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Dynamic proteome trade-offs regulate bacterial cell
size and growth in fluctuating nutrient
environments
Josiah C. Kratz 1 & Shiladitya Banerjee 2✉

Bacteria dynamically regulate cell size and growth to thrive in changing environments. While

previous studies have characterized bacterial growth physiology at steady-state, a quanti-

tative understanding of bacterial physiology in time-varying environments is lacking. Here we

develop a quantitative theory connecting bacterial growth and division rates to proteome

allocation in time-varying nutrient environments. In such environments, cell size and growth

are regulated by trade-offs between prioritization of biomass accumulation or division,

resulting in decoupling of single-cell growth rate from population growth rate. Specifically,

bacteria transiently prioritize biomass accumulation over production of division machinery

during nutrient upshifts, while prioritizing division over growth during downshifts. When

subjected to pulsatile nutrient concentration, we find that bacteria exhibit a transient memory

of previous metabolic states due to the slow dynamics of proteome reallocation. This allows

for faster adaptation to previously seen environments and results in division control which is

dependent on the time-profile of fluctuations.
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In their natural environment, bacteria must be able to sense
and adapt rapidly to time-varying environmental stressors to
survive and proliferate. Not surprisingly, bacteria exhibit tight

regulatory control over their growth physiology and cell
morphology1,2, and alter both in response to fluctuating nutrient
perturbations, resulting in dynamic growth rate and cell size
changes in time-varying environments3–6.

Significant research has gone into understanding how bacterial
cell size is coupled to growth rate7, DNA replication8,9, and gene
expression10 at steady-state, and how size homeostasis is main-
tained despite division and growth rate noise11,12. In addition,
characterization of a large portion of the steady-state bacterial
proteome across different growth conditions has improved
understanding of the resource allocation strategies employed by
bacteria in different environments13–15. Motivated by experi-
mental data, various coarse-grained models of cell physiology
have been developed in recent years, which explain the regulation
of cellular growth rate and cell size control from underlying
proteome allocation strategies at steady-state10,16–20. However,
bacteria do not exist naturally in such conditions, but instead
thrive in rapidly changing environments. As a result, it remains
unclear how cells sense changes in the environment and dyna-
mically regulate division and growth in response.

Bacteria reallocate their proteome to relieve metabolic or
translational bottlenecks and increase growth rate under a given
nutrient limitation21, but do not always allocate resources in
order to optimize steady-state growth rate22. For example, bac-
teria maintain a fraction of inactive ribosomes at steady state
regardless of nutrient condition, presumably as a reserve which
can be deployed to quickly increase growth rate during nutrient
upshift4,23. This apparent strategy highlights the challenges of
resource allocation in dynamic environments, specifically that
organisms must weigh the trade-offs between optimizing growth
rate at steady-state and employing mechanisms that are costly at
steady-state but that hasten adaptation to environmental
changes4,24. In addition, the molecular mechanisms connecting
dynamic resource allocation to division control in bacteria are not
clear, nor is our understanding of how these allocation strategies
are affected by the temporal pattern of environmental fluctua-
tions. Furthermore, it is unclear if bacterial size modulation is
simply a byproduct of the complex cellular response to changing
environmental conditions, or if it serves as an adaptive
mechanism employed by the cell to improve fitness in time-
varying environments.

To understand the dynamics of bacterial growth physiology
and size control in dynamic nutrient environments, we have
developed a coarse-grained proteome sector model which con-
nects gene expression to growth rate and division control, and
accurately predicts the cell-level E. coli response to nutrient
perturbations in both exponential and stationary phase seen in
experimental data5,25. This is done by integrating the dynamics of
biochemical elements with decision-making rules for cell division.
Motivated by recent experimental work which suggests that
division is regulated independently of DNA replication26, we
employed a chromosome-independent threshold accumulation
model to determine division timing. We applied this model to
study how cells allocate intracellular resources dynamically in
response to time-varying nutrient conditions, and found that
growth rate and cell size control is governed by dynamic trade-
offs between biomass accumulation and cell division. Specifically,
our model predicts that bacteria temporarily divert resources to
ribosome production over division protein production during
nutrient upshift, resulting in a transient delay in division and an
overshoot in added cell volume per generation as cells prioritize
biomass accumulation. Conversely, in response to nutrient
downshift, cells prioritize division over growth, resulting in a

rapid decrease in added volume and interdivision time before
relaxing to their steady-state values. As a result, population and
single-cell growth rates decouple outside of steady-state, poten-
tially serving as an adaptive mechanism in time-varying envir-
onments. Lastly, when simulating pulsatile nutrient conditions,
we find that growth rate and cell size recovery time after pulse
cessation both increase with increasing pulse duration. Our model
suggests that this transient memory of previous environments is a
result of the slow dynamics of proteome reallocation, and pro-
vides a passive mechanism for faster adaptation in fluctuating
environments.

Results
Dynamic proteome allocation in time-varying nutrient envir-
onments. Bacterial cells integrate time-varying environmental
information through a complex set of regulatory networks to
control gene expression. Despite this complexity, steady-state
proteomics reveals that the expression of proteins with similar
function are regulated reciprocally in response to growth rate
perturbations, such that various proteome sectors can be defined
which coarse-grain the cellular milieu into a limited number of
collective state variables13–15. To investigate E. coli cell size and
growth rate control in time-varying nutrient environments, we
developed a dynamic model which partitions the proteome into
four sectors: ribosomal, metabolic, division, and “housekeeping”
(Fig. 1a). In this framework, the environment contains time-
varying nutrients with concentration c, which the cell imports and
converts into amino acids using metabolic proteins with protein
mass fraction ϕP. The kinetics of protein translation are limited by
the abundance of multiple metabolites, the specific identity of
which can change with time and nutrient environment. As a result,
we define a as the mass fraction of the coarse-grained growth-
limiting amino acid pool. This pool is consumed by translating
ribosomes, with mass fraction ϕR, to synthesize each of the four
proteome sectors. As a result, the ribosome mass fraction sets the
exponential growth rate, κ ¼ d lnM=dt ¼ d lnV=dt, given by

κ ¼ κtðaÞ ϕR � ϕmin
R

� �� μns; ð1Þ
where μns is the non-specific degradation rate constant, ϕmin

R
denotes the fraction of ribosomes which are not actively engaged in
translation, and κt(a) is the translational efficiency, which is
dependent on amino acid availability such that translation becomes
significantly attenuated at low intracellular amino acid levels (see
“Methods”).

In response to changes in nutrient availability, the cell
reallocates its proteome by altering the fraction of translational
flux, JtðtÞ ¼ κtðϕRðtÞ � ϕmin

R Þ, devoted to each sector, such that
the dynamics of each sector can be written as

d
dt

ϕðtÞ ¼ JtðtÞðf ðtÞ � ϕðtÞÞ; ð2Þ

where the vectors ϕ(t)= [ϕR(t), ϕP(t), ϕX(t), ϕQ(t)] and f(t)= [fR(t),
fP(t), fX(t), fQ(t)] denote the protein mass fraction and translational
flux allocation fraction of each sector at time t, respectively. E. coli
proteomics data reveal that a significant fraction of the proteome is
invariant to environmental perturbations13. As a result, we define
the housekeeping sector such that it contains all the proteins whose
proteome allocation is not growth rate dependent. Consequently,
ϕQ= fQ= constant, and fR(t)+ fP(t)+ fX(t)= 1− fQ= ϕmax.

To model division control, we employ a threshold accumula-
tion model of cell division in which division is triggered after a
cell accumulates a fixed amount of division proteins10,17,26,27.
Since the total protein abundance per cell scales with growth
rate7,8 and if the threshold remains constant5,26, the average
protein mass fraction of division proteins per cell necessarily
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decreases to maintain the constancy of the threshold, and thus
must be part of the metabolic sector12,17. Consequently, we
assume that allocation to the division sector, fX(t), is given by a
linear combination of a basal allocation fraction, β, and a time-
dependent fraction whose expression is co-regulated as part of a
larger metabolic sector, f �PðtÞ. As a result, the flux allocation
constraint can be simplified such that f RðtÞ þ f �PðtÞ ¼ ϕmax

R ,
where ϕmax

R ¼ ϕmax � β represents the upper limit to the
allocation fraction devoted to ribosomal proteins. Using the
simplified constraint, fX(t) can be expressed such that its time
dependence is solely through fR(t), yielding

f XðtÞ ¼ α ϕmax
R � f RðtÞ

� �þ β; ð3Þ
where α is the fraction of the co-regulated sector f �PðtÞ made up of
division proteins. From Eq. (3), we see that when the fraction of
cellular resources allocated to ribosome production increases,
metabolic and division protein translational flux is necessarily
downregulated, and vice versa (Fig. 1b). This prediction is
supported by E. coli proteomics data15 (Supplementary Fig. 1),
and highlights a trade-off that cells must make between biomass
accumulation and division in dynamic environments.

Critically, as all other proteome sectors are defined in terms of
fR(t), the time-dependence of fR must be specified. To do so, we
assume that dynamic reallocation is driven by gene-regulatory
networks which are dependent on the amino acid pool, such that
the time dependence of fR is given through its dependence on the
time-varying amino acid mass fraction a, thus fR(t)= fR(a(t)). In
this way a serves as our key kinetic variable, as opposed to
defining gene expression dynamics in terms of the translational
activity like a model by Erickson et al.18. The dynamics of a are
coupled to Eq. (2) and are given by the difference in the metabolic
and translational fluxes, such that da/dt= Jn− Jt, where the
metabolic flux, Jn, is proportional to the metabolic sector mass
fraction, ϕP. The dynamics of a can be written in terms of the
proteome mass fractions as

da
dt

¼ κnðaÞðϕmax � ϕR � ϕXÞ þ μns � κtðaÞ ϕR � ϕmin
R

� �
; ð4Þ

where κn(a) is the nutritional efficiency (see “Methods”), which
becomes significantly attenuated at high values of a to reflect
end-product inhibition of biosynthesis pathways and inactivation

Fig. 1 Dynamic resource allocation model for cell growth and division control in dynamic environments. a Schematic of coarse-grained model of bacterial
cell size control and growth physiology. Nutrients (c) are imported by metabolic proteins (P) and converted to amino acids (a), which are then consumed
by ribosomes (R) to produce proteins. Division occurs once a threshold amount of division proteins (X) have been accumulated. b By dynamically
regulating the fraction of the total translational flux devoted to each proteome sector i, fi(a(t)), in response to changes in a triggered by environmental
changes, the cell alters its proteome composition, and thus its size and growth rate. c The dependence of fR on a is the given by their steady-state
relationship. The path of fR in response to a nutrient-rich pulse is shown with colored circles corresponding to the timepoints shown in d. fR is initially given
by its steady-state value in minimal medium (purple, closed). A shift to rich medium results in a transient increase in fR close to its maximum value (green,
open), before relaxing back to its new steady-state value (green, closed). The path during upshift is given by the dashed line. A shift back to minimal
medium results in a temporary drop in fR close to its minimum value (purple, open), before relaxing back to the original steady-state value (purple, closed).
The path during downshift is given by the dotted line. d Representative dynamics of amino acid mass fraction (top) and proteome allocation fractions
(bottom) during a nutrient pulse. See Table 1 for a list of parameters.
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of nutrient importers at high intracellular amino acid
concentrations28.

Changes in environmental nutrient availability result in a flux
imbalance which alters the size of the amino acid pool. In this
way, a acts as a read-out of flux imbalance, and so by altering
proteome allocation in response to a, the cell can dynamically
respond to nutrient changes. To obtain the functional form of
fR(a(t)), we assume that a(t) sets the allocation fraction fR(a(t))
via the steady-state relation f �RðaÞ, such that f RðaðtÞÞ ¼ f �RðaðtÞÞ.
Furthermore, we assume that the cell maximizes translational flux
at steady-state, which allows us to express fR solely in terms of the
amino acid mass fraction, a (see Methods and Supplementary
Notes 1 and 2). f �RðaÞ is shown graphically in Fig. 1c, and predicts
that proteome allocation is altered to reduce growth bottlenecks.
Namely, when a is high, ribosome synthesis is prioritized in order
to increase translation flux, but when a is low, metabolic protein
synthesis is prioritized to increase nutrient import. Mathemati-
cally, any monotonically increasing function for fR(a) will

produce this type of regulatory behavior. However, by choosing
fR(a) to be given by f �RðaÞ, we also ensure that translational flux is
maximized at steady state. This assumption of growth-rate
maximization at steady-state has proved fruitful in previous
theoretical models to explain bacterial growth laws16,28–32, and
has been observed experimentally to be the case for many
nutrient-limiting conditions22. Furthermore, it has been experi-
mentally observed that E. coli cells evolve their metabolism
towards a state that maximizes growth rate33–35.

Using the above framework, the dynamics of proteome
allocation can be simulated in time-varying nutrient environ-
ments by numerically solving the coupled Eqs. (2) and (4)
(Fig. 1d). In response to a pulse of nutrients, allocation to
ribosome synthesis increases drastically to its maximum value
before slowly relaxing to its steady-state value in rich media
(Fig. 1d). In contrast, allocation to division protein synthesis
drops significantly before slowly relaxing to a lower steady-state
value. Following cessation of the nutrient-rich pulse, the opposite

Fig. 2 Growth-rate dependent trade-off between biomass accumulation and division protein synthesis sets steady-state bacterial cell size. a Steady-
state relationship between population average cell size at birth and growth rate for E. coli. Dotted line shows best fit of Eq. (7), yielding parameters γα, γβ,
and κt. Solid line shows best fit with inclusion of degradation rate μX, parameters are given in Table 1. Experimental data are of E. coli K-12 NCM3722 cells
from refs. 12, 26. b Non-monotonic dependence of the division protein production rate, kP, on growth rate, where kP is estimated from experimental data
as 〈κ〉/〈V0〉. The model predicts the non-monotonic dependence (solid line, parameters given by best fit from a) despite a linear decrease in allocation
fraction to the division protein sector with increasing growth rate (dotted line).

Table 1 Model parameters.

Parameter Description Value Growth condition Figure number

ϕmin
R Inactive ribosome fraction16 0.049 All All

ϕmax
R Maximum flux allocation to ribosome production16 0.55 All All

at Translation attenuation threshold28 10−4 All All
an Feedback inhibition threshold28 10−3 All All
κ0t (h−1) Translational efficiency rate constant 2.6 All 1, 3–6

4.8 All 2
κ0n;low (h−1) Nutritional efficiency rate constant in nutrient-poor media 4.8 Exponential 1, 3, 4, 6

0 Stationary 5
κ0n;high (h−1) Nutritional efficiency rate constant in nutrient-rich media 10 All 1

60 All 3–6
μns (h−1) Nonspecific degradation rate 0 Exponential 2–4, 6

0.1 Stationary 5
μX (h−1) Division protein degradation rate, strain specific 2.5 All 3–6

0.1 All 2
γα (μm−3) Strain-specific parameter, represents contribution to kP from co-regulated portion of fX 4.5 All 1, 3–6

3.6 All 2
γβ (μm−3) Strain-specific parameter, represents contribution to kP from basal allocation fraction of fX 1.1 All 1, 3–6

0.34 All 2

See Supplementary Information for more details.
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trends occur for each allocation fraction, resulting in an overshoot
in fX and undershoot in fR before both returning to their initial
values (Fig. 1d).

At the molecular level, this regulation of gene expression is
carried out by the signaling molecule guanosine tetraphosphate
(ppGpp), which is synthesized when charged tRNA levels are
low36,37. As charged tRNA abundance is proportional to amino
acid levels, ppGpp thus indirectly acts as a sensor of the amino
acid pool. In response to decreased amino acid levels, ppGpp
levels increase and repress rRNA expression36,37. Conversely,
when amino acids are abundant, ppGpp levels decrease to
promote ribosome production. ppGpp production also induces
genome-wide changes in protein expression. Experimental results
have shown that ppGpp activates metabolic and division protein
expression38, and when overexpressed decreases cell size39. In this
way, ppGpp acts as a global regulator which modulates expression
of the three dynamic proteome sectors, and thus regulates
translational flux, by responding to changes in amino acid
concentration.

Growth-rate dependent increase in cell size arises from trade-
off between biomass accumulation and division protein
synthesis. To predict cell size control behavior, the dynamics of
proteome allocation must be connected to the dynamics of the
number of accumulated division proteins per cell after birth, X(t),
where cells divide at t= τ after accumulating a fixed number of X
proteins, X(τ)= X0. Using the relation X= ϕXVρc/mX− X*,
where ρc is the protein mass density of the cell, mX is the mass of
division molecule X, and X* is the amount of division proteins at
birth, the dynamics of ϕX can be used to identify the dynamics of
the fraction of the accumulated number of division proteins
required to trigger cell division, ~X ¼ X=X0,

d~X
dt

¼ γf XJtV � μX ~X; ð5Þ

where γ= ρc/X0mX and μX is the degradation rate of division
proteins. We thus identify the division protein synthesis rate per
unit volume as kP(t)= γfX(t)Jt(t). By numerically solving pro-
teome allocation and volume dynamics in conjunction with the
division rules given by Eq. (5), single cell size and growth rate
dynamics can be simulated in fluctuating nutrient environments.

To test the validity of our resource allocation model, we first
examined if the model can reproduce experimentally observed
steady-state physiological behaviors of bacterial cells, in particular
the increase in average cell size with growth rate under nutrient
perturbations (Fig. 2a)1,7,8. At steady-state, fR= ϕR (Eq. (2)),
allowing the rate of division protein synthesis kP to be written
solely as a function of growth rate. In moderate to fast
exponential growth conditions, the effects of protein degradation
are negligible. Thus assuming κ≫ μns, we arrive at

kPðκÞ ¼ γðαðΔϕ� κ=κtÞ þ βÞκ; ð6Þ
where Δϕ ¼ ϕmax

R � ϕmin
R . When κ≫ μX, this model recapitulates

the adder principle employed by E. coli to achieve size
homeostasis12, in which a constant amount of volume, Δ, is
added each generation irrespective of birth size, Δ ≈V0 ≈ κ/kP.
We discuss deviations from this size control behavior in slow
growth conditions, when degradation effects become important,
in the last Results section. Substituting Eq. (6) into the expression
for birth size yields a novel formulation of the size law7,
which links nutrient-limited growth rate to cell size (Fig. 2a), such
that

V0ðκÞ ¼
1

γαðΔϕ� κ=κtÞ þ γβ
: ð7Þ

The above equation can be fit well to experimental data8,12

(Fig. 2a), to predict the cell type-specific or strain-specific
parameters γα, γβ, and κt. fX can then be inferred from these
parameters by assuming the identity of X proteins (see Supple-
mentary Note 3). The data can also be fit well by the full model
which includes degradation (Eq. (S.6) in Supplementary Note 4).
We found that including the effects of X protein degradation are
essential to quantitatively capturing dynamic size control (Supple-
mentary Fig. 2), and so we use best fit parameters from the full
model to numerically predict the dependence of kP on κ (Fig. 2b).
Interestingly, Eq. (6) predicts a non-monotonic dependence of the
division protein production rate on growth rate. This behavior can
be understood by considering the effects of both fX and Jt, where
here Jt= κ when nonspecific degradation effects are negligible. As
growth rate decreases, translational flux allocation to division
protein production, fX, increases while overall translational flux, Jt,
decreases (Fig. 2b). As such, at fast growth rates, decreasing κ
results in an increase in kP due to an increase in fX. Conversely, at
slow growth rates this increase in fX is dominated by the decrease in
Jt, resulting in a reduction in kP. At intermediate growth rates
translational flux and allocation are simultaneously moderately
high, consequently yielding the maximum kP value.

The expression for cell volume given in Eq. (7) predicts a
maximum growth rate given by κmax ¼ κtðΔϕþ β=αÞ. This
theoretical maximum, however, is nonphysical as it assumes that
fX= ϕX= 0, which is never the case (Eq. (3)). Growth rate is
maximum when ϕR ¼ ϕmax

R , thus giving an upper limit to the
physical growth rate at κmax ¼ κtΔϕ. Eq. (7) also implies that
there is no bound on cell size. However, our expression for fX
constrains cell size to a finite value. When allocation to ribosomes
is maximal, ϕX= β, such that the maximum birth volume V0 is
given by Vmax

0 ¼ 1=γβ.

Cells transiently prioritize biomass accumulation over division
during nutrient upshifts. Recent experimental results show that
in response to nutrient upshift, bacteria transiently delay division
before increasing to a faster division rate in nutrient-rich media5.
This behavior is seen clearly in the overshoot in the average
interdivision time (τ) and added volume (Δ) (Fig. 3c, d). Previous
work has suggested that division control is co-regulated both by
chromosome replication and a chromosome-independent accu-
mulation process, such that the slowest process sets division
timing in unperturbed cells40. Importantly, replication-initiation
models which can accurately capture steady-state cell size control
behavior are not able to capture these overshoot dynamics5,
indicating that a chromosome-independent regulatory mechan-
ism is likely responsible for size control in dynamic nutrient
environments. We hypothesized that this division delay upon
nutrient upshift results from cellular prioritization of ribosome
production over production of division and metabolic proteins.
Using our four-component proteome sector model, we simulated
single-cell growth and size dynamics in response to nutrient
upshift, and were able to quantitatively capture the experimental
results (Fig. 3a), as well as predict the dynamics of flux allocation
and proteome composition. Importantly, our model was also able
to capture growth rate dynamics during both upshift and
downshift in many other experimental conditions examined
recently by Erickson et al.18 (Supplementary Fig. 3).

We simulated stochastic single-cell volume trajectories by
introducing both growth rate and division noise during the cell
cycle, in which only one daughter cell was tracked after each division
event (Fig. 3a, bottom panel; see “Methods”). These simulations
quantitatively captured the average added volume (Δ), volume ratio
(Δ/V0), and the interdivision time (τ) dynamics seen experimentally
(Fig. 3b–d). In particular, they reproduce the overshoot in added
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volume and interdivision time following the nutrient upshift. As
hypothesized, our model predicts that in response to increased
nutrient availability, bacteria transiently divert resources away from
division and metabolic protein production and instead prioritize
ribosome production (Fig. 3e). This regulatory behavior occurs
because an increase in nutrient availability transiently causes a
mismatch in the translational and metabolic fluxes, yielding a
significant increase in the size of the amino acid pool, a. In response
to the increase in a, the cell allocates translational flux to ribosome
production at the expense of division and metabolic protein
production (Fig. 1c, d). This is seen in the temporary drop in
division protein production rate, kP, and overshoot in ribosomal flux

allocation, fR, during the growth rate adaptation time period, after
which both kP and fR relax to their new steady-state values (Fig. 3a).
Consequently, during this transitional period, bacteria delay division
and add significantly more biomass than their birth size (Fig. 3b).
Importantly, resource allocation strategies in which division protein
allocation is constant or co-regulated with ribosomal protein
expression could not explain the experimentally-observed overshoot
dynamics or steady-state size relationships (Fig. 3b–d, simulation
details for alternative allocation strategies in Supplementary Note 5),
clearly showing the necessity of ϕX to be co-regulated with ϕP. We
also found that inclusion of a nonzero degradation rate was necessary
to capture the observed amplitude of the overshoots (Supplementary

Fig. 3 Cell size and division dynamics during nutrient upshift. a Simulation dynamics of average amino acid mass fraction, proteome composition,
allocation fraction, and division protein production for the P5ter promoter strain of E. coli K-12 BW25113 cells undergoing nutrient upshift from M9 minimal
medium with 0.4% glucose to M9 with 0.4% glucose and 0.5% casamino acids5. κ0t and μX were obtained by fitting growth rate and size dynamics to
experimental data, while the remaining parameters were calculated from steady-state proteomics and size data (see “Methods”). All parameters are
provided in Table 1. Bottom: Single-cell volume trajectories were simulated using the model by implementing division rules appropriate for E. coli.
b–d Generation-averaged dynamics of cell volume ratio (b), added volume (c), and interdivision time (d) from 400 single-cell volume trajectories agree
well with experimental data. e Resource allocation strategy during upshift. In response to amino acid influx, cells transiently prioritize (fast forward)
ribosome production over division protein production, resulting in an acceleration of biomass accumulation and a delay in division (pause).
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Fig. 2), consistent with observations that certain key division proteins
like FtsZ are actively degraded by the cell25,26,41.

Growth-rate and cell size recovery time increases with nutrient
pulse duration. To predict bacterial growth rate and cell size
control in more complex time-varying environments, we

simulated single-cell trajectories experiencing a pulse of nutrient-
rich media. For each trajectory with pulse-length τfeast, we mea-
sured the time required (τrecovery) for both the growth rate and
cell volume added per generation to return to the pre-shift level
following downshift (Fig. 4a, b). Interestingly, in both cases
τrecovery increased with increasing τfeast until saturating at a con-
stant value (Fig. 4d), showing that bacteria transiently retain

Fig. 4 Proteome reallocation and cell size regulation in pulsatile nutrient environment. a Average single-cell growth rate simulations of bacteria
experiencing a nutrient-rich pulse of variable duration. For each trajectory with pulse-length τfeast, the time required following downshift for the growth rate
to return to within 99% of the pre-shift level was measured, given by τrecovery. b Average dynamics of added volume, Δ, for 400 single-cell trajectories
experiencing a nutrient-rich pulse as shown in a. The time required to stabilize at the initial added volume after pulse cessation is again given by τrecovery.
c Example simulation dynamics where τfeast= 0.75 h, and τfeast= 4 h. In both cases, the top four panels are deterministic simulations of average
intracellular dynamics, whereas the bottom panel is the average dynamics of 400 single-cell stochastic simulations. d Quantification of the relationship of
τfeast and τrecovery from the simulations in a for two different degradation rates. e Quantification of the relationship of τfeast and τrecovery from the simulations
in b. See Table 1 for a list of model parameters. f Resource allocation strategy during downshift. In response to amino acid depletion, cells transiently
prioritize (fast forward) division protein production, resulting in accelerated division and delayed biomass accumulation (pause).
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memory of the previous nutrient environment across generations,
allowing for quicker recovery to optimal steady-state growth
when experiencing short timescale perturbations in nutrient
quality. As cellular growth rate is determined by ribosome
abundance (Eq. (1)), we hypothesized that this phenotypic
memory is conferred by the slow dynamics of proteome reallo-
cation and thus ribosome accumulation, which occur on a sig-
nificantly slower timescale than translational flux reallocation due
to the half-life of proteins far exceeding that of mRNA42. As such,
even though translation proceeds largely at the same rate as
transcription in bacteria43, the stability of previously translated
genes allows for transmission of previous metabolic information
across time by increasing the time required to reshape proteome
composition24.

In agreement with our hypothesis, we found that the time
period over which cells maintain a memory of the previous state
is equal to the time required to reshape the proteome to become
optimal in the new environment (Figs. 3a and 4d). In addition,
the recovery time and the duration of the phenotypic memory
could be reduced by increasing the nonspecific protein turnover
rate (Fig. 4d). These results show that the delay between
translational flux reallocation and reorganization of the proteome
incurs a short term fitness cost by slowing adaptation, but confers
a fitness advantage in fluctuating conditions as it allows cells to
quickly return to optimal growth in the previous condition if the
nutrient perturbation is short-lived. This phenotypic memory is
also predicted to occur during starvation (Supplementary Fig. 4),
and is seen experimentally44,45. Specifically, cells which experi-
ence a longer starvation period take longer to recover their pre-
starvation growth rate. In this regime, an analytical expression
relating the starvation time to the recovery time can be obtained
(Supplementary Note 6).

As with τrecovery, the overshoot in added volume, δΔ, also
increases with τfeast, but saturates at a constant value much
quicker than τrecovery (Fig. 4e). This is because the added volume
is not determined solely by proteome allocation, but instead is
given by the relative rates of biomass accumulation and division
protein production (Δ ≈ κ/kP).

Cell division is prioritized over biomass accumulation during
nutrient downshift. Following cessation of the nutrient-rich
pulse, our model makes the interesting prediction that division is
prioritized over biomass accumulation during downshift (Fig. 4f),
as allocation to division protein synthesis transiently becomes
maximal at the expense of ribosome allocation (Fig. 1d). This
behavior can be understood by recalling that fX and fP are co-
regulated, and that an increase in fX necessarily requires a
decrease in fR (Eq. (3)). As a result, there is a temporary increase
in division rate (undershoot in τ) caused by an overshoot in kP
(Fig. 4c), while biomass accumulation temporarily slows
(undershoot in κ, Fig. 4c), leading to a rapid reduction in cell size
(undershoot in Δ, Fig. 4b). This prioritization of division protein
synthesis is a surprising prediction given that following down-
shift, cells are experiencing harsher environmental conditions.
We propose explanations for this behavior in the Discussion
section.

Remarkably, our model predicts distinct pulse length-
dependent recovery behavior in interdivision time following
cessation of the nutrient-rich pulse. This can be seen clearly by
comparing the simulation dynamics of bacteria experiencing
nutrient-rich pulses of 0.75 and 4 hrs (bottom panel, Fig. 4c).
Specifically, cells experiencing longer pulse lengths exhibit a non-
monotonic recovery of interdivision time, τ, which is not
observed at shorter pulse durations. This behavior can be
understood by considering the impacts of both the overall

translational flux (Jt= κ) and the division protein allocation
fraction (fX) on division protein synthesis rate, given by
kP= γJtfX. Under both conditions, fX behaves similarly immedi-
ately following downshift, namely that allocation to division
protein production transiently increases before relaxing to its
steady-state value (third panel from top, Fig. 4c). As kP is
proportional to fX, at short pulse lengths the increase in fX causes
an overshoot in kP following downshift (fourth panel from top,
Fig. 4c). Importantly, there is a temporary undershoot in growth
rate following downshift under both conditions, however the
magnitude of this growth rate undershoot is significantly larger at
longer pulse lengths (second panel from top, Fig. 4c) due to a
greater mismatch in metabolic and translational fluxes. As kP is
also proportional to κ, at longer pulse lengths the initial drop in
kP is due to a temporary halt of translation. This is followed by a
translation flux ramp-up in which division is prioritized, resulting
in a temporary overshoot in kP, and an overall non-monotonic
recovery behavior in τ. Importantly, when the quality of the
nutrient-rich media is reduced but the pulse length remains long,
there is a reduced growth rate undershoot following pulse
cessation, and the non-monotonic recovery in τ is not seen
(Supplementary Fig. 5). Thus, this pulse length-dependent
division control is a direct consequence of the dependence of
kP on both fX and κ.

Cell size-dependent protein synthesis regulates recovery from
stationary phase under pulsed nutrient supply. When the
environmental nutrient supply has been exhausted, bacteria halt
growth and enter stationary phase. Bacterial division control and
size homeostasis behavior is markedly different in stationary
phase compared to exponential phase, and a robust mechanistic
model which captures size control dynamics in both phases of
growth is still lacking. As such, we were interested if our model
would successfully predict cell size and division control upon exit
from stationary phase. Under such conditions, the effects of
protein turnover on cell physiology become crucial46. From
Eq. (1), we see that although bacterial growth vanishes in sta-
tionary phase (κ= 0), protein production does not cease com-
pletely, but is balanced by the degradation rate such that the
translational flux is given by Jt ¼ μns ¼ κtðϕR � ϕmin

R Þ. This
implies that a small fraction of ribosomes remain active and that
amino acid supply comes solely from protein turnover. Impor-
tantly, division protein production scales with cell volume and
persists in stationary phase, with kP= γfXμns. As a result, the
concentration of accumulated division proteins, cX, at steady-state
in stationary phase is set by the relative rates of protein pro-
duction and degradation, namely cX= γfXμnsX0/μX, predicting
that cells maintain a constant concentration of division proteins
in stationary phase, regardless of cell size. Because division is
dependent on the total number of accumulated division proteins
and not its concentration, we therefore expect larger cells to
divide faster upon nutrient exposure.

To examine if our model is able to capture division control
during transitions between different growth regimes, we
simulated size control dynamics during stationary phase rescue.
Given that our model predicts prioritization of biomass
accumulation over division during upshift, we simulated rescue
through repeated short-exposure nutrient pulses to examine
the effects of repeated upshifts on size control and resource
allocation. Specifically, cells starting at steady-state where κ= 0
and c= 0 experienced nutrient pulses of constant duration with
a variable separation time, τpulse (Fig. 5a). As an increase in
available nutrients results in an increase in the intracellular
amino acid mass fraction25 (Supplementary Fig. 6), our model
predicts that bacteria transiently prioritize ribosome production
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over division immediately following pulse exposure, similar to
nutrient upshift behavior predicted in exponential phase
(Figs. 5a and 3 and Supplementary Fig. 6). Consequently,
immediately following nutrient influx, kP drops and the
degradation rate dominates, resulting in a sharp decrease in
the division protein number, X. Importantly, in the time
between pulses, X increases significantly due to an increase in
division protein production caused by an increase in cell volume.
This stands in contrast to a previous model for division control in
stationary phase by Sekar et al.25, which assumed that bacteria
immediately allocate resources to division during nutrient upshift,
causing the division protein production rate to transiently increase
before falling to some basal value if the pulse rate is of insufficient
frequency. Despite the stark differences in molecular details

between these models, we find that the time from pulse onset to
first division, Tlag (Fig. 5b), monotonically decreases with
increasing feedrate (decreasing τpulse, Fig. 5c), which is observed
experimentally25. This behavior occurs because although bacteria
initially prioritize ribosome production over division when exiting
stationary phase, once the ribosome bottleneck is relieved, cells
then upregulate division machinery (Fig. 5f). As a faster feedrate
relieves this bottleneck quicker, a faster feedrate results in a shorter
lag time until division. Also consistent with experimental results25,
we find that increasing the division protein degradation rate (μx)
increases Tlag, while increasing the protein production rate (kP)
decreases Tlag (Fig. 5c), highlighting the importance of the
degradation and volume-specific protein synthesis rates in
controlling division timing.

Fig. 5 Cell size and division control during exit from stationary phase. a Single-cell dynamics of ribosome allocation fraction and mass fraction, division
protein production, cell volume, and accumulated X protein abundance for E. coli experiencing pulses of nutrients with delay τpulse starting from stationary
phase. b Cell volume and accumulated division protein abundance dynamics for a feedrate of 40 h−1. c Using the simulation setup shown in a, the time
from pulsing onset until the first division event, Tlag (example trajectory shown in b), was measured as a function of pulse frequency (feedrate) for several
initial volumes, degradation rates, and division protein production rates. For increased degradation, μX= 3 h−1. For increased kP, γα= 5.175μm−3 and
γβ= 1.265μm−3. d Example single-cell trajectories of cells with randomized initial volumes exiting stationary phase via a single nutrient shift (dotted line).
e Negative correlation (correlation coefficient −0.90) between initial cell volume (correlated to birth volume) and added volume for 400 simulations
shows that E. coli exhibit sizer-like behavior when exiting stationary phase, in agreement with experimental observations47. See Table 1 for a list of model
parameters. f In response to nutrient influx, cells temporarily decrease kP to produce ribosomes. When a sufficient number of pulses have occurred such
that ϕR abundance is no longer growth rate limiting, resources are reallocated to division.
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As cells in stationary phase maintain a constant concentration of
division proteins regardless of size, our model predicts that Tlag is
dependent on initial volume in stationary phase, V0, such that
larger cells divide faster (Fig. 5c). Importantly, this dependence of
division timing on initial cell size is seen experimentally47,48, and is
not captured by the model proposed by Sekar et al.25. To more
specifically investigate size control mechanisms when exiting
stationary phase, we simulated single-cell volume trajectories of
bacteria exiting stationary phase via a single nutrient upshift
(Fig. 5d; see “Methods”). Importantly, we found that the adder
model for cell size control did not hold under this growth regime,
but rather cells exhibited sizer-like behavior, which is characterized
by the added volume being negatively correlated with birth volume
(Fig. 5e). This behavior has been observed experimentally47, and
again can be understood from our threshold accumulation model,
now considering the limit when μX≫ κ. In such environments,
bacteria divide once reaching a set size given by Vd= μX/kP.

Discussion
We have developed a coarse-grained proteome sector model
which quantitatively captures experimentally observed growth
rate and size control dynamics in response to nutrient upshift in
both exponential (Fig. 3) and stationary phases (Fig. 5). Although
the model has been derived based on data from E. coli, other
bacterial species exhibit similar behavior49. The theoretical fra-
mework of dynamic flux balance and proteome allocation theory
generalizes to other microorganisms, and the threshold accu-
mulation rules for division are applicable for all bacterial species
which exhibit adder or sizer-like size control. Using proteomics
data in conjunction with cell size data for a particular organism,
the various proteomic and kinetic parameters can be elucidated in
our model, allowing for quantitative prediction of cell size and
growth control in time-varying environments.

Our model highlights an important resource allocation trade-
off that cells must make between optimizing for biomass accu-
mulation or division in dynamic nutrient environments. In
response to nutrient upshift, we predict that bacteria prioritize
ribosome production in both exponential and stationary phase,

resulting in faster biomass accumulation but delayed division. At
the single cell level, this results in a transient overshoot in both
added volume and interdivision time. Interestingly, when simu-
lating population-level growth dynamics (see Methods), we find
that upshift causes a temporary reduction in population growth
rate (Fig. 6). This raises the question, in response to increased
nutrient availability, why do bacteria temporarily slow prolifera-
tion? One possible explanation is that by delaying division, cel-
lular resources are freed up which can be reallocated to quickly
alleviate the growth bottleneck caused by a lack of ribosomes. As
a result, bacteria are optimized for biomass accumulation instead
of population growth, which allows for individual cells to adapt
quickly to new environments. A second explanation is that
because bacteria can quickly inactivate ribosomes23 and recycle
the amino acids through degradation, cells prioritize ribosome
production as a method of energy storage when the environment
is transiently nutrient-rich. Thus by producing ribosomes in
response to nutrient upshift, bacteria simultaneously relieve the
growth bottleneck caused by lack of ribosomes, while also quickly
converting metabolites into proteins which can be reallocated in
the future after nutrients have been exhausted. This strategy could
allow for bacterial survival in harsher fluctuating environments,
when nutrients are few and far between.

With our model able to capture nutrient upshift dynamics, we
simulated bacterial growth rate and size control dynamics in
response to pulsatile nutrient exposure to predict how resources
are allocated in more complex time-varying environments. In
such conditions, growth rate recovery time following downshift
increased with pulse length (Fig. 4), showing that bacteria exhibit
a transient memory of the previous metabolic state. This phe-
notypic memory arises from the slow dynamics of proteome
reallocation, and although it incurs a short term fitness cost, this
passive mechanism can confer a fitness advantage in fluctuating
conditions, as it allows cells to quickly return to optimal growth
in the previous condition if the nutrient perturbation is short-
lived.

Our model also yielded surprising predictions for the size
control dynamics following nutrient downshift (Fig. 4c). In par-
ticular, our model predicts that bacteria transiently prioritize
production of division proteins over production of ribosomes,
resulting in a temporary reduction in interdivision time and
added volume. This result is striking, because it predicts that in
response to the onset of harsher environmental conditions, bac-
teria transiently upregulate the production of costly division
machinery instead of prioritizing energy storage. In addition, this
prioritization of division results in a temporary overshoot in
population growth rate (Fig. 6), meaning that the number of cells
that must compete with each other for nutrients sharply increases
in the new, less-favorable, environment.

Several potential explanations for this behavior warrant
exploration in future experimental and theoretical studies. First,
by transiently increasing division frequency while reducing bio-
mass accumulation, bacteria rapidly decrease cell size and thus
increase surface-to-volume ratio3,50. As a higher surface-to-
volume ratio results in greater nutrient influx51,52, decreasing cell
size may confer an important fitness advantage despite the
metabolic cost associated with upregulating division protein
production. In addition, smaller cells are better able to preserve
membrane integrity and survive starvation compared to larger
cells53,54, suggesting that the reduction in cell size in response to
nutrient downshift is part of a cell level response to prepare for
potential starvation. Lastly, bacteria may employ this increased
rate of division as a population bet-hedging strategy which
facilitates adaptation to fluctuating environments. Previous work
has shown that partitioning of cellular contents at division is a
major determinant of phenotypic heterogeneity55. Thus, by

Fig. 6 Cell proliferation dynamics during nutrient upshift. Comparison of
single-cell growth rate (black) and population growth rate (green)
dynamics in response to a nutrient-rich pulse, where the population growth
rate is given by the relative rate of increase in the total number of cells over
time. Dotted lines correspond to the start and end of the nutrient-rich
period. Population growth simulations were initialized with 90 cells with
randomized volumes. Following a division event, both resulting daughter
cells were simulated. See “Methods” for simulation details and Table 1 for a
list of model parameters.
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transiently increasing the number of division events, a bacterial
population will temporarily exhibit a broader range of pheno-
types. Phenotypic heterogeneity increases in adverse environ-
ments in both prokaryotic and eukaryotic populations, and
previous work has shown that heterogeneity promotes adaptation
to time-varying stress by facilitating development of resistance-
conferring mutations, alleviating the fitness cost of constitutive
expression of unnecessary proteins, and/or allowing for explora-
tion of new phenotypes better suited for the harsher
environment56–60. These results suggest that bacterial cells utilize
division control to increase population heterogeneity in response
to harsh environmental perturbations, thus facilitating adaptation
to new environments and conferring increased population fitness
in time-varying environments.

Methods
Model derivation. To model cellular growth rate and division control, we devel-
oped a four-component coarse-grained proteome sector model consisting of
housekeeping proteins (Q), ribosomal proteins (R), metabolic proteins (P), and
division proteins (X). Bacterial cells grow exponentially in size during the cell cycle.
Assuming constant protein density, the growth rate κ of a single cell can be defined
in terms of cell volume, V, or equivalently in terms of total protein mass, M,
yielding

κ ¼ 1
M

dM
dt

¼ 1
V
dV
dt

; ð8Þ

The rate of change of protein mass is proportional to the mass of actively trans-
lating ribosomes. In addition, if we assume that protein turnover is governed by a
constant, nonspecific degradation rate μns, then the rate rate of change of protein
mass is given by

dM
dt

¼ κt MR �Min
R

� �� μnsM; ð9Þ

where κt is the translational efficiency of the cell, MR is the total mass of ribosomes,
and Min

R is the mass of inactive ribosomes. Using Eqs. (8) and (9), the growth rate
can then be defined as κ ¼ κtðϕR � ϕmin

R Þ � μns where ϕR=MR/M is the ribosome
mass fraction and ϕmin

R ¼ Min
R =M is the mass fraction of inactive ribosomes, thus

recovering Eq. (1). To obtain the dynamics of ϕR, we note that dMR
dt ¼ κt f RðMR�

Min
R Þ � μnsMR , where fR is the fraction of total cellular protein synthesis flux

devoted to ribosomes. It follows that the time dynamics of ϕR are then

dϕR
dt ¼ κtðaÞ ϕR � ϕmin

R

� �ðf RðaÞ � ϕRÞ: ð10Þ
Both κt and fR depend on the amino acid concentration in the cell, which in turn
depends on the nutrient availability. We note that the inclusion of a nonspecific
degradation term does not impact the dynamics of ϕR, as all cellular proteins are
assumed to be degraded at the same rate. To connect cellular growth rate to amino
acid mass fraction (a) and nutrient availability we use the following condition for
flux balance16: dadt ¼ κnðaÞϕP � κ, where κn is the nutritional efficiency of the cell
and ϕP is the mass fraction of P-sector protein that are responsible for transporting
nutrients into the cell. Using the constraint ϕR þ ϕP þ ϕX ¼ 1� ϕQ ¼ ϕmax, along
with our definition of growth rate from Eq. (1), the amino acid mass fraction can be
rewritten as

da
dt

¼ κnðaÞðϕmax � ϕR � ϕX Þ � κtðaÞ ϕR � ϕmin
R

� �þ μns; ð11Þ

thus recovering Eq. (4). We note that amino acid supply is now given by a
combination of nutrient import and amino acid recycling due to protein turn-
over. To make explicit the dependency of the efficiencies, κn and κt, on a, we
define two regulatory functions, f(a) and g(a), as given by ref. 28. Specifically,
we assume κn ¼ κ0nðcÞf ðaÞ and κt ¼ κ0t gðaÞ, where κ0t is a constant, and κ0n is a
function of the extracellular nutrient concentration c. The regulatory functions
are then:

f ðaÞ ¼ 1

1þ ða=anÞ2
; ð12Þ

gðaÞ ¼ ða=atÞ2
1þ ða=atÞ2

; ð13Þ

where translation becomes significantly attenuated for amino acid concentra-
tions below at, and the amino acid supply flux becomes significantly attenuated
by feedback inhibition for a above an.

Similar to the dynamics of ϕR, the dynamics of ϕX can be obtained starting from
the dynamics of the mass of protein X, yielding

dϕX
dt

¼ κt ϕR � ϕmin
R

� �ðf X � ϕX Þ � ðμX � μnsÞϕX ; ð14Þ

where fX is the fraction of total synthesis capacity of a cell devoted to making cell
division proteins, and μX is the degradation rate of protein X. This degradation rate
is specific to protein X and can be different than the nonspecific degradation rate
μns. When μX ≈ μns, the last term on the right hand side of Eq. (14) is negligible and
the equation takes the same form as Eq. (10), allowing the dynamics of each sector
to be written in vector form, as presented in the main text in Eq. (2). To derive the
time evolution of the accumulated amount of protein X per cell, Eq. (14) can be
rewritten in terms of the concentration of X, cX= ϕXρc/mX, where ρc is the protein
mass density of the cell and mX is the mass of molecule X. We then get

dcX
dt

¼ f Xρc
mX

ðκþ μnsÞ � cX ðκþ μX Þ: ð15Þ

If the number of accumulated division proteins per cell is X= cXV− X*, where X*

is the amount of division proteins at birth, then using Eqs. (8) and (15) we can
obtain the time dynamics of X, where

dX
dt

¼ f Xρc
mX

ðκþ μnsÞV � μXX: ð16Þ

In this model, division is triggered at t= τ after the cell has accumulated a fixed
number of X proteins such that X(τ)= X0. For simplicity, we normalize Eq. (16) by
X0 to yield the time dynamics of the fraction of the accumulated number of
division proteins required to trigger cell division, such that

dX=X0

dt
¼ d~X

dt
¼ γf X ðκþ μnsÞV � μX ~X; ð17Þ

where γ= ρc/X0mX and here now cells divide when ~XðτÞ ¼ 1. This allows us to
identify the division protein synthesis rate per unit volume, kP, given by kP= γfX
(κ+ μns). As with the mass fractions, the allocation fractions are constrained such
that f R þ f P þ f X ¼ 1� f Q ¼ ϕmax, meaning that two regulatory functions must
be defined in order to simulate the dynamics of growth rate and cell size control.
To do so, we assume that allocation is dependent on the amino acid pool, and that
the division protein sector (X) is partially co-regulated with the metabolic protein
sector (P), such that fX(a) is given by a linear combination of two sub-sectors:
f αX ðaÞ, which denotes the portion which is co-regulated with the metabolic sector,
and β, which denotes the basal allocation fraction. If we define f �PðaÞ ¼ f PðaÞ þ
f αX ðaÞ as the proteome fraction which is co-regulated opposite of fR(a), then fX(a)
can be expressed as a function of fR(a), such that

f X ðaÞ ¼ f αX ðaÞ þ β ¼ αf �PðaÞ þ β ¼ α ϕmax
R � f RðaÞ

� �þ β; ð18Þ
where α is the fraction of f �P which contains the co-regulated portion of division
proteins and where ϕmax

R ¼ ϕmax � β. The fraction of total synthesis capacity
devoted to production of ribosomes, fR(a), is given by

f RðaÞ ¼
�f 0ðaÞgðaÞϕmax

R þ f ðaÞg 0ðaÞϕmin
R

�f 0ðaÞgðaÞ þ f ðaÞg 0ðaÞ ; ð19Þ

in which fR is chosen to maximize amino acid flux at steady state (Supplementary
Note 1 and Supplementary Fig. 7).

With fX now defined, the division protein synthesis rate can now be rewritten in
terms of fR, where

kP ¼ γ αðϕmax
R � f RðaÞÞ þ β

� �ðκþ μnsÞ: ð20Þ
At steady state kP can be rewritten solely as a function of growth rate, such that

kPðκÞ ¼ γ α Δϕ� κþ μns
κt

� �
þ β

� �
ðκþ μnsÞ; ð21Þ

where Δϕ ¼ ϕmax
R � ϕmin

R .

Simulating stochastic single-cell volume trajectories. In our modeling of
growth rate, amino acid, and proteome allocation dynamics, we simulated deter-
ministic trajectories by numerically solving the coupled ODEs defined by Eqs. (2)
and (4). These solutions predict the average single cell behavior. In order to
investigate size control mechanisms, we must also include the growth rate and
division noise observed in real biological systems. To this end, we also simulated
single cell volume trajectories using a continuous-time stochastic hybrid system. In
this setup, we introduce two sources of noise at the generational level. First, we
consider growth rate noise. Although there is wide cell-to-cell variability in growth
rate in the same nutrient environment, experimental data reveal that there is
essentially no correlation between the growth rate of a mother and it’s daughter
cells61. Thus at steady-state, growth rate noise can be implemented by representing
κ as an independent random variable drawn from a normal distribution at cell
birth62. We extend this framework into time-varying environments, and model
growth rate noise in single cells by drawing an offset value, δκ, at the start of each
new generation such that the growth rate for the ith cell is given by

κiðtÞ ¼ hκðtÞi þ δκi; ð22Þ
where 〈κ(t)〉 is the population average growth rate at time t. Our analysis of
single cell growth rate data5 shows that the distribution of growth rates remains
approximately Gaussian throughout nutrient upshift (Supplementary Fig. 8a), and
that the standard deviation of the distribution, σκ is a linear function of the growth
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rate, such that

σκ ¼ ahκi þ b; ð23Þ
where a and b are parameters obtained from fitting κ vs. σκ data through the shift
(Supplementary Fig. 8b, c). As a result, a single offset value, δκ, is drawn from a
normal distribution with mean 0 and standard deviation σκ at the start of each cell
cycle, and remains constant until cell division. Using this cell-specific growth rate,
each volume trajectory can be computed using

dVi

dt
¼ κiðtÞVi; ð24Þ

where this equation is coupled to Eq. (6) to determine cell division events. Cells do
not divide exactly symmetrically, but instead exhibit partitioning error at
division63. To implement this second source of noise into our simulation, the birth
volume of the daughter cell, V0, is given by the previous generation’s final volume,
Vd, multiplied by a random variable r, which is drawn from a normal distribution
with mean 0.5 and standard deviation 0.0463, such that

Viþ1
0 ¼ rVi

d ; ð25Þ
where i and i+ 1 denote the mother and daughter generations, respectively.

Bacteria cease biomass accumulation in stationary phase. As such, introducing
growth rate noise at the generational level when simulating exit from stationary
phase in the manner described above is not feasible. Instead, to probe cell division
control in our model, we introduced noise in ~X0, the threshold value required to
trigger cell division. Specifically, for each cell a unique value of ~X0 was drawn from
a normal distribution with mean 1 and standard deviation 0.05.

Stochastic population-level simulations. Population-level simulations were
carried out using the same procedure as the single cell stochastic volume
simulations, except for at each division event, both daughter cells were tracked,
leading to a growing number of cell trajectories over time. Symmetric division
noise was implemented similar to the single cell simulations, with one value of r
drawn at each division, yielding corresponding birth sizes for daughter cells 1
and 2 as

Viþ1
0;1 ¼ rVi

d ; ð26Þ

Viþ1
0;2 ¼ ð1� rÞVi

d : ð27Þ
Growth rate noise was implemented the same way as in the single cell simula-
tions, with an offset value drawn for each cell at birth.

Using the simulation method detailed above, we tracked the number of cells
over time, P(t). To calculate the population growth rate, we consider population
growth an exponential process and solve for the instantaneous growth rate, κpop.
We obtained the instantaneous growth rate by computing the discrete derivative of
the natural logarithm of the total number of cells between each time point,
specifically

κpop ¼
lnðPðt þ ΔtÞÞ � lnðPðtÞÞ

Δt ln 2
: ð28Þ

Obtaining parameter values from experimental data. Although proteome
allocation strategies are conserved across bacterial strains, the exact abundance of
each proteome sector is strain specific. Therefore, we expect parameter values to
vary across different strains. Experimental data used to validate our dynamic model
in Fig. 3 was from E. coli K-12 BW25113 with an inserted gfpmut2 gene controlled
by a constitutive promoter located at the terminus of replication5. Unfortunately,
this experiment did not test a wide range of nutrient conditions, so we had to use
other data to test our steady state predictions. As a result, in Fig. 2 we used data
from E. coli K-12 NCM3722 cells12,26, for which there is no data in dynamic
nutrient environments. Although the parameter values change slightly between
strains as expected, the general resource allocation strategies and size control
behavior is robust to parameter choice (Fig. 3 and Supplementary Fig. 9).

In our dynamic model, there are two fitting parameters, κ0t and μX, which are
obtained by fitting our model to the dynamic growth rate and size control data,

respectively. All other parameters, namely γα, γβ, κ0;lown , and κ0;highn , can be inferred
from experimental observables using our model equations evaluated at steady state.

Specifically, for a given value of κ0t , there is a unique value of κ
0;lowðhighÞ
n which yields

the observed steady state growth rate, κlow(high), for a given condition. This value
can be obtained by solving Eqs. (1), (11), and (19). In the same way, for a given
value of μX, there exists a unique combination of γα and γβ which yields the
observed steady state cell size at birth in both nutrient conditions. These values are
obtained by solving the system of equations given by Supplementary Eq. (S.12)
evaluated at both the nutrient rich and poor conditions.

Data analysis. Single-cell size vs. growth rate data was acquired from the sup-
plementary data of Taheri-Araghi et al.12 and Si et al.26. The growth rate, added
volume, volume ratio, and interdivision time vs. time data was obtained from
the supplementary data of Panlilio et al.5. Calculation of population-averaged or

time-averaged growth rate and size control parameters from single-cell data was
performed using custom codes written in python (version 3.8.3) or MATLAB
(version 2021a). Numerical simulations were performed using custom codes
written in python (version 3.8.3).

Statistics and reproducibility. Simulation results were compared to either
population-averaged or time-averaged experimental data, when appropriate. For
stochastic model implementations, a sufficient number (>400) of trajectories were
simulated such that the average behavior was invariant to additional stochastic
realizations.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are available at https://github.com/BanerjeeLab/DynamicCellSize.

Code availability
Custom computer codes that were used in this paper are available at https://github.com/
BanerjeeLab/DynamicCellSize.
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