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SVSBI: sequence-based virtual screening of
biomolecular interactions
Li Shen1, Hongsong Feng1, Yuchi Qiu 1 & Guo-Wei Wei 1,2,3✉

Virtual screening (VS) is a critical technique in understanding biomolecular interactions,

particularly in drug design and discovery. However, the accuracy of current VS models heavily

relies on three-dimensional (3D) structures obtained through molecular docking, which is

often unreliable due to the low accuracy. To address this issue, we introduce a sequence-

based virtual screening (SVS) as another generation of VS models that utilize advanced

natural language processing (NLP) algorithms and optimized deep K-embedding strategies to

encode biomolecular interactions without relying on 3D structure-based docking. We

demonstrate that SVS outperforms state-of-the-art performance for four regression datasets

involving protein-ligand binding, protein-protein, protein-nucleic acid binding, and ligand

inhibition of protein-protein interactions and five classification datasets for protein-protein

interactions in five biological species. SVS has the potential to transform current practices in

drug discovery and protein engineering.
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B iomolecules are the building blocks of life and can be
classified into various categories including carbohydrates,
lipids, nucleic acids, and proteins based on their sizes,

structures, physicochemical properties, and/or biological func-
tions. Additionally, the realization of biomolecular functions is
often accompanied by direct physical/chemical interactions with
other biological molecules, small ligands, ions, and/or cofactors1.
These interactions highly depend on the three-dimensional (3D)
structures and the dynamics of molecules, as well as biomolecular
conformational changes, due to their flexibility and allostery. The
understanding of biomolecular interactions is the holy grail of
biological science.

The last decade has witnessed the rapid advance in computa-
tional biology fueled by the achievement of artificial intelligence
(AI) and increased computer power. With advanced techniques
in data collecting, processing, analyzing, and representing, mod-
ern computational biology can study biological processes at
extraordinary scales and multiple dimensions. It has achieved
great success for various biological tasks2–4. The ability to
understand biomolecular interactions via advanced AI approa-
ches has a far-reaching significance to a wide range of research
fields, including drug discovery3, virus prevention5, directed
evolution4, etc. However, the accurate and reliable prediction of
biomolecular interactions is still a severe challenge.

Due to the inherently high correlation between structure
information and molecular functions, the structure-based
approaches achieved high accuracy and reliability in modeling
and learning biomolecular interactions6–11. As a result, current
analysis and prediction of biomolecular interactions rely heavily
on the high-quality 3D structures of interactive biomolecular
complexes. Unfortunately, experimental determination of 3D
structures is both time-consuming and expensive, leading to the
scarcity of experimental structures, particularly, the structures of
interactive biomolecular complexes. To overcome this difficulty,
molecular docking based on searching and scoring algorithms is
designed to generate 3D structures of the interactive complexes,
such as antibody-antigen complexes and protein–ligand com-
plexes. Molecular docking is widely incorporated in the virtual
screening (VS) of biomolecular interactions, offering an alter-
native means to construct the 3D structures of interactive bio-
molecular complexes and is a crucial step in computer-aided drug
discovery (CADD). However, current molecular docking is prone
to mistakes, rendering inaccurate 3D structures and leading to
unreliable virtual screening12. Despite the breakthrough in (non-
interactive single) protein folding prediction by Alphafold22, the
structure prediction of interactive biomolecular complexes
remains a severe challenge. There is a pressing need to develop
innovative strategies for the virtual screening of biomolecular
interactions.

Alternatively, sequence-based approaches may provide effi-
cient, robust, and easily accessible deep embeddings of biomole-
cular interactions without invoking 3D structure docking.
Sequenced-based approaches are much more widely applicable
than structure-based ones because the Genebank has over
240,000,000 sequences, compared to only 200,000 3D protein
structures in the Protein Data Bank (PDB), endowing sequence-
based approaches much boarder applicability. There are three
major types of sequence-based approaches: (1) composition-
based methods such as amino acid composition (AAC)13, nucleic
acid composition (NAC)14, and pseudo AAC (PseAAC)15; (2)
autocorrelation-based methods such as auto-covariance16; and (3)
evolution-based methods such as position-specific frequency
matrix (PSFM) and position-specific score matrices (PSSM)15.
Meanwhile, the use of NLP models to analyze the hidden infor-
mation in molecular sequences, including protein models, has
been successful in recent decades17–19.

Composition-based methods construct embeddings based on the
distribution of single residues or substrings. Autocorrelation-based
methods are based on statistical measurement of physicochemical
properties of each residue, such as hydrophobicity, hydrophilicity,
side-chain mass, polarity, solvent-accessible surface area, etc.
Evolution-basedmethods extract the evolutionary information from
large databases by evaluating the occurrence of each residue or the
score of that residue being mutated to another type. These methods
usually outperform composition-based and autocorrelation-based
methods due to their efficient use of a large number of molecular
sequences selected by billions of years of natural evolution. Natural
language processing (NLP) based methods have been widely used to
embed molecules. Among them, autoencoders (AE), long short-
termmemory (LSTM), and Transformer are most popular. A LSTM
model, UniRep, provides enables sequence-based rational protein
engineering20. An in-house autoencoder was trained with 104 mil-
lion sequences21. Evolutionary scale modeling (ESM) is a large-scale
Transformer trained on 250 million protein sequences, which
achieved state-of-art performance in many tasks, including structure
predictions22. For DNA in the genome, pre-trained bidirectional
encoder representation model DNABERT has achieved success in
non-coding DNA tasks, such as the prediction of promoters, splices,
and transcription factor binding sites23. Furthermore, an in-house
small molecular Transformer was trained with over 700 million
sequence data24. However, none of these methods was designed for
biomolecular interactions.

In this work, we proposed a sequence-based visual screening
(SVS) of biomolecular interactions that can predict a wide variety
of biological interactions at structure-level accuracy without
invoking 3D structures. The biological language processing
module in SVS consists of multiple NLP models, extracts evolu-
tionary, and contextual information from different biomolecules
simultaneously to reconstruct sequence representations for
interactive molecules, such as proteins, nucleic acids, and/or small
molecules. SVS has a strong generalizability to various types of
tasks for biomolecular properties and interactions. In particular,
SVS provides the optimal K-embedding strategy to study the
interactions between multiple (bio)molecules with negligible
computational cost. The intramolecular patterns and inter-
molecular mechanisms can be efficiently captured by our SVS
without performing the expensive and time consuming 3D
structure-based docking. We showed the cutting-edge perfor-
mance of SVS on nine prediction tasks, including four binding
affinity scoring functions (i.e., protein–ligand, protein–protein,
protein–nucleic acid, and ligand inhibition of protein–protein
interactions) and five classification datasets for protein–protein
interactions (PPIs). Extensive validations indicate that SVS is a
general, accurate, robust, and efficient method for the virtual
screening of biomolecular interactions.

Results
Overview of the SVS framework. Our SVS is a sequence-based
framework offering deep learning predictions of biomolecular
interactions (Fig. 1). First, the biomolecular interaction module
identifies types of interactive biomolecular partners and treats the
problem in the corresponding flow. Then, the related sequences
are collected and curated in the biomolecular sequence module.
Additionally, the biomolecular language processing module gen-
erates the NLP embeddings of individual interactive molecules
from their sequence data. Moreover, the K-embedding module
further engineers interactive K-embeddings from individual NLP
embeddings to infer their interactive information. Last, the
downstream machine learning algorithm module offers the state-
of-the-art regression and classification predictions of various
biomolecular interactions.
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In the biological language processing module, NLP embed-
dings are generated for proteins, nucleic acids, and small
molecules using their sequence data (Fig. 1b). We employ
various types of NLP models including protein LSTM model
(UniRep)20, protein Transformer (ESM)22, DNA Transformer
(DNABERT)23, small molecular Transformer24, and small
molecular autoencoder21. We particularly focus on Transformer
models due to their state-of-art performance with the
consideration of sequence dependencies via an attention
mechanism25–27. Enrich information, such as evolutionary
information, 3D structure, and biochemical properties22,24 can
be inferred by Transformers.

The K-embedding module (K-embedding strategies) takes
multiple embeddings from interactive molecular components as
inputs and integrates them into an optimal deep K-embedding
model to decipher biomolecular properties and intermolecular
interactions (Fig. 1d). The traditional 3D structure-based virtual
screening models require a molecular docking procedure to
generate the 3D molecular structures of the interactive complexes,
which is inefficient and unreliable28. The accuracy and effective-
ness of a structure-based docking method are jointly determined
by multiple sub-processes including molecular structure
determination1, rigid and flexible docking space search1, and
scoring function construction29. Current studies have achieved
success in each of these sub-processes. However, minor errors in
these sub-processes may accumulate and result in unreliable
structure-based docking. Alternatively, in our SVS framework, the
K-embedding strategies can convert the distribution information
of interactive molecular embeddings into the optimal K-
embedding and extract essential characteristics of biomolecular
interactions, which enhances the modelability of machine
learning algorithms in learning hidden nonlinear molecular
interactive information.

The machine learning module takes the K-embedding
strategies from the K-embedding module for molecular property
predictions. The downstream machine learning algorithms
include artificial neural network (ANN) and gradient boost
decision tree (GBDT) for predictive tasks. The hyperparameters
of both models are systematically optimized via Bayesian
optimization or grid search to accommodate for different sizes
of datasets and deep K-embeddings, and different tasks (Machine
learning algorithms and Bayesian optimization for ANN
hyperparameter tuning). For each task, the optimal K-embedding
strategy is chosen with the above optimization hyperparameters
which achieve the best predictive score in accuracy for
classification or in the Pearson correlation coefficient for
regression.

Biomolecular binding affinity predictions. Quantitatively,
binding affinity, defined as the strength of molecular interactions,
is reflected in the physicochemical terms of dissociation constant
(Kd), inhibitor constants (Ki), half maximal inhibitory con-
centration (IC50), or corresponding Gibbs free energy30. Accurate
predictions of molecular binding affinities are not only an
important step in modeling biological systems but also a funda-
mental issue for several practical usages including drug
discovery8,10,31, molecular engineering, and mutagenesis
analysis4.

Biomolecular binding affinity predictions: protein–ligand
binding scoring. The scoring of protein–ligand binding com-
plexes is the ultimate goal of virtual screening in drug discovery.
Typically, millions of drug candidates are screened for a given
drug target. The accuracy and efficiency of virtual screening are
essential for drug discovery8,32. Currently, inaccurate 3D
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Fig. 1 Methodological workflow of SVS. a SVS is designed for a wide variety of biomolecular interactions involving proteins, DNA, RNA, ligands, and their
arbitrary combinations. b Molecular sequences are extracted from proteins, nucleic acids, and small molecular ligands involved in biomolecular interaction
complexes. c The biomolecular language processing module presents the NLP embeddings of biomolecular complexes from sequence information. d The
K-embedding module generates the optimal representation of biomolecular interactions from the lower-order embeddings. Each square in the panel
represents one kind of 3-embedding strategies. Different patterns represent different 1-embeddings (i.e., an NLP embedding) or a lower-order embedding;
different colors represent different integrating functions, which indicate how the K-embedding is constructed. e Supervised machine learning algorithms
learn from the optimal K-embedding model of biomolecular interactions. In principle, there are no restrictions on the choice of algorithms. Specifically, in
this work, we use GBDT and ANN. f Machine learning algorithms are applied to various classification and regression tasks, including membrane protein
classifications, therapeutic peptide identifications, protein–protein interaction identifications, binding affinity prediction of protein–protein, protein–ligand,
protein–nucleic acids interactions, and inhibition of protein–protein interaction.
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structure-based docking and the associated unreliable virtual
screening are the main obstacles in rational drug design and
discovery.

In this study, we applied SVS to predict the protein–ligand
binding affinity on the PDBbind 2016 dataset33, a popular
benchmark dataset employed by hundreds of research teams to
validate their protein–ligand binding scoring functions7–9,33,33–38.
It has the training data of 3772 protein–ligand complexes from
the PDBbind 2016 refined set and the test data of 285 complexes
from the core set. The availability of 3D complex structures in
PDBbind database favors structure-based scoring functions, such
as algebraic topology-based machine learning models, such as
TopBP10, PerSpect-ML31, and AA-score32.

The best performance of 2D fingerprint-based methods,
achieved by the protein–ligand extended connectivity (PLEC)
fingerprint35, was Rp= 0.817. In fact, 3D structure information
was utilized in PLEC, highlighting the importance of 3D
structures in existing protein–ligand binding scoring functions.
We select this dataset to examine whether the proposed SVS,
without resorting to structural information, can reach the same
level of accuracy as structure-based scoring functions.

As shown in Fig. 2b, our SVS model gives the accurate
prediction of binding affinity with Rp= 0.832 and RMSE 1.696
kcal mol−1 (Fig. 2b). For structure-based methods, Rp > 0.7 can

be usually achieved if experimental structures of protein–ligand
complexes are used, while lower Rp < 0.65 is achieved when
molecular docking, such as ASP@ GOLD and Autodock, is used
to generate the structures of protein–ligand complexes33. The
structure-based TopBP method, using algebraic topology to
simplify the structure complexity of 3D protein–ligand com-
plexes, achieved the best performance with Rp/RMSE of 0.861/
1.65 kcal mol−110 in the literature. Excluding advanced
mathematics-driven structure-based methods, SVS outperforms
other structure-based methods, e.g., AK-score7 (Rp: 0.827),
NNScore+RDKit38 (Rp: 0.826) (Fig. 2b). This achievement is of
enormous significance that the quality and reliability of the
current virtual screening can be dramatically improved to the
level of x-ray crystal structure-based approaches without
depending on 3D experimental structures. Our result has a far-
reaching implication—reliable virtual screening can be carried
out on any drug target without relying on the 3D structures of
drug–protein complexes.

The performance from different combinations of protein
and ligand embeddings are further explored (Fig. 2c). We
used ESM Transformer22 and UniRep LSTM20 model for protein
embedding, and a Transformer24 and an autoencoder21 model for
ligand embedding. Our analysis indicates that the small molecular
Transformer outperforms the autoencoder. Additionally,

Fig. 2 Performance analysis of SVS for biomolecular binding affinity predictions. a A comparison of scaled predicted binding affinities and experimental
results for the binding affinity predictions of protein–ligand (PL), protein–nucleic acid (PN), protein–protein (PP), and the inhibition of PPI (iPPI) datasets.
Each dataset is scaled to a specific region with an equal range for clear visualization. b Comparison of the Pearson correlation coefficient (Rp) of our SVS
model and that of other structure-based approaches for the protein–ligand binding affinity prediction of the PDBbind-2016 core set33. Results in red, blue,
and green colors are obtained using no structure (i.e., sequence), experimental structures, and docking generated structures of protein–ligand complexes,
respectively. Our SVS outperforms the state-of-the-art models, such as AK-score7, NNScore+RDKit38, and many others9,33–37. c Comparison of different
NLP models for the Pearson correlation coefficients Rp of the protein–ligand binding prediction. d The relative importance distributions of different NLP
models as shown in c. Each row consists of 512+1280/1900 colored vertical line, and each represents the importance of one feature that is generated by
the NLP models. The black dashed line is the dividing line for features belonging to different type of molecules. The percentage on the left or the right of the
black dashed line is the proportion of the summation of importance of features for the same type of molecules.
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Transformer achieves better performance than LSTM model for
protein embedding. Further feature analysis is provided from the
feature importance analysis from GBDT (Fig. 2d). Both small
molecular embeddings have the dimension of 512. For the protein
embeddings, Transformer dimension is 1280, and LSTM is 1900.
First, small molecular features have more highly important ones.
The average importance of small molecular features are 0.082
(41.9/512), 0.074, 0.082, and 0.088 for four cases from top to
bottom (Fig. 2d). In contrast, the average importance of protein
features are 0.045, 0.049, 0.031, and 0.028 for four cases.
Additionally, the small molecular Transformer offers more
important features than the autoencoder does. For the protein
embeddings, the Transformer has more important features than
the LSTM does. Therefore, the combination of the ligand
Transformer and protein ESM Transformer achieves the best
prediction as shown in Fig. 2c.

Biomolecular binding affinity predictions: protein–protein
binding affinity prediction. Protein–protein binding affinity
refers to the strength of the attractive interaction between two
proteins, such as an antibody–antigen complex, when they bind
to each other. It is important metric for assessing the stability and
specificity of protein–protein interactions (PPIs), which are vital
for many biological processes.

Understanding protein–protein binding affinity is important
for many applications, including drug discovery, antibody design,
protein engineering, and molecular biology. For example,
knowing how antibody-antigen binding affinity is affected by
the shape of the antibody, the charge and hydration of the
antibody, and the presence of specific binding sites or residues on
the antibody, one can engineer antibodies with specific binding
properties to neutralize viruses39,40.

The protein–protein binding affinity can be quantified by
Gibbs free energies. The surface plasmon resonance (SPR),
isothermal titration calorimetry (ITC), enzyme-linked immuno-
sorbent assay (ELISA), and Western blotting are used to
determine protein–protein binding affinities. In our work, we
build a SVS model to predict protein–protein binding affinities
from protein sequences. We collect and curate a set of 1795 PPI
complexes (Datasets) in the PDBbind database41. This dataset is
employed to show the versatile nature of SVS. Sequences of these
PPI complexes are extracted and embedded using the Transfor-
mer. The PPIs are represented by the stack of their Transformer
embeddings in our study. Our SVS model reached the Rp of 0.743
and the RMSE of 1.219 kcal mol−1 via 10-fold cross-validation,
and the comparison of predicted value versus the ground truth is
shown in Fig. 2a. Our result indicates SVS is a robust approach
for predicting the binding affinity of PPIs.

Biomolecular binding affinity predictions: protein–nucleic acid
binding affinity prediction. Another class of biomolecular
interactions is protein–nucleic acid binding which plays impor-
tant roles in the structure and function of cells, including cata-
lyzing chemical reactions, transporting molecules, signal
transduction, transcription, and translation. It is also involved in
the regulation of gene expression and in the maintenance of
chromosome structure and function. Dysregulation of
protein–nucleic acid binding can lead to various diseases and
disorders, such as cancer, genetic disorders, and autoimmune
diseases. The understanding of the factors, such as hydrogen
bonding, dipole, electrostatics, Van der Waals interaction,
hydrophobicity, etc. that influence protein–nucleic acid binding
affinities can be utilized to design new therapeutic molecules.

In this work, we apply SVS to analyze and predict
protein–nucleic acid binding affinity. Due to the lack of existing

benchmark datasets, we extract a dataset from the PDBbind
database41. A total of 186 protein–nucleic acid complexes was
collected (Datasets). This dataset is chosen to demonstrate that
the SVS works well for predicting nucleic acid-involved
biomolecular interactions. For this problem, our SVS utilizes a
Transformer (ESM) for embedding protein sequences and
another Transformer (DNABERT) for embedding nucleic acid
sequences. Our model shows good performance with an average
Rp/RMSE of 0.669/1.45 kcal mol−1 in a 10-fold cross-validation.
Our results are depicted in Fig. 2a. Considering the fact that the
dataset is very small, our SVS prediction is very good.

Biomolecular binding affinity predictions: inhibition of
protein–protein interaction prediction. Having demonstrated
SVS for protein–ligand, protein–protein, protein–nucleic acid
binding predictions, we further consider a problem involving
multiple molecular components. The small molecule inhibition of
protein–protein interaction prediction (iPPI) involves at least
three molecules.

Protein–protein interactions are essential for living organisms.
Dysfunction of PPIs can lead to various diseases, including
immunodeficiency, autoimmune disorder, allergy, drug addiction,
and cancer42. Therefore, the inhibition of PPIs (iPPIs) is of great
interest in drug design and discovery. Recent studies have
demonstrated substantial biomedical potential for iPPIs with
ligands43.

However, iPPI with ligands is challenging in a vast range of
investigation phases including target validation, ligand screening,
and lead optimization44. Traditional computational methods for
iPPI predictions have various limitations. For example, structure-
based approaches have to overcome the complexity of ligand
docking caused by the large and dynamic interfaces of PPIs even
with stable and reliable experimental complex structures45.
Recently, Rodrigues et al.42 have developed an interaction-
specific model, called pdCSM-PPI, which utilizes graph-based
representations of ligand structures in the framework of ligand-
based virtual screening. An important characteristic of their
approach is that their models are ligand-based and target-specific:
the input of each model is a set of ligands that target one particular
PPI. Instead of exploring the hidden mechanism of iPPI, their
models rely on a comparison of ligands by assuming that ligands
with similar structures exhibit similar behavior, i.e., the similar
property principle. Their approach avoids the difficulties of lacking
iPPI structures and molecular mechanisms by using target-specific
predictions, in which one machine-learning model is built for
ligands targeting the same PPI system. Therefore, it cannot be used
for the screening of new targets. By contrast, SVS can avoid this
difficulty by sequence embedding of PPI targets. As a result, SVS
can be directly applied to explore the inhibition of new PPIs
without matching targets in existing iPPI datasets.

In this work, we analyzed PPIs and ligands by using various K-
embedding strategies, to predict the half-maximal inhibitor
concentration (IC50) of the ligand inhibition of PPI. For each
iPPI complex, a small molecular Transformer and a protein
Transformer are used to embed one ligand sequence and two
protein sequences in our SVS. We tested our model on the dataset
considered by Rodrigues et al.42. Our model shows an Rp of 0.766
and RMSE of 0.761 mol/L in the 10-fold cross-validation, while
the Rp and RMSE of the earlier pdCSM-PPI model are 0.74 and
0.95 mol/L, respectively. SVS shows a better performance in both
Rp and RMSE, illustrating the superiority of the SVS method. The
comparison of predictive results versus the ground-truth value of
our model can be found in Fig. 2a.

We explore K-embedding strategies via various NLP deep
embeddings. We examine three integrating functions in this
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study, i.e., Stack, Prod, and Diff, to generate K-embedding
strategies with the higher-order embedding built from lower-
order embeddings. Stack concatenates two biomolecular language
processing embeddings from two proteins in a PPI complex into a
single embedding vector. This method preserves the complete
information provided by the biomolecular language processing
module, but the downside is its high dimensionality. Since two
proteins in a PPI complex are encoded by two vectors of identical
length, 2-embedding can be done via the component-wise
operations between these two vectors. We also tested the
component-wise product (Prod) and the absolute value of the
difference (Diff). These component-wise 2-embedding
approaches result in lower-dimensional 2-embeddings for the
downstream machine-learning module. The specific formulas
corresponding to these three strategies are described in Eqs. (2),
(3), and (4), respectively.

Here, we choose 14 kinds of higher-order deep embeddings
that take the full consideration of the homogeneity or hetero-
geneity of NLP models, which are shown in Fig. 3a with their
predictive performance. It is worth noting that this iPPI dataset is
a ligand-central dataset consisting of multiple ligands that target
the same PPI. Therefore, 1-embedding for ligand sequence
information processing will play the most important role. Our
experiments show that using Transformer-based models with the
Stack schemes will give a state-of-the-art performance.

We further analyze the feature importance of our best schemes
from GBDT for features encoding ligands and proteins.
Interestingly, features for ligands are substantially more impor-
tant than that for proteins (Fig. 3b). Specifically, the importance
for ligand features is much higher at 84.2%, while the sum of
importance for two proteins is only 15.8%. On the other hand,

top features include a high proportion of ligand features, for
example, 96.4% of the top 512 features are from ligand features
(Fig. 3c). A possible reason for such feature imbalance may be
because only a few PPI systems are included in this dataset which
has 1694 ligands but only 31 PPIs. Despite protein features being
less important, they are necessary for learning iPPI without
matching targets. As shown in Fig. 3a, without PPI information
(non-encoding of PPIs), or with only trivial classification
information of PPI (one-hot pair encoding of PPIs), our models
show a substantial decline in the predictive accuracy. The only
exception is Diff of the PPI target. One reason is that many
proteins in this PPI target belong to the same protein family.
Thus, the high similarity of these proteins in sequence would only
provide very limited information for Diff schemes. In general, the
protein features are necessary components for learning target-
unmatched iPPIs.

Protein–protein interaction identification. Protein–protein
interactions (PPIs) regulate many biological processes, including
signal transduction, immune response, and cellular organization46.
However, the selectivity and strength of PPIs depend on species and
the cellular environment. Identifying and studying PPIs can help
researchers understand the molecular mechanism of protein
functions and how proteins interact with one another within a cell or
organism.

We utilized the SVS method to identify PPIs, where our model
classified protein pairs in a given dataset following standard
training and test splitting protocols in the literature14,47. Positive
samples were defined as interacting protein pairs that are in direct
physical contact through intermolecular forces, while negative
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samples were generated by randomly selecting protein pairs in
distinct sub-cellular compartments14,47. Five PPI datasets with
different species including Homo sapiens (HS), Mus musculus
(MM), Saccharomyces cerevisiae (SC), Drosophila melanogaster
(DM), and Helicobacter pylori (HP) are employed for the
benchmark. Here, we explore three K-embedding strategies:
Stack, Prod, and Diff.

Since the performance of regression models is complicated, we
first analyze the performance of interactive features without
downstream regression models. In particular, we employed the R-
S plot to visualize feature residue score (R) versus similarity score
(S)48. The R-score and S-score of a given sample are calculated by
considering the distances of its features with that of inter-class
samples and intra-class samples, formulated as Eqs. (10) and (11),
respectively. Both R-score and S-score range from 0 to 1. A

sample with a higher R-score indicates that it is far from samples
in other classes, and a higher S-score indicates that it is close to
other samples in the same class. An effective featurization method
is expected to have both high R-scores and S-scores, despite a
clear trade-off exists between R- and S-scores (Fig. 4b). Notably,
such a trade-off can also be quantified by the R-S index (Eq. (14)).
The R-S analysis shows that Stack features are located at the
upper right of Prod and Diff embeddings except for the H. pylori
dataset (located in a similar area), though they overlap extensively
over all datasets. In addition, from the perspective of the R-S
index, Stack and Diff have advantages in two datasets, and Prod
has advantages in one dataset.

Furthermore, we compared different K-embedding strategies
by coupling with the identical regression models using fivefold
cross-validation (Fig. 4b). Consistently, the Stack strategy showed
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predictive model (SVS) with some previous PPI identification models. The comparison of each dataset is shown independently in a subplot with the name
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the highest accuracy score than others in their downstream model
performance for all datasets tested (Fig. 4c). Overall, Stack
provides an optimal K-embedding strategy.

Overall, our models with the best Stack of biomolecular
language processing embeddings showed accuracy scores as high
as 99.93%, 99.28%, 99.64%, 99.22%, and 98.69% for datasets
Helicobacter pylori, Mus musculus, Saccharomyces cerevisiae,
Helicobacter pylori, and Drosophila melanogaster, respectively
(Fig. 4a and Supplementary Table 1). In comparison, the state-of-
art method, SVM-NVDT14, gives 98.56%, 94.83% 99.20%,
95.41%, and 94.94%, respectively for these datasets. SVM-
NVDT was based on natural vectors and dinucleotide and triplet
nucleotide information. Also, the Supplementary Note 2 displays
additional results of our SVS models including the AUC curves
which are shown in the Supplementary Fig. 1. Our models
outperform all previous models by a substantial margin, which
demonstrates the superiority of our method over previous
methods for identifying PPIs.

Discussion
In this study, we utilize representations from traditional molecular
language models as a starting point to inductively define high-order
K-embeddings, which provide a systematic strategy for represent-
ing biological interactions involving an arbitrary number of
molecules. By generating different K-embeddings, we can effec-
tively and easily capture the sequence representations of NLP
models generated for a single molecule. These K-embeddings allow
for comprehensive consideration of the potential heterogeneity of
interactive biomolecules, enhancing the representability of indivi-
dual molecules. Furthermore, the design of K-embedding enables
SVS to optimize downstream machine/deep learning algorithms.
To demonstrate the utility of K-embeddings, we design two
machine learning algorithms that achieve state-of-the-art results.

In predicting biomolecular interactions, structure-based
approaches are popular and highly accurate when the topologi-
cal representations of high-quality 3D structures are employed10.
However, their performance depends on the availability of reli-
able high-resolution experimental structures. Structural docking
is a necessary protocol for structure-based approaches when there
is no experimental structure available for the interactive complex.
Additionally, the power of structure-based methods lies in their
ability to accurately capture the geometric information of the
interactive complexes. Therefore, the disparity between docked
structures and experimental structures will also be inherited by
structure-based models. However, no studies have shown that
current molecular docking models can control this disparity
within acceptable tolerances. By contrast, our SVS method pro-
vides an alternative approach for the study of interactive mole-
cular complexes using only sequence data. It implicitly embeds
structural information, flexibility, structural evolution, and
diversity in the latent space, which is optimized for downstream
models through K-embedding strategies. It is worth noting that
SVS reaches the same level accuracy as of the best structure-based
approach as shown in Fig. 2.

Ligand-based virtual screening models also serve as another
effective approach that can avoid structure-based docking for
evaluating biomolecular interaction with ligands49. However, the
current usage of ligand-based models is quite limited as these
models in principle can only be applied to target-specific datasets
and cannot be used for the screening involving new targets. We
showed that by combining target and ligand deep embeddings via
K-embedding strategies, SVS gives rise to robust target-unspecific
predictions with structure-based accuracy.

The Biological language processing module and the K-
embedding module are two major components in SVS models.

Conventionally, the model performance relies on both featur-
ization modules and machine learning algorithms. To solely
analyze the quality of the featurization modules, we carry out
residue-similarity (R-S) analysis using R-S plot and R-S index48

for classification tasks (Fig. 4b). The R-S analysis describes the
quality of features in terms of similarity scores and residue scores
as well as the deviation between different classes.

We further analyze SVS behaviors on different datasets in terms
of magnitudes and modelability (Fig. 5a) where the basic infor-
mation of correspondence datasets can be found in Supplementary
Table 3. Three metrics are employed: modelability index, pre-
dictive, and index magnitude index. The modelability index and
magnitude index are calculated based on the training data of each
dataset, while the predictive index is calculated based on our pre-
dictive results on the test data. Note that if our model is tested via
cross-validation, then the whole dataset will be calculated for each
of the five indices. The predictive index is chosen based on task
types: we chose the accuracy score for classification tasks and Rp for
regression tasks. The modelability index, which represents the
feasibility of our approach on the training data of each dataset, is
evaluated by calculating the class-weighted ratio (classification) or
the activity cliff (regression) between the nearest-neighbors of
samples (Eqs. (15) and (16)). Previous studies50,51 have suggested
that 0.65 is the threshold to separate the modelable and non-
modelable datasets. Our model exceeds this threshold in all data-
sets. In particular, the modelability indices exceed 0.8, which
confirms the robustness, stability, and feasibility of our SVS. Our
method is compatible with a wide variety of dataset sizes, as shown
by the magnitude index, which reflects the corresponding dataset
size in proportion to the maximal size of the 9 datasets studied (the
maximal data size is 11,188). Our analysis shows that there is no
substantial correlation between the magnitude index and with
modelability index or the predictive index, with the only exception
being the PN dataset. This dataset, compared to other datasets of
the same task (i.e., PL, PP, iPPI datasets), has the same level of
modelability index, but with lower levels of the predictive index.
We believe that this is because the magnitude index is too small,
and this dataset is tested by cross-validation. Therefore, the ran-
domly selected data leads to a void in the feature space, making it
difficult for our model to fit this dataset. In conclusion, SVS can be
broadly applied for biomolecular predictions and is robust against
data size variation. Moreover, SVS has a strong adaptability to
molecules with different sequence compositions. Since proteins
were involved in each of our previous numerical experiments, we
show the length distribution of protein sequences in each dataset
(Fig. 5b) as well as the distribution of amino acids appearance rate
in the sequences (Fig. 5c). On average, the sequence lengths of PL,
PP, and PN are shorter than those of Saccharomyces cerevisiae (SC),
Drosophila melanogaster (DM), Helicobacter pylori (HP), Homo
sapiens (HS), and Mus musculus (MM). This is because samples in
the previous datasets are also provided with experimentally
determined structures. The availability and reliability of large-size
protein structures are subjected to experimental techniques as well
as practical considerations, which leads to inevitable systematical
bias for structure-based approaches. On the other hand, our SVS
models show excellent performances for tasks involving various
sequence length distributions. Furthermore, the diversity of the
amino acid appearance rate distribution supports the adaptability
of our model for tackling different biological tasks, regardless of
whether the sequence composition involved has some specificity. In
conclusion, our SVS models are robust against sequence length
variation and adaptive to biomolecular variability, which reveals
the potential of our SVS method as a universal approach for
studying biological interactions.

The success of the SVS is due to the use of powerful NLP models,
such as LSTM, autoencoder, and particularly Transformers trained
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with hundreds of millions of molecules. These models extract the
constitutional rules of molecules and biomolecules without resorting
to molecular property labels. The proposed SVS will become more
powerful as more advanced NLP models become available.

To showcase the proposed SVS method, we choose nine repre-
sentative biomolecular interaction datasets involving four regres-
sion datasets for protein–ligand binding, protein–protein binding,
nucleic acid binding, and ligand inhibition of protein–protein
interactions and five classification datasets for the protein–protein
interactions in five biological species. SVS can be applied to the
large-scale virtual screening of multiple targets and multiple
molecular components without any structural information.

Recently, there has been a growing concern about possible data
leakage in machine learning models, where the model may rely
too heavily on sequence similarity to make predictions52. This
issue undermines the ability of the model to learn the underlying
pattern of interactions among biomolecules. However, our
approach, SVS, avoids data leakage by utilizing NLP-based K-
embeddings. By extracting a wide range of hidden information
from sequences, including structure, contextual, biochemical, and
evolutionary information, our SVS model is less dependent on

sequence similarity. Recent studies also demonstrate the effec-
tiveness of NLP-based methods in predicting single or multiple
mutations of protein interactions that may completely alter or
abandon molecular interactions4,53, further confirming the low
dependence of SVS on sequence similarity.

Methods
Datasets. In this study, we used PDBbind-2016 datasets41 for predicting the
protein–ligand binding affinity. The dataset used in protein–protein binding affinity
was constructed from PDBbind database41. The original PDBbind version 2020
contains binding affinity data of 2852 protein–protein complexes. We selected
1795 samples with only two different sub-chain sequences as shown in Supple-
mentary Table 5. Furthermore, we also construct the protein–nucleic acid binding
affinity dataset from PDBbind version 2020. However, unlike proteins and ligands,
nucleic acids need to be converted to k-mers (in our models, k equals 3) before
feeding into the Transformer model we used. Thus, one unconventional letter (e.g.,
X, Y) in a sequence will result in k unknown k-mers. In addition, nucleic acids
binding to proteins are generally short in length. Therefore, thus unconventional
letters in their sequences may completely destroy the context of k-mer representa-
tions. For example, a nucleic acid sequence “ACXTG” will be converted into three
3-mers: “ACX”, “CXT”, and “XTG”. Note that these three 3-mers all contain an “X”,
so the biomolecular language processing model will treat them as unknown tokens,
and will not be able to read any useful sequence information. In order to guarantee
the effectiveness of sequence information, we apply a stricter excluded criterion: 1)

Fig. 5 Analysis of nine datasets. a Modelability index, predictive index, and magnitude index for nine datasets. The left y-axis represents modelability and
predictive indices, while the right y-axis is the magnitude index. Nine datasets used in our work are four binding affinity regression tasks (i.e., PL, PP, PN,
iPPI), and five protein–protein interaction classification tasks, namely SC (Saccharomyces cerevisiae), DM (Drosophila melanogaster), HP (Helicobacter pylori),
HS (Homo sapiens), and MM (Mus musculus). b The distribution of sequence length for 9 datasets. c The normalized amino acids appearance rate
distribution. This subfigure has nine channels horizontally, corresponding to nine datasets described in a, b. Each channel shows the distribution of 20
types of amino acids appearance rates in sequences of the dataset.
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exclude those protein–nucleic acid complexes that their sequence numbers do not
equal two; 2) exclude those protein–nucleic acid complexes that have unclear labels;
3) exclude those protein–nucleic acid complexes that have abnormal letters (normal
ones are A, C, T, G) in its nucleic-acid sequences; 4) exclude those protein–nucleic
complexes that whose nucleic acid sequence length is fewer than 6. The resulting
dataset contains 186 protein–nucleic acid complexes as shown in Supplementary
Table 4. Additionally, for these two datasets, the labels are transformed from dis-
sociation constant (Kd), inhibitor constant (Ki), and half maximal inhibitory con-
centration (IC50) to Gibbs free energy based on the Supplementary Eq. 8.

The original dataset iPPI dataset focuses on ligands thus the availability of PPI
targets is obscure and only 31 targets are provided at the family level while 1694
ligands are available. For each protein family, we selected one protein to represent
the whole family (e.g., we chose P10415/Q07812 for BCL2/BAK; O60885/P62805
for bromodomain/histone, and O75475/P12497 for ledgf/in.). More specific
correspondences can be found in Supplementary Table 6.

The protein–protein interaction identification involves five benchmark datasets,
namely, 2434 proteins pairs from Homo sapiens, 694 protein pairs from Mus
musculus, 11,188 protein pairs from Saccharomyces cerevisiae, 2140 protein pairs
from Drosophila melanogaster, and 2916 protein pairs from Helicobacter pylori14.
Each dataset consists of an equal quantity of interacting pairs and non-interacting
pairs. The interacting protein pairs, serving as positive samples, were collected from
the public Database of Interacting Proteins (DIPs)54. Samples with fewer than 50
amino acids and more than 40% pairwise sequence identity to one another were
excluded to reduce fragments and sequence similarity. Negative samples of each
dataset were generated by randomly selecting protein pairs in distinct sub-cellular
compartments. Proteins from different sub-cellular compartments usually do not
interact with each other, and indeed, this construction assures high confidence in
identifying negative samples14.

All additional information of datasets used in this study can be found at the
Supplementary Note 4.

K-embedding strategies. For a given molecular complex with m molecules,
denote Sm= {s1, s2,… , sm}(m ≥ 2) the set of the corresponding sequences. The set
of associated NLP 1-embeddings is fτð1Þu1

ðs1Þ; τð1Þu2
ðs2Þ; ¼ ; τð1Þum

ðsmÞg. Here the sub-
script (ui) is the embedding dimension, e.g., 512 for the latent space dimension of
small molecular Transformer24. Our goal is to construct an optimal m-embedding
model (τðmÞ

z ðSmÞ) from fτð1Þu1
ðs1Þ; τð1Þu2

ðs2Þ; ¼ ; τð1Þum
ðsmÞg, for the complex.

In general, a q-embedding is defined on lower forms as the following formula:

τðqÞw ðSqÞ :¼ HðτðrÞu ðSrÞ; τðtÞv ðStÞÞ; ð1Þ
where r+ t= q, and Sr ¼ fsi1 ; si2 ; ¼ ; sir g; St ¼ fsj1 ; sj2 ; ¼ ; sjt g; and Sq ¼
fsk1 ; sk2 ; ¼ ; skq g are three subsets of sequences. Here, the H is the integrating

function. In this study, we applied Stack, Prod, and Diff based on the homogeneity
or heterogeneity of strategies of lower forms as our choices of H.

Specifically, the Stack can be defined as follows:

StackðτðrÞu ðSrÞ; τðtÞv ðStÞÞ ¼ τðrÞu ðSrÞ � τðtÞv ðStÞ ð2Þ
where⊕ is the direct sum.

Furthermore, if the lower form strategies are homogenous (i.e., u= v, s= t), we
can define the Prod and Diff as follows:

ProdðτðrÞu ðPrÞ; τðtÞv ðPtÞÞ ¼
prod � μðprodÞ

σðprodÞ ; ð3Þ

Diff ðτðrÞu ðPrÞ; τðtÞv ðPtÞÞ ¼
diff � μðdiff Þ

σðdiff Þ ; ð4Þ

where μ and σ are the mean value and standard deviation, and

prod ¼ τðrÞu ðPrÞ ´ τðtÞv ðPtÞ; ð5Þ

diff ¼ τðrÞu ðPrÞ � τðtÞv ðPtÞ; ð6Þ
where × and− is the element-wise product and subtraction, respectively.

In this work, the optimization is made over individual NLP embedding
(τð1Þuj

ðsjÞ), such as Transformer, autoencoder, and LSTM, and all the integrating

functions (H), i.e., Stack, Prod, and Diff.

Machine learning algorithms. We use two set of machine learning algorithms. The
first set is the artificial neural networks (ANN), a deep learning algorithm that inspired
from the complicated functionality of human brain. For each task, we use Bayesian
optimization55 to search the best combination of hyperparameters including network
size, L2 penalty parameters, learning rate, batch size, and max iteration. The second
model is the gradient boost decision tree (GBDT), one of the most popular ensemble
methods. GBDT has the advantages of robustness against overfitting, insensitiveness to
hyperparameters, effectiveness in the performance, possession of interpretability.
GBDT was mainly used to implement regression tasks. The hyperparameters including
“n_estimators, max_depth, min_sample_split, subsample, max_features” are chosen
based on the data size and embedding dimensions of each task. The Supplementary

Note 3 introduces the optimization strategies used in our study. The detailed settings of
hyperparameters are presented in the Supplementary Table 2.

Bayesian optimization for ANN hyperparameter tuning. Bayesian optimization
is a popular approach to sequentially optimize hyperparameters of machine
learning algorithms. The Bayesian optimization is to maximize a black-box func-
tion f(x) in a space S:

x� ¼ argmax
x2S

f ðxÞ; ð7Þ

In the hyperparameter optimization, S can be regarded as the search space of
hyperparameters, x* is the set of optimal hyperparameters, and f(x) is an evaluating
metric for machine learning performance.

Given t data points Xt= (x1, x2,… , xt) and their values of evaluating matrics
Yt= (y1, y2,… , yt), Gaussian process can model the landscape of f on the entire
space S by fitting (Xt, Yt)56. At any novel point x, f(x) is modeled by a Gaussian
posterior distribution: pðf ðxÞjXt ;YtÞ � N ðμtðxÞ; σ2t ðxÞÞ, where μt(x) is mean and σ
is the standard deviation of f(x) predicted by Gaussian process regression:

μtðxÞ ¼Kðx;XtÞ KðXt ;XtÞ þ ϵ2nI
� ��1

Y;

σ2t ðxÞ ¼ kðx; xÞ � Kðx;XtÞ KðXt ;XtÞ þ ϵ2nI
� ��1

Kðx;XtÞT :
ð8Þ

Here k is the kernel function, K(x, Xt) is a row vector of kernel evaluations between
x and the elements of Xt with ½Kðx;XtÞ�i ¼ kðx; xiÞ, and K(Xt, Xt) is the kernel
matrix with ½KðXt ;XtÞ�ij ¼ kðxi; xjÞ. ϵn is the noise term, which is learned from the
regression.

In Bayesian optimization, both predicted mean and standard deviation are used
for the decision making for the next evaluating data point. One can either pick the
point maximize the mean values of f(x) for a greedy search, or pick the point with
the largest standard deviation to gain new knowledge and improve the Gaussian
process accuracy on f(x) landscape. The greedy search may largely maximize f(x) in
a few iterations and the exploration of uncertain points can benefit for long-term
iterations. To balance such a exploitation-exploration trade-off, an acquisition
function, α(x), needs to be picked. The decision for the next evaluating point xn is
picked such that it maximizes the acquisition function

xn ¼ argmax
x2S

αðxÞ: ð9Þ

In this study, we used the upper confidence bound (UCB) acquisition which can
handle the trade-off and it has a fast convergent rate57 for the black-box
optimization.

Evaluation metrics. In addition to the evaluation metrics introduced in the
Supplementary Note 1 (from the Supplementary Eq. 1 to the Supplementary Eq. 7),
R-S scores, R-S index, and modelability index are described below.

Evaluation metrics: R-S scores. Residue-similarity (R-S) plot is a new kind of
visualization and analysis method that can be applied to an arbitrary number of
classes proposed by Hozumi et al.48. An R-S plot evaluates each sample of given
data by two components, the residue and similarity scores. For given dataset

fðxm; ymÞjxm 2 RN ; ym 2 ZLgMm¼1, the residue score and the similarity score of a
sample (xm, ym) are defined as follows:

Rm :¼ RðxmÞ ¼
∑xj=2Cl

jjxm � xjjj
max
xm2Cl

ð∑xj=2Cl
jjxm � xjjjÞ

; ð10Þ

Sm :¼ SðxmÞ ¼
1
jClj

∑
xj2Cl

1� jjxm � xjjj
dmax

� �
; ð11Þ

where l= ym, Cl= {xm∣ym= l}, and dmax ¼ maxxi ;xj2Cl
jjxi � xjjj. Note that 0 ≤ Rm

≤ 1 and 0 ≤ Sm ≤ 1. If a sample is far from other classes, it will have a larger residue
score; if a sample is well-clustered, it will have a larger similarity score.

The Class residue index (CRI) and class similarity index (CSI) for the l-th class
can be defined as CRIl ¼ 1

jCl j∑mRm and CSIl ¼ 1
jCl j∑mSm . Then the class-

independent residue index (RI) and similarity index (SI) can be defined:

RI :¼ 1
L
∑
l
CRIl; ð12Þ

SI :¼ 1
L
∑
l
CSIl : ð13Þ

Then the R-S indices which can give a class-independent evaluation of the
deviation R- and S- scores48 can be defined:

RSI :¼ 1� jRI� SI j ð14Þ
Note that RSI range from 0 to 1 and a low RSI indicates a large deviation between
the R-score and S-score.
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Evaluation metrics: modelability. The modelability index is defined indepen-
dently for classification tasks and regression tasks, namely MODIcl and MODIreg,
respectively, defined as follows50,51:

MODIcl ¼
1
L
∑
L

i¼1

Ni

Mi
; ð15Þ

MODIreg ¼ 1� 1
M

∑
M

i¼1

1
Ki

∑
j2C1

i

jyi � yjj; ð16Þ

where L represents the number of classes, Ni is the count of samples in the i-th class
whose first nearest neighbor is also in the i-th class, Mi is the number of samples in
the i-th class, M is the total number of samples, C1

i is the 1-nearest neighbor of i-th
sample, Ki is the count of samples in C1

i except the i-th sample, and yi represents
the i-th samples’ normalized label.

Statistics and reproducibility. We marked the standard deviation of all our cross-
validation results on the Supplementary Table 1. For the reproducibility, the
repetitions of our experiments are presented in Supplementary Table 3.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets are available at https://weilab.math.msu.edu/DataLibrary/2D/. The
Supplementary Data 1 provides .xlsx files for reproducing Figs. 2, 3, 4, and 5.

Code availability
The source codes are available at https://github.com/WeilabMSU/SVS.
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