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CapsNet-MHC predicts peptide-MHC class I
binding based on capsule neural networks
Mahmood Kalemati1, Saeid Darvishi1 & Somayyeh Koohi 1✉

The Major Histocompatibility Complex (MHC) binds to the derived peptides from pathogens

to present them to killer T cells on the cell surface. Developing computational methods for

accurate, fast, and explainable peptide-MHC binding prediction can facilitate immu-

notherapies and vaccine development. Various deep learning-based methods rely on separate

feature extraction from the peptide and MHC sequences and ignore their pairwise binding

information. This paper develops a capsule neural network-based method to efficiently

capture the peptide-MHC complex features to predict the peptide-MHC class I binding.

Various evaluations confirmed our method outperformance over the alternative methods,

while it can provide accurate prediction over less available data. Moreover, for providing

precise insights into the results, we explored the essential features that contributed to the

prediction. Since the simulation results demonstrated consistency with the experimental

studies, we concluded that our method can be utilized for the accurate, rapid, and inter-

pretable peptide-MHC binding prediction to assist biological therapies.
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Peptide binding to the major histocompatibility complex
(MHC) is crucial for presenting them to the adaptive
immune system at the cell surface1, 2. Thanks to the

recognition of the peptide-MHC complex by T cells, their inter-
action through a search process triggers T cells for initiating an
effective cellular immune response 3. Hence, an accurate binding
prediction of peptides to the MHC is essential for selective epi-
tope identification as a pivotal task in immunotherapy and vac-
cine development.

There are two main classes of peptide–MHC complexes, each
of which is presented on and recognized by different cell types of
the immune system. Specifically, peptide-MHC class I complexes
are presented on nucleated cells and are recognized by cytotoxic
CD8+ T cells, while peptide-MHC class II are displayed on
antigen-presenting cells, and make activate CD4+ T cells3. Fur-
thermore, for MHC class I, as the main target in this study,
locating the open binding groove close to both ends restricts the
size of the bounded peptides to almost 8–10 residues, whereas
MHC class II incorporates peptides of length 13–25 residues4–6.
Moreover, the human MHC system, known as the human leu-
kocyte antigen (HLA), includes the high polymorphic gene cluster
in the whole genome, affecting the accommodation of residues in
the binding groove, and hence, their binding specificity 7. Hence,
the binding prediction between peptides and their partners
attracts intensive research for developing computational methods
and tools8–13.

According to the prediction algorithm, there are two main
classes of computational MHC-peptide binding prediction
methods, scoring-based and learning-based methods. The first
one utilizes multiple statistical scoring functions to calculate the
binding probability scores from the sequence input data. For
example, Anthem8 adopts five scoring functions and a wrapper
feature selection method to choose the best combination set of
scoring functions. It should be noted that the existing score-based
methods necessitate human intervention for feature selection,
while their performance is limited due to their relatively simple
sequence scoring functions. Therefore, they cannot efficiently
capture the non-linear relations and complicated patterns from
the data sequences13.

With the recent rapid accumulation of immunopeptidome
data, the learning-based methods have shown high performance
in MHC-peptide binding prediction from the raw sequence data.
As a learning-based method, ACME9 proposes a convolutional
neural networks (CNNs) architecture for learning the repre-
sentation of input sequences. For features extraction and motifs
capturing, an extra CNN block and an attention module have
been added to the initial CNN block, respectively. Besides its
simple concatenation model for feeding the final predictor net-
work, this method necessitates manual reconstruction of the
attention feature map 11. To overcome the latter drawback,
DeepAttentionPan11 proposes a CNN-based method and three
different attention blocks to extract the local and positional
information from the input sequences. Despite extracting com-
prehensive features at the cost of increased complexity, the
method cannot efficiently capture the interaction information
from the concatenated peptide and MHC feature tensors.

To capture information from the peptide-MHC complex, a
recent method, called TranspHLA12, takes advantage of the self-
attention mechanism. In spite of considering positional and
global information by applying a Transformer-based14 model, the
method cannot extract meaningful local information efficiently,
which can be captured with CNNs. On the other hand, HLAB15

employs ProtBert Transformer16 followed by Bi-LSTM to extract
the contextual information from the input sequences. Despite
capturing the long-term dependencies, this method relies on
employing feature selection algorithms for refining extracted

features and applying multiple machine learning models for the
final prediction task.

Although the learning-based methods extract various infor-
mation from the MHC and peptide sequences, they rely on a
simple feature fusion model to capture the peptide-MHC com-
plex binding context features11–13. Hence, they cannot consider
the relationship between peptide and MHC sequences efficiently.
Supplementary Note 1 and Supplementary Table S1 provide more
details on the existing scoring-based and learning-based methods.

To address mentioned challenges, and especially, to overcome
the drawbacks of the simple feature fusion models, we propose
applying Capsule Neural networks17 (CapsNet) to capture
ordered relations from the extracted learned features. Indeed, due
to the separate consideration of peptide and MHC sequences in
recent studies, simple concatenation could not capture the
meaningful relationship between the merged latent vectors. On
the other hand, it should be noted that the binding sites of
interaction between the peptide and MHC structures are locally
clustered, close to the binding pockets of MHC and the peptide
anchors18–20. Hence, for efficient modeling of peptide-MHC
binding, the interaction features should be considered along with
the independent representation features from the peptide and
MHC sequences.

CapsNet has been introduced to mimic biological neural sys-
tems for accurate modeling of hierarchical relationships and
providing a stable data representation17. It applies special struc-
tures constructed by a group of neurons named capsules that
accept vectors instead of scalars in conventional neural networks
and route their outputs to the higher-order capsules by a
mechanism named dynamic routing. In this manner, complicated
hidden relationships and dependencies between peptide and
MHC representations can be revealed and modeled efficiently. It
should be noted that although CapsNet has been employed in the
fields of computational biology21–23, to the best of our knowledge,
its utilization for the peptide-MHC binding prediction has not
been evaluated yet.

In this paper, we propose a capsule neural network-based
method, named CapsNet-MHC, for predicting the MHC class
I-peptide binding. CapsNet-MHC, as a pan-specific method, can
accurately predict the binding between MHC allelic variants and
peptides with rare sequence lengths. As its main idea, CapsNet-
MHC applies capsule neural networks and dynamic routing to
efficiently capture the hierarchical relations from the con-
catenated latent patterns of MHCs and peptides. CapsNet-MHC
takes advantage of four major parts including an input encoder,
based on the Blosum matrix, for considering frequencies of amino
acids and their substitution probabilities, two CNN-Attention
blocks for feature extraction, a Capsule neural network for
effective feature extraction and fusion of the latent representation
of MHC and peptide sequences, and finally, a fully-connected
block for predicting binding values. In all, the main contributions
of CapsNet-MHC can be summarized as follows:

● Considering hierarchical peptide-MHC complex patterns
to avoid information loss in the succeeding integration step

● Proving interpretable results
● Proposing a pooling-free network architecture for captur-

ing binding context information

To evaluate the performance of CapsNet-MHC for MHC-
peptide prediction, various datasets have been considered. The
comparison results on IEDB’s benchmark datasets confirmed our
method outperformance over 9 alternative methods, in terms of
the average area under the curve. Moreover, CapsNet-MHC
provides better prediction performance than the 9 methods for 23
out of 61 IEDB allele datasets. Considering Anthem datasets, it
also provides better performance against state-of-the-art methods
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in terms of average area under curve (AUC), with a value of 0.98.
In all, the extensive tests and comparisons on well-known data-
sets confirm that CapsNet-MHC can be suitable for binding
predicting peptide-MHC class I.

Results
Comparative studies. To verify the utility of CapsNet-MHC for
predicting the peptide binding to MHC class I, we compared it
with some popular and state-of-the-art methods, including
PickPocket10, NetMHCcons24, NetMHCpan 4.025, SMM26,
NetMHC 4.027, ARB 28, SMMPMBEC28, IEDB Consensus28, and
DeepAttentionPan. Furthermore, we compared the prediction

performance of CapsNet-MHC against recently developed
methods, including ACME, Anthem, TranspHLA, and HLAB.

Comparing CapsNet-MHC to baselines using IEDB’s datasets.
We evaluated the performance of CapsNet-MHC against baseline
methods using IEDB’s datasets, as introduced in Section Meth-
ods. The average AUC and SRCC over the 61 test datasets are
provided in Fig. 1. According to Fig. 1a, CapsNet-MHC outper-
forms all baseline methods in terms of AUC, as the main per-
formance metric. Moreover, according to Fig. 1b, the SRCC
value for our method is comparable to those of NetMHCPan4.0,
while its AUC is slightly larger. Furthermore, CapsNet-MHC

Fig. 1 Comparing CapsNet-MHC with baselines over IEDB’s datasets. The average (a) AUC and (b) SRCC performance metric. The number of benchmark
test datasets for which our method provides higher (c) AUC and (d) SRCC values for the 9-mer peptide length. e Prediction accuracy (AUC), and f SRCC
against DeepAttentionPan for HLA-A alleles.
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outperformed baseline methods in terms of the number of
benchmark test datasets for which our method provides higher
prediction accuracy. According to Fig. 1c, d, CapsNet-MHC
provides better prediction performance, compared to the 9
alternative methods, for 21 out of 61 IEDB allele datasets for the
9-mer peptide length. The detailed performance comparison over
the 61 IEDB’s benchmark datasets for all peptide lengths is
provided in Supplementary Note 2 and Supplementary Tables S2,
S3, and S4. For a comprehensive evaluation of CapsNet-MHC, we
compared its prediction accuracy against DeepAttentionPan.
According to Fig. 1e, f, CapsNet-MHC outperforms Dee-
pAttentionPan for four alleles, and delivers an equal performance
in terms of AUC and SRCC for two alleles. Summarizing the
above discussion, we conclude that our proposed method pro-
vides better prediction accuracy for both performance metrics.

Comparing CapsNet-MHC to state-of-the-art methods using
Anthem’s datasets. We evaluated our method and compared it
against state-of-the-art methods for peptide binding prediction
using Anthem’s datasets, as introduced in Section Methods. For
this purpose, we compared CapsNet-MHC with four recently
published methods, including ACME, Anthem, TranspHLA, and
HLAB, along with six well-known methods, including
MixMHCpred-2.0.229, NetMHCpan-4.1 30, NetMHCcons-1.1,
NetMHCstabpan-1.031, MHCNetSeq32, and DeepSeqPan33. Fig-
ure 2a represents the performance evaluation of CapsNet-MHC
over the independent test sets of all the HLA-I alleles for various
sizes of k-mer (i.e., 8 ≤ k ≤ 14), using the AUC metric. According
to Fig. 2a, CapsNet-MHC outperforms all alternative methods for
4 out of 7 sizes of k-mer (i.e., 8–11), and achieves the second rank
for k-mer of size 12 to 14. For more clarification of superiority of
CapsNet-MHC, the full distribution of AUC values for HLAB and
CapsNet-MHC for various sizes of peptide k-mer (i.e., 8 ≤ k ≤ 14)
is represented in Supplementary Fig. S1. Overall, our method
outperformed all state-of-the-art methods for all the HLA I alleles
for various peptide lengths. The detailed data for the CapsNet-
MHC performance comparison with the alternative studies on
Anthem’s independent test sets of all HLA-I alleles for various
sizes of k-mer is provided in Supplementary Note 3 and Sup-
plementary Table S5. Furthermore, the full distributions of ACC,
MCC, Specificity, and Sensitivity values for CapsNet-MHC are
illustrated in Supplementary Fig. S2.

For allele-specific evaluation, we provided the comparison of
CapsNet-MHC against state-of-the-art methods for a specific
allotype HLA-A*01:01 using five performance metrics, AUC,
ACC, MCC, Sn, and Sp. As shown in Fig. 2b, CapsNet-MHC
provides prediction outperformance over the alternative methods
for HLA-A*01:01 and 10-mer peptides. Moreover, according to
Fig. 2c, our method outperforms the existing methods for HLA-
A*01:01 and 4 out of 7 sizes of k-mer (i.e., 9, 10, 11, and 13)
peptides. Hence, we can conclude that besides its superiority as a
pan-specific method (as shown in Fig. 2a), CapsNet-MHC can be
utilized as an allele-specific method for peptide binding
prediction to MHC Class I. For a more detailed evaluation of
CapsNet-MHC applicability as a binary classification task, we
provided the receiver operating characteristic (ROC) curves for
binding prediction of peptides to the MHC. According to Fig. 2d,
the area under ROC curves for k-mer sizes of 8 to 11 are close to
0.98. Hence, we can conclude that our proposed method can be
utilized for all peptide lengths and MHC Class I alleles.

We compared CapsNet-MHC against a recently developed
method, called TranspHLA, which performs training and
evaluation over an almost doubled data volume, compared to
the HLAB, and CapsNet-MHC, while the MHC’s C alleles are
excluded. Indeed, for delivering acceptable accuracy prediction,

the transformation-based methods rely on training over massive
data points. Based on the reported results12, Supplementary
Fig. S3a compares the AUC values of CapsNet-MHC against
those of TranspHLA, while HLAB’s results are included for more
clear comparisons. According to this figure, CapsNet-MHC
outperformed both state-of-the-art methods, TranspHLA and
HLAB. For a fair evaluation, we compared CapsNet-MHC with
TranspHLA for both independent and external test sets,
addressed by TranspHLA. Supplementary Figure S3b, c repre-
sents the average values of two performance metrics, AUC and
ACC, over the independent and external datasets, respectively.
According to these figures, our method provides comparable
prediction accuracies for both test sets in terms of the AUC and
ACC metrics, respectively.

Interpretability studies and biological insights. Model’s inter-
pretability helps human experts to understand and interpret the
method and the provided results for realistic scenarios. To repre-
sent the interpretability of CapsNet-MHC, we take advantage of
the permutation feature importance algorithm34, 35 which repre-
sents more important and useful features for prediction tasks over
Anthem’s benchmark datasets. Based on this algorithm, we fol-
lowed three steps. First, we shuffled the values for each position of
the peptide sequences data, while the values for other positions are
unchanged. Then, the peptide binding prediction is performed by
the proposed method for the shuffled data. Finally, we calculated
the feature importance scores using the distance values between the
prediction scores for the shuffled and unshuffled data. Figure 3a–g
represents the feature importance scores in terms of the distance
values between AUC for the shuffled and unchanged values for
various positions of peptide k-mer (i.e., 8 ≤ k ≤ 14), respectively.
Moreover, Fig. 3h provides a heatmap for permutation importance
feature scores for all sizes of k-mer. According to Fig. 3, position 1
(P1), as well as the last available position for each k-mer represent
the most important and useful features for peptide binding pre-
diction. These results are consistent with the contribution of
anchor positions for peptide binding to MHC Class I.

As follows, we explore the capability of CapsNet-MHC to
capture the binding features using dynamic routing, and extract
important binding regions from the peptide-MHC complex. For
this purpose, we visualized the outputs from capsules for peptide-
HLA complexes, including HLA-A*01:01, HLA-A*02:01, and
HLA-B*07:02 alleles and various peptide pairs. From the
heatmaps, as shown in Fig. 4a–f, the overall learned pattern for
each peptide-HLA complex for each individual HLA allele (the
total 2D heatmaps) are almost identical, while the partial patterns
for each capsule (i.e., feature vectors in each row) are slightly
different. For example, according to Fig. 4a, b, the captured
binding patterns for different peptides (i.e., “QMDRAVMLY” and
“STEVDGERY”) are slightly different for an individual HLA
allele (i.e., HLA-A*01:01). Therefore, we can suggest the network
to learn the patterns hierarchically and dominantly based on the
HLA alleles. This conclusion is consistent with the capability of
capsules to capture the hierarchical features using dynamic
routing and its equivariance and invariance properties.

Furthermore, according to Fig. 4a–f, we can conclude that for
learning the peptide-MHC binding features, the contributions of
one or more capsules are more than others for each individual
HLA. For example, capsules 3, 7, 12, and 14, listed on the vertical
axis, contain feature vectors with greater values close to 1.0 (bright
colors) compared to the other capsules. Therefore, it can be
concluded that some parts of the peptide-HLA complex have more
contribution to the binding prediction. This finding is consistent
with the contribution of specific sites of HLA and peptides, known
as binding domains, to the peptide binding to MHC.
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Moreover, for more clarification of CapsNet-MHC interpret-
ability, we investigated the capsule’s output for peptide-HLA
complexes consisting of individual peptides and different HLA
alleles. For this purpose, we visualized the capsules’ outputs for

peptide-HLA complexes, including the peptide “APRNKIGTL”
and two HLA alleles HLA-A*01:01 and HLA-B*07:02. From the
heatmaps, as shown in Supplementary Fig. S4a, b, the overall
learned pattern for each peptide-HLA complex (i.e., total 2D

Fig. 2 Comparing CapsNet-MHC with state-of-the-art methods over Anthem’s datasets. (a) AUC metric for all the HLA I alleles, (b) AUC, ACC, Sn, Sp,
MCC for predicting the k-mer peptides binding to a specific (HLA-A*01:01) allele, (c) AUC values for predicting the k-mer peptides binding to a specific
(HLA-A*01:01) allele, (d) ROC curves for all k-mer.
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heatmaps) is almost identical to that of each individual peptide,
while the partial patterns for each capsule (i.e., feature vectors in
each row) are slightly different from those of individual peptide.
The aforementioned conclusions clarify capsules contribution to

the learning of binding patterns, and provide useful insights into
the interpretability of CapsNet-MHC.

Furthermore, to show why and how the fusion works using
CapsNet in the binding feature extraction step of the model, we

Fig. 3 Permutation feature importance analysis. a–g Permutation feature importance scores in terms of the distance values between AUC for the shuffled
and unchanged values for various positions of peptide k-mer (i.e., 8≤ k≤ 14)). h Permutation feature importance heatmap for all sizes of peptide k-mer.
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provided comparisons between CapsNet-based networks against
a simple concatenation layer and CNN-based binding feature
extractors. To this end, we utilized a conventional concatenation
layer in CapsNet-MHC architecture and considered DeepAtten-
tionPan architecture which utilized CNNs in the binding feature

extractor step. The heatmap for learned features for the simple
concatenation layer and CNN layer for specific alleles and
peptides are shown in Figs. 5 and 6. It should be noted that, the
experiments for the simple concatenation layer and CNNs
conducted over the same alleles and peptides mentioned for

Fig. 4 Contribution of capsules for learning the binding features. a, b Heatmaps for the HLA-A*01:01 allele and the peptides QMDRAVMLY, and
STEVDGERY, respectively. c, d Heatmaps for the HLA-A*02:01 allele and the peptides KLCPHEEFL, and KMKDTVQKL, respectively. e, f Heatmaps for the
HLA-B*07:02 allele and the peptides QVRKAVDAL, and RVNEAREEL, respectively.
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CapsNet in Fig. 4. According to Fig. 5a–f, as expected, the
heatmap for the concatenation layer cannot provide meaningful
partial and overall learned patterns for the paired peptide-HLA
complex. In these figures, the overall patterns are almost identical
presenting the simple merging of peptide and MHC

representations. On the other hand, according to Fig. 6a–f,
although the heatmap for CNN-based binding feature extractor
can learn some partial patterns, it cannot provide overall patterns
from the peptide-MHC molecules. For example, the neurons in
the last dimension (i.e., dimension 10) have learned almost

Fig. 5 Contribution of a simple concatenation layer for learning the binding features. a, b Heatmaps for the HLA-A*01:01 allele and the peptides
QMDRAVMLY and STEVDGERY, respectively. c, d Heatmaps for the HLA-A*02:01 allele and the peptides KLCPHEEFL and KMKDTVQKL, respectively.
e, f Heatmaps for the HLA-B*07:02 allele and the peptides QVRKAVDAL and RVNEAREEL, respectively.
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identical patterns which can indicate they have learned a specific
allele.

From a biological perspective, CapsNet has the ability to learn
partial and overall patterns, while the CNN-based binding feature

extractor is capable of learning some partial patterns for peptide-
MHC complex molecules. On the other hand, a simple
concatenation layer architecture is unable to provide useful
learned binding features from the peptide-MHC complex

Fig. 6 Contribution of CNNs for learning the binding features. a, b Heatmaps for the HLA-A*01:01 allele and the peptides QMDRAVMLY and
STEVDGERY, respectively. c, d Heatmaps for the HLA-A*02:01 allele and the peptides KLCPHEEFL and KMKDTVQKL, respectively. e, f Heatmaps for the
HLA-B*07:02 allele and the peptides QVRKAVDAL and RVNEAREEL, respectively.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04867-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:492 | https://doi.org/10.1038/s42003-023-04867-2 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


molecules for the prediction task. These findings align with
CapsNet’s ability to provide partial and overall patterns using
capsules and dynamic routing processes for feature fusion tasks.

Ablation studies for evaluating the contribution of model
components. For evaluating the contribution of CapsNet to the
prediction performance, we conducted ablation studies, as
follows.

For investigating the impact of dynamic routing process on the
prediction performance, we considered two separate architec-
tures, called CapsNet-MHC1.0, and CapsNet-MHC2.0. The

applied blocks for both architectures are identical, except that
the second one includes the dynamic routing algorithm.
According to Fig. 7a, CapsNet-MHC2.0 outperformed CapsNet-
MHC1.0 in terms of both AUC and SRCC metrics. Specifically,
CapsNet-MHC2.0 improved prediction performance by 0.02 and
0.024 in terms of the AUC and SRCC, respectively, for IEDB’s
benchmark datasets. Hence, we can conclude that dynamic
routing, as a parallel attention mechanism, can help to recognize
the overlapped patterns, as reported in CapsNet17.

For evaluating the efficiency of capsules in the case of small
training datasets, we conducted an experiment with 60% of

Fig. 7 Ablation studies. a Comparison between CapsNet-MHC 01 (not including the dynamic routing) and CapsNet-MHC 02 (utilizing the dynamic
routing algorithm), b Prediction performance comparison between CapsNet-MHC and DeepAttentionPan in the case of small data training set. c Prediction
accuracy comparison of various encoding schemes. d Prediction accuracy comparison of various activation functions. Comparing CapsNet-MHC and
DeepAttentionPan in terms of (e) run time and (f) the number of parameters.
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available data from the IEDB’s dataset. To this end, we re-trained
and re-evaluated CapsNet-MHC. According to Fig. 7b, CapsNet-
MHC outperformed a recently published method, DeepAtten-
tionPan, in terms of both AUC and SRCC values. Therefore, we
can conclude that CapsNet-MHC can be a practical method for
training new predictive models for datasets with limited available
data.

For a more detailed analysis of encoding choices, we trained
and evaluated CapsNet-MHC with four widely-used encoding
schemes for the input sequence, including Blosum62, Blosum80,
normalized Blosum, and EDDSSMat62 36. According to Fig. 7c,
Blosum62 provides better AUC and SRCC values, compared to
the alternative encoding schemes over benchmark test sets. The
later achievement is due to the fact that Blosum62 delivers
meaningful features of the biological relationship for the peptide
and MHC sequences encoding.

For a classification task, the activation function maps the
outputs to the range of [0, 1]. We considered three different
configurations, each of which utilizes a different activation
function, including Tanh, Sigmoid, and Softmax. According to
the presented results in Fig. 7d, utilizing the Sigmoid activation
function results in better prediction performance, as compared to
the Softmax and Tanh.

To evaluate the impact of utilizing CapsNet, we compared the
performance of CapsNet-MHC with that of DeepAttentionPan,
in terms of prediction accuracy and network complexity.
According to Fig. 1, our method outperformed DeepAttention-
Pan in terms of all accuracy metrics over the IEDB’s datasets.
Furthermore, according to Fig. 7e and f, CapsNet-MHC reduced
the runtime and the number of network parameters. Specifically,
CapsNet-MHC delivered 30% smaller training and inferring time
in terms of the seconds/epoch, and 13% smaller number of
network parameters. Hence, CapsNet-MHC proposed a practical
method for peptide binding prediction to the MHC class I in a
fast and accurate fashion.

Effect of utilizing transformer architectures and structural
features. To provide an efficient encoding and a distributed
representation for protein sequences, protein language models
and transformer architectures have been widely utilized for var-
ious representation learning and prediction tasks. Recently,
transformer architectures have been adopted in peptide-MHC
binding prediction methods to perform accurate representation of
MHC and peptide sequences for prediction task12, 15. To inves-
tigate the transformers adoption in the CapsNet-MHC, we
employed two recently published transformers called ESM-1 and

ESM-2. ESM-1 transformer is a deep contextual language model
which can be employed for representation learning from the
individual protein sequences for diverse protein tasks, such as
homology detection, prediction of protein structure,
residue–residue contacts, and mutational effect37. On the other
hand, ESM-2 transformer is a general-purpose protein language
model for predicting the structure, function, and other protein
properties from the sequences38. While we utilized ESM-1 and
ESM-2 in the encoder part of the model, the corresponding
architecture for ESM-1 and ESM-2 named as CapsNet-MHC-
ESM1 and CapsNet-MHC-ESM2, respectively.

Furthermore, we utilized structural features taking advantage
of ESMFold to provide an end-to-end structure prediction
directly from the sequence of a MHC and peptide38. ESMFold
has been designed based on language models trained over a large
database of protein sequences, and so, provides atomic resolution
prediction of protein structure in the form of contact maps38. In
this regard, we utilized contact maps for MHC and peptide
sequences predicted by ESMFold in the encoder part of the
model, and so, the corresponding architecture is named as
CapsNet-MHC-contact-map. Moreover, we employed the
structural-related features PAE (predicted aligned error), pro-
vided by ESMFold, as the fourth extra representation for MHC
and peptide sequences for CapsNet-MHC. In this manner, the
corresponding architecture is named as CapsNet-MHC-Pae. The
average AUC and SRCC for CapsNet-MHC, and its four
transformer-based versions including CapsNet-MHC-ESM1,
CapsNet-MHC-ESM2, CapsNet-MHC-Pae, and CapsNet-MHC-
contact-map over the 61 test datasets of IEDB are provided in
Fig. 8. According to Fig. 8a, b, CapsNet-MHC outperforms all
transformer-based versions in terms of AUC, and SRCC
performance metrics. CapsNet-MHC-ESM2 and CapsNet-
MHC-ESM1 provide the next better AUC and SRCC, respec-
tively. The detailed performance comparison over the 61 IEDB’s
benchmark datasets for all peptide lengths is provided in
Supplementary Note 4 and Supplementary Table S6.

For more investigation, we compared CapsNet-MHC against
its four transformer-based versions using Anthem’s datasets.
Figure 9a represents the performance evaluation of all versions of
CapsNet-MHC over the independent test sets of all the HLA-I
alleles for various sizes of k-mer (i.e., 8 ≤ k ≤ 14), using the AUC
metric. According to Fig. 9a, CapsNet-MHC outperforms all
alternative transformer-based versions for four out of seven sizes
of k-mer (i.e., 8–11). Moreover, CapsNet-MHC-contact-map,
CapsNet-MHC-ESM1, and CapsNet-MHC-Pae provide better
AUC for 12-mer, 13-mer, and 14-mer peptides, respectively.
Hence, we can conclude that utilizing structural and structural-

Fig. 8 Comparing CapsNet-MHC with its four transformer-based versions over IEDB’s datasets. The average (a) AUC and (b) SRCC performance
metrics.
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related features extracted from the transformers can provide
better performance for peptide-MHC binding prediction for the
peptides with small data and longer lengths in the pan-specific
setting. These results are consistent with the capability of

transformer for providing efficient representations where trained
over a large database of protein sequences. The detailed data for
the CapsNet-MHC performance comparison with its four
transformer-based versions using Anthem’s independent test sets

Fig. 9 Comparing CapsNet-MHC with its four transformer-based versions over Anthem’s datasets. (a) AUC metric for all the HLA I alleles, (b) AUC,
ACC, Sn, Sp, and MCC for predicting the k-mer peptides binding to a specific (HLA-A*01:01) allele, (c) AUC values for predicting the k-mer peptides
binding to a specific (HLA-A*01:01) allele.
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of all HLA-I alleles for various sizes of k-mer is provided in
Supplementary Note 5 and Supplementary Table S7.

For allele-specific evaluation, we provided the comparison of
CapsNet-MHC against its four transformer-based versions using
five performance metrics, AUC, ACC, MCC, Sn, and Sp. As
shown in Fig. 9b, CapsNet-MHC-Pae and CapsNet-MHC-
contact-map which utilized structural-related and structural
features, respectively, provide prediction outperformance over
other versions of CapsNet-MHC for HLA-A*01:01 in terms of
AUC and Sn, respectively. Furthermore, CapsNet-MHC-contact-
map provides equal performance with CapsNet-MHC in terms of
ACC and MCC. Moreover, according to Fig. 9c, for the specific
allotype HLA-A*01:01, CapsNet-MHC-Pae and CapsNet-MHC-
contact-map outperform CapsNet-MHC for 8-mer and 14-mer
peptides, respectively. In all, we can conclude that utilizing
structural (i.e., contact map) features can provide better
performance for peptide-MHC binding prediction in the allele-
specific setting for rare and longer peptide sequence data which
provide more structural features.

Discussion
Providing a precise, explainable, and rapid method for the peptide
binding prediction to the MHC is important for initiating a sui-
table immune response, facilitating immunotherapy, and speeding
up vaccine development. In this paper, we have proposed a method
for peptide-MHC class I binding prediction which provides fully-
automated feature extraction from the raw sequences, unlike the
scoring-based methods, and taking advantage of CapsNet, con-
siders the interaction and binding features efficiently and expla-
natorily, unlike the alternative learning-based methods.

Specifically, we applied widely-used CNNs along with the
attention mechanisms for feature extraction from the encoded
peptide and MHC sequences, using Blosum62 input encoding
method. To feed the learned features into the final prediction
network, a Capsule neural network was adopted to efficiently
capture the binding features from the learned features. The
various evaluations over multiple datasets demonstrated the
superiority of CapsNet-MHC, compared to the alternative tools
for peptide-MHC binding prediction. Specifically, CapsNet-
MHC outperformed all baselines and recently published state-
of-the-art HLAB and TranspHLA over IEDB’s and Anthem’s
datasets.

Considering runtime evaluation, it should be noted that the
superior deep learning-based methods rely on utilizing complex
neural networks to capture the complicated patterns, and so, the
training time may not be affordable for realistic scenarios,
especially in the case that re-training is required for new
experimental datasets. For example, TranspHLA necessitated a
high memory usage (i.e., 92 GB) for the transformer archi-
tecture to train and extract the informative feature from the
peptide and MHC sequences in the form of multiple encoder
blocks. On the other hand, as a simpler architecture, Dee-
pAttentionPan applied CNNs for the binding context feature
extraction, while it cannot efficiently extract the interaction
relationship of the peptide-MHC complex features. As dis-
cussed in the previous section, CapsNet-MHC provides superior
performance with a smaller training time, as well as a reduced
number of network parameters. Furthermore, the proposed
method, compared to the alternative ones, enables model
training with the smaller available dataset. Specifically, as
demonstrated by the simulation results, CapsNet-MHC can be
applied for re-training over smaller datasets without consider-
able degradation of prediction accuracy. In all, our method can
be utilized as a rapid tool for accurate peptide binding to the
MHC class I.

Besides providing accuracy and speed improvements, it is
worth noting that the resultant predictions of the proposed deep
learning-based method are consistent with the experimental
studies, and so, they are interpretable and explainable by domain
experts. To provide more data insights, we applied a feature
importance algorithm to explain highly effective biological
information in the prediction task. Various conducted evaluations
over the studied datasets illustrated the prediction consistency
with the contribution of anchor positions for peptide binding to
MHC Class I. As a result, besides the accurate prediction and fast
training, CapsNet-MHC provides interpretable and explainable
decisions to help the domain experts for a more precise analysis
of the results.

Furthermore, we leveraged distributed representations and
structural features by utilizing multiple transformer architectures,
including ESM-1, ESM-2, and ESMFold. Our evaluations over
benchmark datasets have demonstrated that the use of structural
features and distributed representations extracted from transfor-
mers has enhanced the performance of peptide-MHC complex
binding prediction, particularly for rare peptides and peptides
with longer lengths. Therefore, incorporating these features can
be beneficial in scenarios with limited available data, particularly
for longer peptides.

In all, CapsNet-MHC outperforms various popular and state-
of-the-art methods for predicting peptide binding to the MHC
class I. Our proposed method provides superior prediction
accuracy, compared to the state-of-the-art methods, while per-
forming explainable results. Moreover, the training of CapsNet-
MHC is performed rapidly, while it can also be trained over less
available data without considerable degradation of the prediction
accuracy, compared to the baseline methods.

Methods
Datasets. We evaluated the performance of CapsNet-MHC for the peptide
binding prediction to MHC class I using two widely-used groups of datasets,
including public IEDB datasets and the datasets retrieved from the study Anthem,
as explained in more detail in the following.

IEDB’s datasets. For evaluating CapsNet-MHC and comparing it with the alter-
native methods, using IEDB’s dataset39, the training datasets called BD2013 and
the test datasets called IEDB’s weekly benchmark dataset are downloaded from
http://tools.iedb.org/main/datasets/ and http://tools.iedb.org/auto_bench/mhci/
weekly/, respectively. Moreover, the resultant performance metrics are compared
against those of various well-known methods, including DeepAttentionPan,
NetMHCpan 4.0, PickPocket, SMM, NetMHC 4.0, ARB, SMMPMBEC, IEDB
Consensus, and NetMHCcons. More detailed explanations of IEDB’s datasets are
provided in Supplementary Note 6 and Supplementary Table S8.

Anthem’s datasets. For a more comprehensive evaluation of CapsNet-MHC,
Anthem’s datasets are downloaded from https://github.com/17shutao/Anthem/
tree/master/Dataset. Considering Anthem’s dataset, the achieved performance
metrics are compared with those of alternative methods, including TranspHLA,
Anthem, ACME, NetMHCPan-4.1, HLAB, MixMHCpred-2.0.2, NetMHCcons-1.1,
NetMHCstabpan-1.0, DeepSeqPan, and MHCNetSeq. More detailed explanations
of Anthem’s datasets are provided in Supplementary Note 6 and Supplementary
Table S8.

Implementation details. The method was implemented using the popular Python
library PyTorch on NVIDIA’s GeForce GTX 1080 with 11 GB of available memory.
For evaluating CapsNet-MHC, we applied five-fold cross-validation at the training
step. To this end, the training set is split into five nearly equal parts, where four
parts are used for the training, and the remained part is used for the model
evaluation. To ensure that all parts of the datasets are included in evaluating the
proposed model, the training and evaluation phases are repeated in five iterations.
Finally, the model is evaluated using an independent test set to demonstrate its
prediction capability for any unseen data. In this manner, the average prediction
accuracy of various iterations is considered as the final result. Supplementary
Note 7 and Supplementary Table S9 illustrate various parameter settings for
CapsNet-MHC.
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Fig. 10 Building blocks of CapsNet-MHC. a Inputs encoding with Blosum matrix considering frequencies of amino acids and their substitution probabilities,
b feature extraction by two CNN-Attention blocks, c feature fusion of the latent representation of MHC and peptide sequences taking advantage of a
Capsule neural network, and finally, d extraction of predicting binding values by a fully-connected block. W, U, and U’ denote the weights matrices, input
vectors to the primary capsules, and transformed vectors, respectively.
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Evaluation metrics. We evaluated the prediction performance of CapsNet-MHC
using various widely-used evaluation metrics in prior studies for the peptide
binding prediction to MHC class I. These metrics include Accuracy (ACC),
Spearman’s rank correlation coefficient (SRCC), Matthews correlation coefficient
(MCC), Sensitivity (Sn), Specificity (Sp), and F1 score, which are calculated by
(Eqs. 1–6), respectively.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; ð1Þ

where, TP, TN, FP, and FN are the numbers of true positives, true negatives, false
positives, and false negatives, respectively.

SRCC ¼ 1� 6∑d2i
n n2 � 1ð Þ ; ð2Þ

where, di and n denote the difference between the two ranks of each observation
and the number of observations, respectively.

MCC ¼ TP ´TNð Þ � ðFN ´ FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP þ FNÞ ´ ðTN þ FPÞ ´ ðTP þ FPÞ ´ ðTN þ FNÞ
p ð3Þ

Sn ¼ TP
TP þ FN

ð4Þ

Sp ¼
TN

TN þ FP
ð5Þ

F1 score ¼ 2 ´Precision ´Recall
Percisionþ Recall

; ð6Þ

where Precision and Recall are calculated by Eqs. (7) and, 8, respectively.

Precision ¼ TP
TP þ FP

ð7Þ

Recall ¼ TP
TP þ FN

ð8Þ
In addition to all aforementioned metrics, we included the area under the ROC

curve (AUC), as a performance evaluation metric.

CapsNet-MHC method. As shown in Fig. 10, the proposed method, called CapsNet-
MHC, is built upon four major units: a) data encoder, b) feature extractor, c) binding
dependencies extractor, and d) binding predictor, which are explained as follows.

a) Data encoder. As the first step, we use the amino acid sequence presentation
of peptides and MHCs as the method’s inputs. We encode and embed each peptide
and MHC sequence using the Blosum62 (Blocks Substitution Matrix) with 23 rows
and columns. Assuming lengths of 15 and 385 for the peptide and MHC sequences,
respectively, the peptides and MHC sequences are encoded to the 23 × 15 and
23 × 385 matrices, respectively. Moreover, assuming a batch size of 100 for feeding
the encoded sequences into the model, the size of the peptide and MHC input
tensors would be 100 × 23 × 15 and 100 × 23 × 385, respectively. It should be noted
that the proper batch size is chosen based on the grid search for tuning the model.

b) Feature extractor. As the second step, for extracting local patterns and
positional dependencies from the encoded peptide and MHC tensors, two separate
CNN-Attention modules are utilized. The feature extractor for peptide sequences
includes a CNN block followed by an attention layer and two CNN blocks. On the
other hand, the feature extractor for MHC sequences includes two CNN blocks
followed by an attention layer and two CNN blocks. The two output tensors with
the size of 100 × 20 × 11 are passed into the next step. It should be noted that these
modules are adopted from DeepAttentionPan with the key difference that the input
and output tensors are in different shapes.

c) Binding dependencies extractor. As the key building block of CapsNet-MHC,
for extracting the hierarchical binding dependencies from the peptides and MHC
latent features, a CapsuleNet 17 is utilized. To this end, two separate primary
capsules are applied to the peptide and MHC latent tensors, provided by the
previous step. Specifically, the primary capsule includes a vector ui (where i= 0, 1),
delivered by the feature extractor for peptide and MHC feature vectors. Through
the affine transformation, the input from the low-level capsules ui is passed to the
high-level capsules once being multiplied by the weights matrices. Equation (9)
demonstrates the conditional transformed vectors ûijj where W and u denote the
weights matrices and input vectors to the primary capsules, respectively 17.

ûijj ¼ Wijui ð9Þ
In this step, through the weight matrix multiplication, the spatial dependencies

are encoded and the high-level features are extracted from the input vectors.
Afterward, the transformed vectors ûijj are multiplied by the weights learned by the
dynamic routing algorithm, and so, the weighted sum of the input vectors can be
calculated, as formulated in Eq. (10). In this equation, cij denotes the network
weights learned by the dynamic routing algorithm.

sj ¼ ∑icijûjji ð10Þ

Finally, by applying the activation function, the high-level capsule vj is
calculated according to Eq. (11). In this equation, vj and sj are the output provided
by the non-linearity unit, and the one delivered by the earlier step, respectively.
Moreover, the left and the right sides of the equation stand for the additional
squashing, and the unit scaling of the output vector, respectively. Indeed, for
information compression and reusing through the next step of CapsNet-MHC, the
squash vector nonlinearity has been applied.

vj ¼
jjsjjj2

1þ jjsjjj2
sj

jjsjjj
ð11Þ

d) Binding predictor. As the final step, a three-layer fully-connected block followed
by an output layer is utilized to predict the binding values between the peptide and
MHC sequences.

Statistics and reproducibility. We performed computational experiments for
comparative studies of our method using K-fold cross-validation, and these
experiments were repeated at least three times to ensure robustness of our results.
For interpretability studies and biological insights, we utilized the seaborn library to
graph charts and analyze the results.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets are available at https://github.com/s7776d/CapsNet-MHC/tree/main/
dataset. Source data for graphs and charts can be found in Supplementary Data 1–6.

Code availability
The code is available at https://github.com/s7776d/CapsNet-MHC.

Received: 2 November 2022; Accepted: 24 April 2023;

References
1. Maenaka, K. & Jones, E. Y. MHC superfamily structure and the immune

system. Curr. Opin. Struct. Biol. 9, 745–753 (1999).
2. Simonson, T. Computational Peptide Science (Springer, 2022).
3. Wieczorek, M. et al. Major histocompatibility complex (MHC) class I and

MHC class II proteins: conformational plasticity in antigen presentation.
Front. Immunol. 8, 292 (2017).

4. Matsumura, M., Fremont, D. H., Peterson, P. A. & Wilson, L. A. Emerging
principles for the recognition of peptide antigens by MHC class I molecules.
Science 257, 927–934 (1992).

5. Zacharias, M. & Springer, S. Conformational flexibility of the MHC class I α1-
α2 domain in peptide bound and free states: a molecular dynamics simulation
study. Biophys. J. 87, 2203–2214 (2004).

6. Chicz, R. M. et al. Predominant naturally processed peptides bound to HLA-
DR1 are derived from MHC-related molecules and are heterogeneous in size.
Nature 358, 764–768 (1992).

7. Anaya, J. M., Shoenfeld, Y., Rojas-Villarrage, A. & Cervera R. Autoimmunity.
From Bench to Bedside (Rosario University Press, 2013).

8. Mei, S. & Li, F. Anthem: a user customised tool for fast and accurate
prediction of binding between peptides and HLA class I molecules. Brief.
Bioinform. 22, bbaa415 (2021).

9. Hu, Y. et al. ACME: pan-specific peptide-MHC class I binding prediction through
attention-based deep neural networks. Bioinformatics 35, 4946–4954 (2019).

10. Zhang, H., Lund, O. & Nielsen, M. The PickPocket method for predicting
binding specificities for receptors based on receptor pocket similarities:
application to MHC-peptide binding. Bioinformatics 25, 1293–1299 (2009).

11. Jin, J. et al. Deep learning pan-specific model for interpretable MHC‐I peptide
binding prediction with improved attention mechanism. Proteins 89, 866–883
(2021).

12. Chu, Y. et al. A transformer-based model to predict peptide–HLA class I
binding and optimize mutated peptides for vaccine design. Nat. Mach. Intell.
4, 300–3011 (2022).

13. Mei, S. et al. A comprehensive review and performance evaluation of
bioinformatics tools for HLA class I peptide-binding prediction. Brief.
Bioinform. 21, 1119–1135 (2020).

14. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information
Processing Systems 30, 5998–6008 (2017).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04867-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:492 | https://doi.org/10.1038/s42003-023-04867-2 | www.nature.com/commsbio 15

https://github.com/s7776d/CapsNet-MHC/tree/main/dataset
https://github.com/s7776d/CapsNet-MHC/tree/main/dataset
https://github.com/s7776d/CapsNet-MHC
www.nature.com/commsbio
www.nature.com/commsbio


15. Zhang, Y. et al. HLAB: learning the BiLSTM features from the ProtBert-
encoded proteins for the class I HLA-peptide binding prediction. Brief.
Bioinform. 23, bbac173 (2022).

16. Elnaggar, A. et al. ProtTrans: towards cracking the language of life’s code
through self-supervised learning. Trans. Pattern Anal. Mach. Intell. 44,
7112–7127 (2021).

17. Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. Adv.
Neural Inform. Process. Syst. 30, 3856–3866 (2017).

18. Yanover, C. & Bradley, P. Large-scale characterization of peptide-MHC
binding landscapes with structural simulations. Proc. Natl Acad. Sci. U.S.A.
108, 6981–6986 (2011).

19. Ehrenmann, F., Kaas, Q. & Lefranc, M. P. IMGT/3Dstructure-DB and IMGT/
DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T
cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 38, D301–D307 (2010).

20. Han, Y. & Kim, D. Deep convolutional neural networks for pan-specific
peptide-MHC class I binding prediction. BMC Bioinforma. 18, 585 (2017).

21. Nguyen, B. P., Nguyen, Q. H., Doan-Ngoc, G. N., Nguyen-Vo, T. H. &
Rahardja, S. iProDNA-CapsNet: identifying protein-DNA binding residues
using capsule neural networks. BMC Bioinform. 20, 1–12 (2019).

22. Peng, C., Zheng, Y. & Huang, D. S. Capsule network-based modeling of multi-
omics data for discovery of breast cancer-related genes. IEEE/ACM Trans.
Comput. Biol. Bioinform. 17, 1605–1612 (2019).

23. Wang, L. et al. An interpretable deep-learning architecture of capsule
networks for identifying cell-type gene expression programs from single-cell
rna-sequencing data. Nat. Mach. Intell. 2, 693–703 (2020).

24. Karosiene, E., Lundegaard, C., Lund, O. & Nielsen, M. NetMHCcons: a
consensus method for the major histocompatibility complex class I
predictions. Immunogenetics 64, 177–186 (2012).

25. Jurtz, V. et al. NetMHCpan-4.0: improved peptide-MHC class I interaction
predictions integrating eluted ligand and peptide binding affinity data. J.
Immunol. 199, 3360–3368 (2017).

26. Peters, B. & Sette, A. Generating quantitative models describing the sequence
specificity of biological processes with the stabilized matrix method. BMC
Bioinform. 6, 132 (2005).

27. Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial
neural networks: application to the MHC class I system. Bioinformatics 32,
511–517 (2016).

28. Trolle, T. et al. Automated benchmarking of peptide-MHC class I binding
predictions. Bioinformatics 31, 2174–2181 (2015).

29. Gfeller, D. & Bassani-Sternberg, M. Predicting antigen presentation-what
could we learn from a million peptides? Front. Immunol. 9, 1716 (2018).

30. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1
and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation
by concurrent motif deconvolution and integration of MS MHC eluted ligand
data. Nucleic Acids Res. 48, W449–W454 (2020).

31. Rasmussen, M. et al. Pan-specific prediction of peptide-MHC class I complex
stability, a correlate of T cell immunogenicity. J. Immunol. 197, 1517–1524 (2016).

32. Phloyphisut, P., Pornputtapong, N., Sriswasdi, S. & Chuangsuwanich, E.
MHCSeqNet: a deep neural network model for universal MHC binding
prediction. BMC Bioinforma. 20, 270 (2019).

33. Liu, Z. et al. DeepSeqPan, a novel deep convolutional neural network model
for pan-specific class I HLA-peptide binding affinity prediction. Sci. Rep. 9,
794 (2019).

34. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

35. Fisher, A., Rudin, C. & Dominici, F. All models are wrong, but many are
useful: learning a variable’s importance by studying an entire class of
prediction models simultaneously. J. Mach. Learn. Res. 20, 1–81 (2019).

36. Trivedi, R. & Nagarajaram, H. A. Amino acid substitution scoring matrices
specific to intrinsically disordered regions in proteins. Sci. Rep. 9, 1–12 (2019).

37. Rives, A. et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci.
U.S.A. 118, e2016239118 (2021).

38. Lin, Z. et al. Language models of protein sequences at the scale of evolution
enable accurate structure prediction. bioRxiv (2022).

39. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic
Acids Res. 47, D339–D343 (2019).

Author contributions
Conceptualization: M.K., and S.K. Methodology: M.K., and S.K. Investigation: M.K., S.D.,
and S.K. Data curation: M.K., and S.D. Software: M.K., and S.D. Formal analysis: M.K.,
S.D., and S.K. Writing—original draft: M.K., and S.K. Writing—review, and editing:
M.K., and S.K. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-04867-2.

Correspondence and requests for materials should be addressed to Somayyeh Koohi.

Peer review information Communications Biology thanks Yi Xiong and Jianzhao Gao
for their contribution to the peer review of this work. Primary Handling Editors:
Yuedong Yang and Gene Chong.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04867-2

16 COMMUNICATIONS BIOLOGY |           (2023) 6:492 | https://doi.org/10.1038/s42003-023-04867-2 | www.nature.com/commsbio

https://doi.org/10.1038/s42003-023-04867-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	CapsNet-MHC predicts peptide-MHC class I binding based on capsule neural networks
	Results
	Comparative studies
	Comparing CapsNet-MHC to baselines using IEDB’s datasets
	Comparing CapsNet-MHC to state-of-the-art methods using Anthem’s datasets
	Interpretability studies and biological insights
	Ablation studies for evaluating the contribution of model components
	Effect of utilizing transformer architectures and structural features

	Discussion
	Methods
	Datasets
	IEDB’s datasets
	Anthem’s datasets
	Implementation details
	Evaluation metrics
	CapsNet-MHC method
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Author contributions
	Competing interests
	Additional information




