimum (Supplementary Figs. 8, 9). Based on
these creteria, the number of metastable states chosen for CB1 and CB2 is six.

Data-driven analysis. To capture the major structural changes between different
macro states, closest heavy carbon atom distances was calculated between every
residue pair of each frame. These calculations were performed on 1000 frames from
each metastable state. These frames are selected based on the the probability of
microstates belonging to the metastable states. Distance distribution between cer-
tain residue pair is compared to the identical residue pair distance distribution
between distinct metastable states. Comparison is performed with symmetric K-L
divergence analysis. To estimate the contribution of each residue, average K-L
divergence of the all the residue pair distances was calculated that are associated
with that residue49.

Allosteric pathway calculation. To predict the allosteric pathway in different
metastable states, similar procedure as explained in Bhattacharya and Vaidehi51.
First, normalized mutual information for each residue pair was calculated per
metastable state based on dihedral angle movement. These calculations was per-
formed on the 1000 frames as discussed in Data-driven analysis section. Based on
the residue pairs, where closest heavy atom are within 5 Å, an undirected acyclic
graph was created. Nodes in the graph denote a residue and edges are between the
two residues which are within 5 Å of one another. Edge weight represents the
MImax - MIij, where MIij is the mutual information between the two nodes i and j.
Shortest allosteric path was calculated for the residue pairs that are atleast 12 Å
away from each other. Among all the calculated paths, 500 paths with highest
mutual information were selected. These paths were clustered into optimal number
of clusters based on the procedure explained in Bhattacharya and Vaidehi51.
Mutual information calculations have been performed with MDentropy
v0.3.0 software package99.

Docking calculations. To find the docking pose and the docking score of the CB2
selective ligands, in distinct metastable states of CB1 and CB2, four CB2 selective
ligands were docked into binding pocket of distinct metastable states of CB1 and CB2.
Four ligands were selected based on the criterion that those ligands show at least 10
fold more affinity for CB2 than CB132. Ligand structures were downloaded from
pubchem using sdf format which is converted into the pdb format using Charmm-gui
ligand builder61,100. Amber tools Antechamber is used for converting the pdb format
to mol2 format59,60. For docking, mol2 files were converted to pdbqt format. To
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represent each metastable state, 100 protein structures were selected from each
metastable state proportional to the probability of microstates and converted to pdbqt
format. Autodock-vina v1.2.3 software was used for docking calculations101,102. To
specify the docking center, center of mass of alpha-carbon of binding pocket residues
for CB1 and CB2 was selected (Supplementary Fig. 35).

Transition path theory. Transition path theory was implemented to calculate the
effective timescale between metastable state transition103,104. Effective timescale
between two metastable states (A and B) is obtained from mean free passage time
(1/kAB) as shown in equation 1/kAB=(τ∑m

i¼1 πið1� qþi Þ=F, where F is the total flux
between metastable state A to B and qþi is the committer probability which is
defined as the probability of microstate i reaching the metastable state B before A.
A microstate is assigned to a metastable state based on the highest probability of
belonging to each metastable state. Thus, six metastable states are defined as dis-
tinct microstates. TPT calculations were performed using Pyemma
v2.5.6 software92.

Error calculation. To calculate errors for thermodynamic and kinetic quantities
obtained from simulation, bootstrapping approach was followed81,88. For a certain
calculation, N numbers of random bootstrap samples were generated with 80% of
total trajectories. Based on the standard deviation of a calculated quantity from
bootstrapped samples, error bars were generated. For example, for error calculation
in free energy plots, MSM was created for 200 times using 80% of the original data
to find the standard deviation in the probability density.

Kinetic Monte Carlo simulation. Based on the transition matrix of MSM, kinetic
monte carlo (kMC) simulation was implemented to observe the evolution of fea-
tures with time68,105. kMC simulation is a stochastic process where in a given time
step, next transition is selected based on the probability of the all possible transi-
tions. The algorithm for KMC simulation is as follows: (1) Simulation starts at a
particular microstate (obtained from clustering; as discussed in earliar section). (2)
From the MSM transition matrix, the probabilities of all possible transitions (Pi,j)
from that microstate are obtained. As the sum of all transition probabilities is 1, a

cumulative distribution (S) of possible transitions is created where Si;j ¼ ∑k¼j
k¼0 Pi;k .

A random number (R) is generated between 0 to 1 to find the next possible
transition. If R is between Si,j and Si,j+1, ith state to j+ 1th state transition is
selected and simulation moves forward by lag time (τ). This algorithm is followed
iteratively. In this case, kMC simulation was initialized from the inactive state of
both the proteins.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the necessary files (MSM object, bootstrap files, feature files) and trajectories (apo and
holo simulation) that have been used for the analysis to generate figures can be obtained
from https://uofi.box.com/s/jzooa0o27z1w9ha0h6va3i51ir7l38j4.

Code availability
All the necessary python scripts have been used to generate figures can be obtained from
https://github.com/ShuklaGroup/Cannabinoid_activation.git.
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