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Light-sheets and smart microscopy, an exciting
future is dawning
Stephan Daetwyler 1,2 & Reto Paul Fiolka 1,2✉

Light-sheet fluorescence microscopy has transformed our ability to visualize and quantita-

tively measure biological processes rapidly and over long time periods. In this review, we

discuss current and future developments in light-sheet fluorescence microscopy that we

expect to further expand its capabilities. This includes smart and adaptive imaging schemes

to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and

sample health. In smart microscopy, a microscope will autonomously decide where, when,

what and how to image. We further assess how image restoration techniques provide ave-

nues to overcome these tradeoffs and how “open top” light-sheet microscopes may enable

multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy

will fulfill an important role in biomedical and clinical imaging in the future.

Over the past decades, microscopes have provided us with invaluable insights on how
biological processes are organized in space and time. A core innovation has been the
selective labeling of proteins and lipids with fluorescent markers1,2, enabling fluorescent

microscopy techniques such as light-sheet fluorescence microscopy (or light-sheet microscopy
for short)3. Light-sheet microscopy enables us to visualize, quantify and dynamically track
structural components in vivo4–6 and in vitro7–9. The fundamentals of light-sheet microscopy
are covered in several reviews10–19, but in short, it relies on an orthogonal separation of the
illumination and detection path, enabling selective illumination of a whole imaging plane and
simultaneous widefield detection (Fig. 1a).

In this review, we will look ahead and discuss potential future avenues of fluorescence imaging
with light-sheets. We will describe how volumetric and temporal imaging barriers limit the
application of optical microscopy to capture large specimens with high spatiotemporal resolution
and explore strategies to overcome them. This includes progress in technology, novel smart and
adaptive imaging schemes and image restoration techniques. Moreover, we will review how such
schemes will go hand-in-hand with flexible, open top light-sheet microscopes to enable multi-
modality imaging with high throughput.

The core of light-sheet fluorescence microscopy
Light-sheet microscopy stands out for its efficient and gentle 3D imaging capacity. It is char-
acterized by a light intensity distribution in the shape of a sheet, which illuminates the focal
plane of a microscope detection system (Fig. 1a)3,16. This provides many advantages. Most
importantly, only (or at least predominantly) the focal plane of the detection system is illumi-
nated, which results in optical sectioning and minimal out-of-focus excitation15,16,19. This leads
to crisp images devoid of blur, and massively reduced sample bleaching compared to conven-
tional, epi-fluorescent microscopy techniques, such as widefield or confocal10,20.

The excitation of the focal plane is traditionally achieved with one or two illumination
objectives to launch the light-sheet(s)3,21. Thereby, coherent laser light is shaped into Gaussian3,
top hat21, single or multiple Bessel22,23, Airy24 or other25,26 beams to create an intensity
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distribution in the sample that approximates a sheet over a finite
distance. Volumetric imaging is achieved by either scanning the
sample3, increasing the depth of focus27, or moving the sheet and
the detection28,29.

Detection of the excited fluorophores is achieved by capturing
the fluorescence signal of the illuminated plane with widefield
detection on a scientific camera16. To understand the benefit of
light-sheet microscopy, the concept of spatial duty cycle is
important. It describes how long a fluorophore is on during the
duration of an exposure. As the entire plane is illuminated, the
spatial duty cycle is much higher with light-sheet microscopy
compared to conventional point-scanning confocal microscopes,
where only a fraction of the volume is scanned at once. Conse-
quently, lower laser powers can be applied to produce a similar
signal. This is important as many photo-bleaching and photo-
toxic effects are highly nonlinear to the excitation intensity10,20.

However, the widefield detection limits the optical penetration
depth of light-sheet microscopes, as scattering occludes imaging
deeper in tissues. Nevertheless, for small organoids and model
organisms, light-sheet microscopy can be applied, especially when
combined with image fusion30, which combines information
from different orientations of the sample. Thereby, areas that
would otherwise be occluded by scattering can be visited from
their most favorable viewing angle15,31,32. Multiple views can be
acquired by sample rotation, or in recent implementations, up to
four objectives provide optical paths for alternating between light-
sheet illumination and detection33–35.

These abilities have allowed light-sheet microscopes to gently
acquire 3D data over hundreds to thousands of stacks per sample.
The resulting data revealed and enabled quantification of
dynamic processes such as subcellular signaling and
morphology23,25, embryogenesis over durations of days4,5,36

Fig. 1 Light-sheet microscopy provides fast imaging with minimized photo-toxicity and photo-bleaching, enabling diverse applications from imaging
developmental processes to imaging of large, cleared tissues. a Traditional light-sheet microscopy such as three-objective Selective Plane Illumination
Microscopy (SPIM) relies on an orthogonal arrangement of the illumination (blue; illumination objectives IL1 and IL2) and detection (green; detection
objective DO). This ensures that the axial resolution of imaging is mainly governed by the thickness of the light-sheet (blue) enabling imaging across large
samples with widefield detection (green) and good optical sectioning. To acquire a 3D volume, the sample is scanned along the detection axis either by
moving the sample itself or by scanning the light sheet together with the objective in the detection path. b–d Prime examples of imaging with light-sheets
include continuous, long-term imaging of developmental processes in mouse and zebrafish embryos, and imaging of cleared tissue with subcellular
resolution. b Katie McDole et al.4 characterized the cellular movements involved in mouse development from early streak (E6.5) to somite stages (E8.5) by
imaging a CAGTAG1 expressing mouse embryo with a histone marker (H2B-eGFP) for over 44 h. Scale bar: 100 μm. c Selected projections from multi-view
imaging5 (three angles) of the growing embryonic zebrafish vasculature labeled with the fluorescent vascular marker (Tg(kdrl:EGFP), cyan) and the red
blood cell marker (Tg(GATA1a:dsRed), magenta), imaged from 20 h post-fertilization (hpf) to 86 hpf. Scale bar: 500 μm d Adam Glaser et al.37 performed
large-scale imaging of an expanded slice of kidney of 3.2 cm × 2.1 cm size and 1 mm thickness. High-resolution regions of interest revealed the morphology
of glomeruli (Scale bar: 40 μm), vessels (Scale bar: 80 μm) and tubules (Scale bar: 50 μm). The increased resolution due to expansion was further
demonstrated with a multi-channel zoom-in of DAPI-counterstained tissue (Scale bars: 100 μm [top] and 20 μm [bottom]). The scale bars thereby indicate
the dimensions of the native unexpanded tissue. Panel b was adapted with permission from Katie McDole et al. (2018)4. Panel c adapted from Daetwyler
et al. (2019)5. Panel d adapted from Glaser et al. (2019)37.
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(Fig. 1b, c) and provided fast acquisition of large cleared tissues
with subcellular resolution37–40 (Fig. 1d).

Limitations of current imaging systems
Despite the fast and gentle volumetric imaging provided by light-
sheet and other fluorescence microscopes16, they are ultimately
constrained by volumetric and temporal imaging barriers (Fig. 2).
While the former refers to our inability to image large specimens
with high resolution, the latter refers to our inability to image
very fast processes continuously over extended time periods.

The volumetric imaging barrier (Fig. 2a) is given by the
maximum volumetric reach of a given imaging technology. For
example, large specimens, such as a whole mouse, cannot cur-
rently be imaged with confocal or super-resolution imaging in
their entirety. This is in part governed by physical limitations,
such as optical penetration due to light-scattering, and optical
engineering, e.g. a trade-off between Numerical Aperture and
working distance as well as field of view41.

Additionally, proper Nyquist sampling can become rate limiting
so that imaging a large specimen at high resolution is impractical.
To illustrate this, a common voxel dwell time for a conventional
laser scanning confocal microscope with 250 nm resolution is
~1 μs42, and thus it would take ~4.2 s to capture a 2048 × 2048 × 1
confocal image. Doubling the resolution with an Airyscan micro-
scope to 120 nm43, would require for the same field of view ~16.8 s.

Imaging a Drosophila egg44 of size 9 × 10−3 mm3 (0.18mm width,
0.51 mm length) using a confocal microscope with Nyquist sam-
pling would thus take 76min, or over 10 h with an Airyscan con-
focal. This prevents imaging at rates enabling studies of cellular
dynamics, such as endocytosis processes that occur within a
minute45. While light-sheet microscopy is much faster due to its
widefield acquisition and high duty cycle, high-resolution versions
of it such as Lattice light-sheet microscopy23,46 or Axially Swept
Light Sheet Microscopy (ASLM)47 can still struggle to acquire large
volume sufficiently fast.

Similarly, there is a temporal imaging barrier (Fig. 2b). We
currently cannot image rapid processes over long time periods
due to the amount of data generated and the impact on sample
health and bleaching of the fluorophores. For example, taking an
image of 2048 × 2048 × 1 voxels every 1 ms over the period of one
day amounts to a dataset of almost 700 TB. While data issues
might be resolved in future with new hardware and larger
storages, continuous imaging induces photo-toxic effects, which
accumulate over imaging cycles20,48.

Consequently, traditional acquisitions governed by Nyquist
sampling are limited by trade-offs between sample health, tem-
poral resolution, spatial resolution, and field of view or volumetric
coverage, respectively (Fig. 3a). To account for these trade-offs, a
microscopist has to choose one imaging modality to best fit the
biological question at hand and perform an experiment with the
chosen settings to the end (Fig. 3b).

Fig. 2 Expansion microscopy, and novel adaptive, smart imaging methods combined with multi-resolution imaging will expand the available imaging
capabilities. a Current imaging techniques such as light-sheet, confocal and super-resolution microscopy are limited in the volume they can image due to
technical and practical limitations (blue gradient: from low to high spatial resolution; white dashed circles indicate the predominant application regimes of
the three microscopy techniques). To overcome this volumetric imaging barrier, expansion microscopy enables lower resolution imaging techniques to
acquire with an effectively higher resolution. Additionally, we expect novel adaptive, smart imaging techniques and multi-resolution imaging to overcome
the volumetric imaging barrier by selectively imaging parts of a large volume with high-resolution. Moreover, image reconstruction algorithms, such as
compressed sensing and deep learning approaches, will provide avenues to obtain high-resolution images from partially sampled, large volumes
b Additionally, we expect that adaptive and smart imaging schemes will overcome the temporal imaging barrier to image fast processes selectively over
long time periods.
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Methods to overcome scattering and absorption processes
To push the volumetric imaging barrier, multi-photon
excitation49–51, wave-front shaping52, tissue clearing53 and
expansion microscopy54,55 have been developed to overcome the
physical limitations for imaging due to light-scattering and
absorption processes. Physical scattering and absorption arises
due to tissue-inherent absorbing chromophores such as blood,
melanin, water or pigments, and small-and large-scale scatterers
in the structure of cells and tissues56,57. This results in reduced
penetration of optical microscopy into tissue, limiting imaging to
few tens to hundreds of micrometers from the tissue surface58

(i.e. one optical mean free path).
Multi-photon excitation49–51 has increased the optical pene-

tration depth to more than a mm in some tissues49,59. Impor-
tantly though, light-sheet microscopy does not benefit as strongly
from multiphoton excitation than raster scanning techniques do.
This is because a light-sheet microscope still needs to form a
widefield image, which is severely limited by light-scattering in
the visible wavelength. In contrast, multi-photon raster scanning
microscopes do not need to form a sharp image with the
returning fluorescence photons and as such can go much deeper.
Thus, intravital light-sheet microscopy is currently limited to a
depth of less than 100 microns in most tissues.

As an alternative, a judicious choice of a reasonably translucent
model organism, such as zebrafish lines with no pigmentation60,
has enabled light-sheet imaging in situ and in vivo. Furthermore,
tuning the refractive index of the immersion medium better to the
sample61,62 reduces scattering and thus improves penetration
depth. Also, a shift to fluorescent probes in the near infrared II

window (900–1700 nm) has shown promise to increase the reach
of light-sheet microscopes in tissues63. Longer wavelengths have
intrinsically a longer scattering mean free path, and can overlap
with the absorption window of biological tissues64. Development
of probes for this optical window, however, has remained chal-
lenging as absorbing and emitting at longer wavelengths neces-
sitates increased electronic conjugation, which is often
accompanied with reduced molecular rigidity, increased sources
for non-radiative decay, and low quantum yields65,66. Quantum
dots67 and carbon nanotubes68 have been used as alternative to
fluorescent proteins/dye molecules, but complicate labeling spe-
cificity and biocompatibility. Therefore, the future of near infra-
red light-sheet imaging strongly depends on future breakthroughs
in probe development.

Additionally, progress in wavefront correction schemes, in
particular multi-conjugate adaptive optics (MCAO)69,70, may
increase the optical penetration depth further. MCAO addresses
the issue that conventional adaptive optics can only correct a
small area, the so called isoplanatic patch71,72. In tissues, this
patch can be smaller than the field of view of the camera, negating
the benefits of parallelized detection of light-sheet microscopy. By
correcting different regions of tissue separately, MCAO has the
potential to increase the isoplanatic patch size69,70 and may
enable effective light-sheet imaging in tissues. Conventional
adaptive optics for light-sheet microscopy has been
demonstrated73,74, but the setup featured a high complexity. To
rapidly correct spatially varying aberrations, dedicated wavefront
sensors and deformable mirrors were employed both in the
excitation and emission path of the light-sheet microscope. As

Fig. 3 In the future, we expect novel smart and adaptive imaging schemes to overcome the traditional trade-offs and limitations of imaging.
a Traditionally, an acquisition is governed by a limited photon budget of the sample. Therefore, improved spatial and temporal resolution is typically
antagonistic to sample health and the field of view that is imaged. Optimizing one corner of the pyramid thus leads to trade-offs towards other corners.
b Consequently, in a traditional acquisition one microscope and/or one microscope settings are chosen to best reflect the imaging needs defined by the
biological questions asked: best sample health, e.g. through non-fluorescent acquisitions (bright-field imaging), highest spatial resolution, e.g. for studying
molecular signaling (blue building block), largest field of view to e.g. capture a whole organism or organ such as the whole brain (orange building block), or
highest temporal resolution to capture fast processes such as neuronal signaling or organismal movements (yellow building block). c In the future, we
anticipate that new smart and adaptive imaging schemes will overcome the current limitation by providing modular imaging within one experiment.
Thereby, a microscope will be able to use event-based detections to switch automatically between imaging modes, which optimize for example, large field
of views (orange building block), spatial (blue building block) and temporal (yellow building blocks) resolution and sample health (green building blocks).
d In a recent implementation of such a novel imaging scheme, Mahecic et al.96 utilized neural networks for event-based detections. Here, the architecture
of the utilized U-Net network is displayed that takes an acquired input image and outputs an event-based probability map for guiding the microscope. The
U-Net consists of encoder (downsampling layers, blue), decoder (upsampling, green) sections and connections between layers (beige).
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such, it may seem at first far-fetched to add even more compo-
nents for MCAO, making such a system overly complex. How-
ever, we envision that through machine learning, aberrations can
be sensed without dedicated wavefront sensors75,76 significantly
easing the equipment constraints. Further, instead of deformable
mirrors, transmissive deformable waveplates have shown promise
for wavefront correction77. In principle, such devices can be
stacked in an image space of the microscope to perform MCAO,
or a dedicated, integrated 3D wavefront shaping device might be
devised.

For fixed tissues, sample preparation through tissue clearing53

can largely overcome the depth limitations associated with light-
scattering. Particularly interesting in this context is expansion
microscopy54,55, which can physically magnify a sample tenfold
or larger78,79 (Fig. 1d). This effectively increases the resolving
power of any microscope by the expansion factor, and thus
enables light-sheet microscopes to reach resolution levels that
where hitherto limited to super-resolution microscopy (Fig. 2a).
Therefore, expansion microscopy is a way to overcome the
volumetric imaging barrier by modifying the sample, with the
caveat that the expansion process might not always preserve the
ultrastructure and careful validation is needed80. The challenge is
now to image the thousandfold larger volumes effectively, which
will even test the most efficient volumetric light-sheet micro-
scopes. As expansion microscopy progresses, we see further need
to engineer novel light-sheet microscopes with ever larger field of
view, larger cameras and working distances. Also, techniques that
rapidly tile81,82 or scan39 the light-sheet to cover large field of
views might become more necessary in this quest.

Smart, adaptive imaging schemes
While it is possible to push the imaging barriers with novel
developments, as light-sheet microscopy3 and expansion
microscopy54,55 have done, a complementary approach is to
modularly combine the strengths of different techniques into one
imaging workflow (Fig. 3c). Thereby, the microscope system will
determine by itself when and how to apply which module, such as
spatiotemporal sampling, field of view and sample irradiation.
Thus, we envision that such smart and adaptive imaging schemes
will overcome traditional Nyquist sampling and expand the
capabilities of light microscopy, including light-sheet microscopy.

First steps towards such universal smart and adaptive schemes
have already been achieved. An emerging requirement for any
smart and adaptive imaging scheme is a feedback loop based on
real-time, on-the-fly processing of the acquired data to monitor
for changes.

Real-time analysis of microscope images has been established
to improve imaging parameters within one imaging modality. In
a landmark paper, McDole et al.4 applied adaptive light-sheet
microscopy to capture mouse embryo development (Fig. 1b) by
real-time specimen tracking and automatic adjustment of the
overall imaging volume and other microscope parameters. The
imaging scheme thereby compensates for drift, growth and
changing optical properties, improving over the previously pub-
lished automated microscopy routine AutoPilot83 that required
near-constant size and shape. Important parameters for light-
sheet based techniques are optimization of the imaging volume
and spatial overlap between the light-sheet and detection focal
planes including their relative offsets and angles4,83]. In our view,
the main difference to a traditional microscope is the decoupling
of illumination and detection, and hence this relative alignment is
critical for best imaging performance. Moreover, imaging
schemes have been devised to automatically find the best angles in
SPIM acquisitions31 or tailor illumination dosage in super-
resolution microscopy84,85 and multi-photon microscopy86–88.

Additionally, automatic adjustment of the imaging volume to fit
the sample morphology showed drastic reduction in the duration
of imaging and overall light dose, and thus improved sample
health89–91.

To change between imaging modalities (Fig. 3c), mechanisms
to detect events of interest are required. Event-detection thereby
relies on the early identification of changes in biological structures
or behavior such as an upcoming cell division or cell signaling, to
name a few examples. In an early implementation of event-driven
microscopy, Almada et al.92 performed unsupervised, high-con-
tent, event-driven sample treatment and live-to-fixed imaging.
Thereby, they relied on mitotic cell rounding as a biological cue,
determined by on-the-fly cell segmentation with Otsu thresh-
olding. Combining widefield imaging for event detection with
STED super-resolution imaging, Alvelid et al.93 designed an
automated multiscale method to selectively image protein
recruitment, vesicle trafficking and biosensor activity with high-
resolution. Applying GPU accelerated peak detection, they rea-
lized data processing on a millisecond time scale. Additionally,
GPU-based deep learning networks such as the U-Net
architecture94 (Fig. 3d) promise great potential for event-
detection due to their inherently fast, parallel processing of
large images once trained and the active development of specia-
lized hardware, such as Tensor Processing Units (TPU)95.
Mahecic et al.96 applied such a network for event detection of
upcoming mitochondrial and bacterial divisions, enabling selec-
tive rapid imaging of these processes at rates matching their
temporal dynamics.

While live imaging is currently the main driver of such smart
acquisition schemes, we also envision them to become important
in the exploration of cleared organs, and even entire animals.
While time is not a hard barrier, after all the samples are no
longer alive, it is still a factor. This is especially true for repeated
experiments and particularly in clinical settings where mm-size
biopsies are routine and cellular resolution needs to be achieved
for accurate cell type identification for prognosis. The amount of
data generated by imaging large, cleared tissues can also not be
understated, especially in the context of expansion microscopy.
Smart imaging schemes will therefore be crucial to explore
cleared tissues and autonomously switch to higher resolution
imaging only in areas of interest.

At the heart of smart and adaptive microscopes routines is the
microscope control software that enables adaptive control
schemes and event detections. In the available implementations,
the importance of open-source control software has become
evident. Open-source software allows for controlling and mod-
ifying every aspect of microscope acquisition and integration with
available fast image analysis software. These efforts are spear-
headed by open-source software such Micro-Manager97, Pycro-
Manager98, AutoScanJ99, or other, Python-based control
software100,101. As open-source software is often developed and
maintained by few contributors, it will remain a challenge to
maintain and adapt scripts to new hardware and incorporate new
on-the-fly processing algorithms. Therefore, modularity of the
software is essential, and containerization of image processing
workflows could contribute to maintain compatibility, allowing
for several software environments on one computer102,103. For
commercial microscope providers, we believe it will be para-
mount to provide interfaces to these open-source tools. One way
to achieve this could be through enabling network message
triggered events in the acquisition protocols99.

While the fundamentals for smart and adaptive microscopes
have been laid, the era of smart microscopes has just dawned.
Recognizing the advancement that deep learning networks have
achieved in other fields such as sequence-to-structure prediction
with AlphaFold104 and large-scale generative language models
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with GPT105, we envision microscope experiments where a user
could input keywords such as “capture all endocytosis events”
and the microscope would then systematically image these events
in the specimen.

This would require training deep learning networks with uni-
versal grounding in fundamental biology concepts and to
associate biological terms with their visual microscopy appear-
ances. The growing availability of public image repositories, e.g.,
the Image Data Resource106, and NIH’s recent guideline of
making all image data associated with a publication available
might be a first step towards this direction to train such networks.
Challenges remain, for example, the availability of massive
amounts of microscope data with insufficient annotation might
render them less impactful to train the anticipated deep learning
networks for microscopy. Crucially, unlike natural language,
images are not bound to a standard visual ‘dictionary’ or ‘voca-
bulary’ but demonstrate significant visual heterogeneity even for
the same biology. It remains an open question how to ensure
generalizability and scalability of any trained networks beyond a
single biological process and lab. Moreover, training of such a
universal microscopy network will likely incur significant costs
that are currently beyond the reach of microscope institutions,
let alone individual labs. To overcome some of these limitations,
self-supervising deep learning networks have shown promise in
identifying similar morphologic features within large repositories
of whole-slide histology images, independent of repository image
size and with almost no annotations107. The development of
techniques to learn from only weak or limited supervision108 or
deploy expert-in-the-loop active learning109 to annotate and
refine the ‘hard’ cases may also present a promising cost-efficient
avenue to scale learning.

In a similar avenue, ‘unsupervised’ probabilistic models might
learn the distribution of available images to enable the searching
of rare events to uncover previously unknown biology. An
example of such a rare find by human annotators has been the
discovery of structures in zebrafish brain vasculature termed as
Kugeln110 after many years of research and imaging of zebrafish
brain vasculature. In future, a smart microscope might present
such discoveries themselves.

Another current limitation for on-the-fly processing is the time
required for data processing as a light-sheet microscope can easily
generate gigabytes of data within seconds. However, we expect
considerable progress towards faster processing pipelines in the
foreseeable future. Besides progress in better algorithms, this
acceleration will come in part by progress in computing hard-
ware. Current computer architectures still predominantly rely on
discrete, split CPU and GPU memory, which requires slow
transfer of the data between them. In future, we expect that
microscope acquisition will rely on single physical memory
resource (e.g. Soc DRAM), shared by CPU and GPU, currently
e.g. available on NVIDIA Jetson111, which will eliminate copying
of data back and forth between CPU and GPU and thus make the
best of both worlds available to fast processing – potentially even
on the camera chip. Thereby, microscopy may benefit from
development of tools that enable autonomous driving, where a
huge number of images are analyzed on-the-fly to identify street
hazards, other cars, or pedestrians.

Alternative ways of overcoming sampling trade-offs in
microscopy
In addition to changing the imaging parameters and modules
during acquisition with smart and adaptive imaging schemes,
acquisition schemes can be devised where a higher-resolution
image data set is reconstructed after acquisition from a low-
resolution scan or a scan which deliberately contains missing

regions. This has the potential to significantly reduce the overall
light dose on the sample, acquired data volume and acquisition
time. After image reconstruction, the resolution of the original
imaging system is recovered, or even increased, overcoming the
traditional imaging trade-offs (Fig. 3a). With progress in the
theory of image reconstruction with compressed sensing112–114

and machine learning115–118 approaches, we expect that such
algorithms will become more widespread in the future.

Compressed sensing112–114 is a mathematical framework that
describes how to capture and represent signals (images) at rates
significantly below the Nyquist rate. The theory of compressed
sensing is traditionally based on three concepts: sparsity, inco-
herence and random sampling119. If all three are given, successful
reconstruction of an under-sampled signal can be achieved. A
signal is sparse when it can be represented in a certain domain or
basis with only few non-zero parameters. Therefore, the sparsity
constraint is usually fulfilled for fluorescent microscopy as they
are often already sparse in their pixel representation (e.g., few
selectively labeled structures), or can be easily compressed, which
means that there is a basis, e.g., in wavelets, in which many
components are zero. However, incoherence (the values in the
measurement matrix are uniformly spread out) and uniform
random sampling are often lacking in microscopy119. After all,
current image sensors acquire data deterministically over a 2D
array, and not in a random fashion. Nevertheless, compressed
sensing application have been demonstrated successfully and new
principles for compressed sensing have been introduced to bridge
the gap between theory and practice: asymptotic incoherence,
asymptotic sparsity and multilevel sampling119.

Several successful applications of compressed sensing in imaging
and microscopy have been demonstrated120. These applications
include massively accelerated frame rate of cameras, reaching 100
billion frames per second121. Moreover, compressed sensing has
been implemented on a lattice light-sheet microscope and an epi-
fluorescence microscope to reduce light exposure and acquisition
time 5–10 fold122, and applied for high-throughput anatomical
imaging of whole mouse brains of ~400mm3 on a timescale of
~10min123. Importantly, compressed sensing reconstruction is
unsupervised and does not require prior training data. Moreover,
reconstruction accuracy improves as resolution increases124. This
makes compressed sensing an appealing technique for the future of
multi-resolution, smart light-sheet imaging schemes.

Similarly, deep learning networks can learn image restoration
from training data125–127. Thereby, deep learning can address
several limitations of compressed sensing126. Traditionally,
compressed sensing requires a handcrafted reconstruction pro-
cedure, which might be difficult to establish for sophisticated
image models. Moreover, such reconstruction procedures are
based on iterative inverse optimization algorithms which tend to
be slow and delicate to tune correctly, and thus reconstruction is
hard to achieve in real-time. In contrast, reconstruction with deep
learning requires only a single, fast forward propagation through
the network. Moreover, the (asymptotic) incoherence of data
required for compressed sensing is not strictly required for deep
learning networks, in contrast, they might benefit from coherent
data. Not surprisingly, applications of deep learning for image
reconstructions is therefore a very active area of research and a
variety of networks have been developed for this task126,127.

Deep learning, however, faces several challenges. Deep learning
models do not yet provide the generalization, robustness and
stability of reconstructions provided by established compressed
sensing, and suffer from hallucinations, i.e. the creation of rea-
listic looking artefacts127,128. This is related to the question of
how well-trained networks generalize outside their training set
and model fairness, the ability of models to equally capture and
represent both common and rare phenotypes. We expect
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considerable progress in the next years to address these questions.
The reporting of quantification of uncertainties will therefore be
crucial to interpret reconstructions. To this end, models such as
Bayesian inversion129 and techniques such as Bayesian
dropout130 exist to generate uncertainty measures from deep
learning models. However, the accuracy of the uncertainty mea-
sures require further external assessment to ascertain their ability
to account for aleatoric and epistemic uncertainty131,132.

Moreover, the data-driven approach of deep learning networks
depends on the availability of good (size, balance, and quality)
training data reflective of the intended application. This is par-
ticularly true for image reconstruction, which requires an output
with highest resolution data, in contrast to classification tasks and
(binary) segmentations which are in essence coarse data. How-
ever, while popular networks such as GPT105 rely on an abun-
dance of available data with limited restrictions, microscopy
image reconstruction tasks are usually specialized applications
with small datasets. One hope is that in the future, with mandates
to host all microscope data accompanying a publication, vastly
more and better annotated training data will eventually become
available. Additionally, data augmentation, e.g., by geometric
transformation such as image rotations, can increase the data
size133. Moreover, application of a deep learning network that was
pre-trained for different tasks on more diverse and larger datasets
might be beneficial, a concept known as transfer learning134.
Additionally, meta-learning approaches135,136 to specifically train
networks in the few-image setting may yield more performant
networks in real deployment. Similarly, more physically informed
deep-learning network architectures, that model the image gen-
eration process, can help to ensure realistic predictions and
reduce the number of free parameters to fit for faster, more
generalizable learning137,138. Lastly, adopting a continuous
learning paradigm instead of one-off training, may help to con-
tinuously adapt to new data and imaging conditions.

Despite these concerns, deep learning restoration techniques have
been applied successfully and have even been granted approval by
the FDA for select applications such as CT scans139. In super-
resolution microscopy, considerable acquisition speed improve-
ments have been reported through restoration140–142. For light-sheet
microscopy, deep learning networks such as CARE143 have
improved the SNR ratio of images acquired with less laser power or
faster exposure. Interestingly, deep learning networks have also been
applied to directly influence the sampling process. Horstmeyer et al.
developed convolutional neural networks to optimize the physical
layout of a microscope to improve accuracy of the identification of
malaria-infected cells by 5–10%144. We expect that future develop-
ments will further leverage this avenue of co-optimizing image
acquisition with deep learning networks for analysis. Understanding
both the imaging system and process thereby will lead to faster
processing times and better reconstructions138.

Ultimately, it is also important to realize that an image is often
an intermediary step to the quantification of a biological process.
Therefore, for many studies, a visually appealing deep-learning
reconstructed image may be less important than having image
data with rigorously quantifiable conclusions. This might alleviate
some of the challenges described above but requires a precise
understanding of the imaging system and image formation.
Towards this end, Pégard et al. demonstrate compressive light-
field microscopy, enabling real-time quantification of brain
activity without ever reconstructing a 3D image145.

Improving accessibility and usability of light-sheet
microscopes
We anticipate that light-sheet technology itself will advance in the
form of refined optical designs, better detectors, novel probes,

NIR imaging capability and potentially non fluorescent contrast
methods, such as Raman scattering. Some technical aspects of
light-sheet technology may however been optimized to their
maximum extent, such as the numerical aperture that can be
covered in a light-sheet microscope146,147. Further gains in this
area would likely also diminish the practicability of the instru-
ment. This is imposed by the orthogonal configuration of LSFM
and the fact that high NA objectives need a large opening angle.
As a result, improving the lateral resolution beyond a certain
threshold comes at the cost of reducing the axial resolution and
vice versa, as the excitation and detection light cones share a
limited solid angle.

Instead, we think that the future impact of light-sheet systems
greatly depends on their practicality and applicability to biological
and biomedical research questions. Many traditional light-sheet
designs require non-traditional sample mounting5,36 and offer
only limited space for the sample itself (Fig. 1a).

A promising alternative are open top37,148 and oblique plane
microscopes (OPM)8,28,149, which leave one half space free
(Fig. 4a) to place samples of, in principle, arbitrary sizes. Progress
in the optical design of these microscopes has enabled micro-
scopes with large millimeter sized field of views150–154 and
microscopes with high-resolution8,155, and even with both
modalities156. Recently, also commercial microscopes have been
developed on the basis of open-top microscopy157. As such, we
believe that open top and OPM systems will enable a widespread
adoption of light-sheet microscopy, as conventional sample
mounting methods can be employed, and integration in standard
microscope bodies is in principle possible with OPM. This opens
the way for three dimensional high-throughput imaging using
multi-well plates, imaging of toxic or infectious specimens con-
tained in (sealed) dishes, and multimodal imaging approaches
(Fig. 4b).

Open top and OPM have also opened new design spaces for
optical engineering. OPM relies on remote refocusing158, which
describes the ability to create an aberration-free 3D image of the
specimen in a remote space away from the sample. The tilted
light-sheet plane within that 3D image can then be mapped with
another microscope onto a camera. While the remote focusing
principle158 underlying OPM has been established over a decade
ago, it has been recently re-analyzed159 to enable imaging across
different refractive indices. The new findings may enable high
resolution light-sheet imaging in any immersion media, further-
ing the versatility and applicability of light-sheet microscopy. This
should serve just as one example on how improvements might
still come from discoveries of optical principles and theory, as
well as engineering.

Conclusion
We expect that light-sheet microscopy will play an important role in
the biomedical sciences and clinical applications for microscopic and
macroscopic imaging in the future. Its combination of rapid yet
gentle volumetric imaging will serve as the basis of physiologically
relevant studies of cellular biology in cell culture, in organoids, in
(engineered) tissue, clinical biopsies, and in entire animals. As such,
one can dream big, a future where sub-cellular biology can be stu-
died live in its native context, without the limitations imposed by
traditional cell culture methods on coverslips.

To achieve this dream, we expect light-sheet microscopes to
overcome the volumetric and temporal imaging barriers imposed by
constrains of the microscope systems and sample. This will no
longer be a task that a human microscope operator, or image analyst
will be able to handle alone. Instead, novel smart and adaptive
microscope control schemes will explore samples in an autonomous,
self-driving fashion to image processes of interest selectively at rates
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matching their dynamics. These schemes will enable new autono-
mous biological discoveries and systematic imaging studies of pro-
cesses that take place over multiple length and timescales.

Besides increased throughput, such acquisition schemes also
promise to rein in the data deluge. Current light-sheet data can
already reach petabyte scales and will likely reach even higher
orders of magnitudes soon. As smart and adaptive data acquisi-
tion schemes no longer follow Nyquist sampling on the finest
level across the entirety of the data set, finest sampling will only
be applied selectively. Moreover, algorithmic selection of regions
of interests will remove human bias and thus improve reprodu-
cibility of imaging studies.

As with any look into the future, it is likely that the field could
take very different directions. After all, who would have foreseen
expansion microscopy54,55 before 2015, which has impacted
fluorescence microscopy in unimaginable ways. Thus, while we
are excited about the possibilities that we have described herein,
we also hope that the microscope community will remain as
imaginative as it has been over the last 20 years, holding many
more surprises in store.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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