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Deep learning-based image enhancement in optical
coherence tomography by exploiting interference
fringe
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Optical coherence tomography (OCT), an interferometric imaging technique, provides non-

invasive, high-speed, high-sensitive volumetric biological imaging in vivo. However, systemic

features inherent in the basic operating principle of OCT limit its imaging performance such

as spatial resolution and signal-to-noise ratio. Here, we propose a deep learning-based OCT

image enhancement framework that exploits raw interference fringes to achieve further

enhancement from currently obtainable optimized images. The proposed framework for

enhancing spatial resolution and reducing speckle noise in OCT images consists of two

separate models: an A-scan-based network (NetA) and a B-scan-based network (NetB).

NetA utilizes spectrograms obtained via short-time Fourier transform of raw interference

fringes to enhance axial resolution of A-scans. NetB was introduced to enhance lateral

resolution and reduce speckle noise in B-scan images. The individually trained networks were

applied sequentially. We demonstrate the versatility and capability of the proposed frame-

work by visually and quantitatively validating its robust performance. Comparative studies

suggest that deep learning utilizing interference fringes can outperform the existing methods.

Furthermore, we demonstrate the advantages of the proposed method by comparing our

outcomes with multi-B-scan averaged images and contrast-adjusted images. We expect that

the proposed framework will be a versatile technology that can improve functionality of OCT.
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Optical coherence tomography (OCT) is an indispensable
optical imaging modality that can provide non-invasive
three-dimensional imaging in vivo with high-speed and

high-sensitivity1. OCT operates based on an interferometric
technique that uses coherent detection of backscattered light from
sample and reference arms using a broad-band light source2. The
difference in the optical length of each arm is encoded in the
frequency domain of the detected interference signal. Therefore,
the depth profile of a sample, commonly referred to as a A-scan,
is typically retrieved by applying Fourier transform to the mea-
sured interference signal. The laser beam is then scanned laterally
to obtain a two-dimensional cross-sectional OCT image with a
depth-lateral axis, commonly referred to as a B-scan. Based on
these fundamental principles, OCT with microscopic spatial
resolution is widely used as a diagnostic tool in various medical
fields, such as ophthalmology and cardiology3,4. However, OCT
applications often suffer from systemic limitations arising from
the basic operating principle; these limitations include the pre-
sence of speckle noise, limited depth-of-focus (DOF), and
degradation in spatial resolution. In detail, speckle noise dete-
riorates detailed morphological information by reducing contrast
of OCT images5. The axial resolution is physically determined by
the spectral bandwidth of the light source, while the lateral
resolution is dominated mainly by the numerical aperture of the
imaging optics6. The lateral resolution is also only maintained
within a limited DOF, reducing the effective imaging range7. In
addition, OCT exploiting a broadband light source requires the
development of sophisticated optical systems2,7–9. Therefore, to
fully utilize the diagnostic potential of OCT in many preclinical
and clinical applications, it is of great importance to enhance
OCT images by overcoming these drawbacks.

While hardware-based enhancement techniques require
expensive high-performance lasers and/or additional optical
components to improve OCT images8–11, software-based
approaches can achieve such enhancement with only minimal
modification to the underlying system. Conventional software-
based studies have proposed spectral estimation12 and spectrum-
shaping13 for enhancing resolution, and B-scan averaging14 and
filtering-based methods15–17 for suppressing noise. However,
these methods often require relatively time-consuming iteration
algorithms for the enhancement, introducing spurious artifacts
and oversmoothing the images. Meanwhile, as an alternative to
overcome the limitations of conventional methods, the
enhancement of OCT images through deep learning, which has
recently shown outstanding performances in numerous fields, is
drawing attention. Recent researches have shown that deep
learning can outperform handcrafted feature descriptors in a
number of imaging processing fields18–23. Inspired by these stu-
dies, deep learning is being applied actively to various optical
imaging modalities, including OCT, for super resolution and
noise reduction24–29. Several models have been reported that can
restore the resolution of intentionally degraded OCT images30–32.
Elsewhere, deep learning methods have been proposed to reduce
speckle by learning frame-averaged OCT images33,34 or speckle-
modulating OCT35 as ground truths. Liang, et al.36 implemented
conditional generative adversarial networks (GAN) to enhance
spatial resolution while preserving detailed speckle patterns in
OCT images.

However, previously-proposed deep learning-based OCT
image processing methods have used only grayscale 8-bit OCT
images. Considering that OCT A-scans are constructed by
applying signal processing steps including a Fourier transform to
the interference fringes, valuable information might be lost dur-
ing Fourier transformation, log compression, and conversion to
8-bit. Therefore, better image enhancement may be achieved if
the raw interference fringe is fully utilized. However, in general,

commercial OCT provides only gray-scale images; even with
custom-built OCT, raw interference fringes in the wavenumber
(k) domain have never been fully exploited to enhance OCT
image quality based on deep learning. In addition, many studies
have shown how accurately degraded inputs can be reconstructed
to the ground truth through the trained models, and no further
enhancement has been shown in the state-of-the-art images.
Therefore, OCT image enhancement methods that can further
enhance the current optimal image quality is needed to improve
versatility and expandability by addressing the aforementioned
limitations.

In this study, we propose a deep learning-based framework to
enhance the quality of currently optimized OCT images. Our
model consists of two separate models, an A-scan-based network
(NetA) and B-scan-based network (NetB). In particular, we fully
exploit the information of the raw interference fringe signal,
which was partially lost during transformation to OCT images by
conventional processing. NetA is mainly responsible for enhan-
cing the axial resolution of A-scans by utilizing spectrograms,
which are obtained via short-time Fourier transform (STFT) of
raw interference fringes. NetB was designed to enhance lateral
resolution and reduce speckle noise in OCT B-scans. The dual
models were individually trained and then sequentially applied in
the inference phase. The performance was also evaluated using
datasets acquired from different OCT systems, thereby demon-
strating the versatility and expandability of the proposed tech-
nique. The performance of this dual model deep learning-based
processing was evaluated through comparative studies to other
methods on the same dataset. Advantages were also demonstrated
through comparisons with mutli-B-scan averaged images and
contrast-adjusted images. By overcoming the aforementioned
limitations of conventional OCT image processing, the perfor-
mance of the proposed deep learning-based OCT signal proces-
sing framework suggests that it can be a promising technology to
enhance OCT images and expand OCT functionality.

Results
An overall schematic including training and inferences for the
proposed deep learning-based OCT image enhancement frame-
work is presented in Fig. 1. The dual model, composed of NetA
and NetB, is designed based on GAN37, consisting of generators
and discriminators. NetA, which mainly enhances axial resolu-
tion, directly receives two adjacent fringes and processes them by
transforming through STFT and FFT to generate spectrograms
and typical OCT A-scans, respectively (Fig. 1a). While the
acquired interference fringes contain depth information in the
spectral domain (i.e., the k-domain), OCT A-scans, Fourier
transforms of the interference fringes, lose depth-dependent
spectral information with changes in k. Since the interference
fringes are inevitably affected by multiple scattering (i.e., sources
of speckle noise), spectral dependency of sample, and dispersion,
which are highly dependent on the k-domain, the spectral
information according to the change in k can be better utilized for
OCT image reconstruction. Therefore, to more delicately process
this invaluable information embedded in the interference fringe, a
spectrogram, which is the STFT result of the fringe, was provided
to the proposed deep learning-based framework as input data.
Furthermore, since the spectrograms are two-dimensional (depth
and kðtÞ), they can be processed like two-dimensional images,
making them suitable for processing with convolution-based deep
learning methods. On the other hand, NetB is introduced to
enhance lateral resolution and reduce speckle noise by receiving
B-scan images (Fig. 1b). Note that NetB receives a log-
compressed FFT amplitude spectrum with a single-precision
floating point. Typically, OCT images are presented in 8-bit
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grayscale with a limited contrast range on the dB scale, resulting
in loss of information outside of the specified contrast range.
Therefore, NetB receives all amplitudes of single precision float-
ing point, without contrast limit, allowing all meaningful features
to be considered without sacrificing. Optimal A-scans, acquired
by applying currently optimized compensation and FFT, were
used as the ground truth, while degraded spectrograms and
A-scans were used as input for NetA (Fig. 1a). Degraded B-scan
OCT images were used as input, and frame-averaged images of 7
adjacent optimal B-scan OCT images were used as ground truth
for NetB (Fig. 1b). Note that the total interval of the 7 OCT
images was specified at the lateral resolution level of the OCT
system to achieve adequate noise reduction while avoiding

excessive spatial smoothing. After individual training, only NetA
and NetB generators were sequentially applied to the raw OCT
fringes to produce the final enhanced imaging output (Fig. 1c).
The training dataset was constructed using a customized
benchtop-based swept-source OCT (SS-OCT)38 system from a
variety of samples including thyroid tissue specimens, finger nails,
fingertips, cucumbers, grapes, lemons, pork meat, and Scotch
tape. Additional data not referenced during training were also
acquired with the same OCT system to demonstrate expand-
ability. Furthermore, in vivo data from swine coronary artery and
rabbit abdominal aorta, obtained using a customized catheter-
based SS-OCT system4,39, were also used to support more robust
expandability of the proposed method. Details on

Fig. 1 Schematic of deep learning-based OCT image enhancement framework. a Training phase of NetA. Based on A-scans, NetA takes two adjacent
interference fringes and uses them as input after transforming them into spectrograms and typical OCT A-scans. b Training phase of NetB. NetB is
implemented based on OCT B-scans consisting of 1024 A-scans. In both networks, the ground truth was constructed utilizing the best currently available
data through numerical post-processing. In NetB, the average of 7 adjacent B-scans was used as the ground truth. Inputs were intentionally degraded
spectrograms, A-scans, and B-scans that have been processed with degradations such as imperfect dispersion compensation, bandwidth truncation, and
SNR deterioration. c Inference phase of proposed OCT image enhancement framework. Data are processed using only the generators of the two trained
networks. Note that currently optimized interference fringes are used as input to further enhance state-of-the-art OCT images. NetA processes A-scans
sequentially for one frame and NetB processes results of Net A to produce final output.
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implementation and dataset can be found in the “Materials and
methods” section.

Performance evaluation of individual models. After successful
training, as indicated by training loss curves (Supplementary
Fig. 1), the performance of each trained model was individually
evaluated by comparing how similar each model’s inference for
the degraded input was to the ground truth. Note that the eva-
luation is based on a test set that is not referenced at all in the
training. The inferenced examples for each model are shown in
Fig. 2. In Fig. 2a, b, degraded input was generated by applying
FFT to the degraded fringes; the output was reconstructed by
individually applying NetA to all degraded fringes consisting of
single B-scan images. Compared with the degraded input, the
output represents a well-reconstructed structure close to the
ground truth; it was obtained by typical OCT image recon-
struction with optimal compensation. In particular, it is clearly
manifested in the morphological features estimated as typical
follicle structure of a normal thyroid tissue (yellow arrowheads in
Fig. 2a). Figure 2c, d shows NetB performance on OCT images of
lemon and Scotch tape. NetB output suppresses speckle noise,
distinct from the degraded input, and exhibits a homogenized
intensity distribution within the sample (red arrowheads in
Fig. 2c, d).

Using mean square error (MSE), the structural similarity index
(SSIM)40, and the multi-scale SSIM (MS-SSIM)41, which can
measure the similarity between two images (see Supplementary
Note 1 for details), the performance of each model was
quantitatively evaluated for data randomly selected from the test

set. All metrics were calculated based on the ground truth. The
evaluation results are summarized in Table 1. In both models, the
MSE results were lower in the output than in the degraded input.
Furthermore, the SSIM and the MS-SSIM figures, which were
high in the output for both models, indicate that the structural
similarity in the output is much akin to the ground truth at both
local and global scales. Overall, outputs of models achieved results
much closer to the ground truth than did the degraded input. As
can be seen from the above results, both trained models were able
to successfully reconstruct the degraded input and make it similar
to the ground truth.

Performance evaluation of entire framework to enhance OCT
images. The purpose of this study-was to further improve

Fig. 2 Individual test performance of both models on degraded input data. Example result of NetA with samples of a thyroid tissue and b finger. Example
result of NetB with samples of c lemon and d Scotch tape. The degraded input, output, and ground truth images are shown in the three columns. The ROIs
(red and yellow boxes) on the right side of the image show magnified views (5X). Scale bars, 1 mm.

Table 1 Comparison of MSE, SSIM, and MS-SSIM of input
and output for NetA and NetB.

Degraded input Output

Average Std Average Std

NetA
MSE 34.26 14.62 14.00 2.83
SSIM 0.544 0.138 0.706 0.102
MS-SSIM 0.767 0.105 0.910 0.072
NetB
MSE 19.290 11.609 4.078 1.079
SSIM 0.258 0.072 0.767 0.104
MS-SSIM 0.472 0.067 0.938 0.071
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currently available optimal OCT images; so, unlike the afore-
mentioned individual model evaluations, ground truth-level data
were fed as input to the generators of the two trained models. As
can be seen in the overall schematic in Fig. 1c, the raw fringes of
OCT were fed into NetA, and the output of NetA went straight
into NetB. The results of NetA for the input were denoted as
intermediate output; the results of NetB were denoted as final
output (Fig. 1c). All subsequent evaluation results are described
based on the final output. Figure 3 shows representative OCT
images of the currently optimized input and the enhanced final
output. In Fig. 3a, an example of a cucumber cross-section shows
that the speckle noise appearing within the tissue (arrowheads in
Fig. 3a) was reduced, while visual representation of structural
features such as parenchyma (asterisks in Fig. 3a) improved. Such
improvement also appears in all of the samples referenced for
training shown in Fig. 3b–g. Figure 3h–j shows examples of two
other types of samples (microspheres and arterial cross-sections).

Note that the data for these samples were used only for perfor-
mance evaluation, not for training. In particular, the system used
to image the arterial tissue was different from the one used to
acquire the training data set. Since these samples have completely
different structural features from those in the training set, the
results can demonstrate the robust reliability and expandability of
the proposed deep learning-based framework. Results of micro-
spheres show enhanced spatial resolution, especially axial reso-
lution, indicating significantly smaller bead sizes (red arrowheads
in Fig. 3h). Furthermore, the results for the arterial cross-section,
shown in Fig. 3i, j, confirm that our processing can achieve robust
performance for biological samples obtained from other systems.
The quantitative evaluation for these results is summarized in
Table 2. Since there are no clear answers to the deep learning
results, we used several parameters as performance indicators,
including peak signal-to-noise ratio (PSNR), the beta parameter
(β), and the edge preservation factor (EPF), which can measure

Fig. 3 Blind testing performance of deep learning-based OCT image enhancement framework. Left and right columns represent currently optimized
input and enhanced final output, respectively. Note that, in these results, the currently optimized OCT data were the input. Final output is the result of
sequentially applying both NetA and NetB to the input. Each figure represents a cucumber, b grape, c, d thyroid tissue specimen, e finger nail, f Scotch tape,
g pork meat, h droplet with TiO2 microspheres, and i, j arterial cross-section. The ROIs (red and yellow boxes) on the right side of the image show
magnified views (3X for a–g and i–j; 5X for h). Scale bars, 1 mm.
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the degree of improvement in image quality. These metrics are
commonly used for OCT denoising studies42–46. PSNR was used
to quantify the noise levels in improved OCT images relative to
original images. β is a normalized metric that can measure the
degree of preservation of morphological features in denoised
images and is often used as a performance evaluation indicator in
OCT studies for speckle reduction42,46. EPF shows edge pre-
servation effects with respect to original images, computed using
the local correlation43–45 (see Supplementary Note 1 for details).
On average, PSNR was improved by 24.955 dB compared to the
input. β and the EPF were evaluated and found to be 0.923 and
0.996, respectively, indicating that the spatial features were well
maintained. Axial and lateral resolutions, defined as the full width
at 3 dB lower than the peak intensity, were measured from images
of microspheres (Fig. 3h). The enhancement in resolution was
quantified by ~1.2 times in both the axial and the lateral reso-
lution. The enhancement performance according to the degree of
input degradation was additionally performed to thoroughly
verify the generalization performance of the proposed method
(Supplementary Fig. 2). The findings indicate that the proposed
method exhibits robust generalization performance for different
levels of degradation, generating desirable outcomes while
avoiding over-smoothing regardless of the degradation level.
Therefore, these results reveal that overall image quality was
noticeably improved by reducing noise and enhancing spatial
resolution, while spatial features were well preserved.

We further examined the advantages of our proposed method
by comparing the results to mutli-B-scan averaged images and
contrast-adjusted images. Figure 4a–d shows the comparison
results with the averaged average of 7 and 21 B-scans. The B-scan
averaging method using adjacent OCT frames provides excep-
tional speckle reduction performance47. However, excessive
multi-B-scan averaged images result in noticeable blurring of
morphological feature information due to spatial averaging (red
arrowheads in Fig. 4a, c). On the other hand, it can be confirmed
that these morphological features are well preserved in our
proposed method (red arrowheads in Fig. 4d), which are more
prominent than the averaged image of 7 B-scans (red arrowheads
in Fig. 4b). Even in the quantitative evaluation, our method
achieved higher PNSR, β and EPF values compared to the
averaged images of 7 and 21 B scans. These results reveal that our
deep learning-based framework has significant speckle reduction
capability while preserving spatial feature information well, while
multi-B-scan averaged image reduces speckle noise at the cost of
spatial blurring. In addition, spatial resolutions are substantially
enhanced even when the signal is weak (see Supplementary Fig. 3
for details). Therefore, these results revealed an noticeable
improvement in overall image quality with reduced noise and

enhanced spatial resolution, and spatial features were well
preserved. To confirm that both models were successfully trained
without overfitting, a multi-fold analysis was also performed
(Supplementary Fig. 4). Of the eight datasets, one was used as a
validation set and the other seven as training sets, which were
used for further training and quantitative evaluation. Accord-
ingly, all metrics showed equivalent results to those evaluated by
the originally trained model, validating our model was success-
fully trained without overfitting.

Comparative studies with other methods. The potential of the
proposed deep learning-based framework to other methods was
presented through comparative studies using the same dataset. We
compared our method with conventional methods based on sta-
tistical filtering (block-matching 3D (BM3D)15 and K-SVD48) and
six other previous deep learning techniques showing reliable per-
formance in image improvement (super-resolution convolutional
neural network (SRCNN)49, super-resolution residual neural net-
work (SRResNet)50, Unet51, very-deep super-resolution (VDSR)52,
cycle-consistent adversarial network (CycleGAN)53, and paired
image-to-image translation (Pix2Pix)54). Deep learning techniques
were adopted as-is for each of the proposed implementations, but
retrained using the same dataset in this study. The training loss
curves of each technique are shown in Supplementary Fig. 5.
Figure 5 shows comparison results using datasets of thyroid car-
cinoma specimen (Fig. 5a) and microspheres (Fig. 5b). These
results show that our processing outperforms most of the existing
methods in suppressing the noise and preserving the edge detail
and spatial content compared to the input images (Fig. 5a). In
contrast, other methods, especially the conventional filtering
methods such as BM3D and K-SVD, provide output images with
severely blurred edges due to excessive smoothness, resulting in
loss of spatial information. In addition, the resolution enhance-
ment of our method in both the axial and lateral directions is
incomparable (Fig. 5b). Quantitative evaluation using the afore-
mentioned metrics demonstrated the superiority of our method
(Fig. 5c–f). Our method showed better SNR (Fig. 5c), and pre-
served spatial features and edges (Fig. 5d, e). The resolution
enhancement was more pronounced in the resolution measure-
ments using microspheres (Fig. 5f). Visual evaluation, as well as
quantitative comparison, show that our processing enabled effec-
tive noise reduction within tissue while preserving spatial feature
information. These results suggest that only our processing may
further enhance currently optimized OCT images in terms of both
spatial resolution and SNR.

Discussion
In this study, we proposed a deep learning-based OCT image
processing framework to enhance spatial resolution and SNR; we
then verified the performance through comparative study and
spectral analysis. The PSNR was improved by 24.96 dB compared
to the input, and the resolution enhancement was 1.2 times in
both the axial and lateral directions. In particular, spatial features
were well preserved without excessive smoothing, which was
often observed in previous studies.

Importantly, we hypothesized that utilizing the spectral infor-
mation contained in the OCT interference fringes could enhance
the OCT imaging performance. Since raw interference fringes are
very complex to be used directly for training deep learning net-
works, STFT was applied to obtain spectrograms that still contain
spectral information. In addition, since the spectrograms are two-
dimensional, they can be effectively used in deep learning net-
works that are known to perform well on images. We believe that
this approach of utilizing spectrograms offers unique advantages
over previous methods using only OCT images. While the

Table 2 Quantitative performance evaluation results of deep
learning-based OCT image enhancement framework for
reducing noise (PSNR), preserving morphological features
(Beta parameter and edge preservation factor), and
enhancing spatial resolution (axial resolution and lateral
resolution).

Currently
optimized input

Final output

Average Std Average Std

PSNR – – 24.96 0.65
Beta parameter – – 0.923 0.036
Edge preservation factor – – 0.996 0.005
Axial resolution [μm] 12.39 2.52 10.08 2.55
Lateral resolution [μm] 14.15 3.99 12.39 4.10
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spectral bandwidth directly limits the theoretical axial resolution
of the OCT, we postulate that the proposed deep learning net-
work can improve the axial resolution by restoring weak spectral
information outside the spectral bandwidth of the light source.

We further investigated and verified the advantages of the
proposed method by comparing the results with multi-B-scan
averaged images. B-scan averaging method effectively reduces
unwanted multiple-scattering-related speckle noise by averaging
adjacent images in the out-of-plane direction. However, excessive
B-scan averaging can inevitably cause blurring, resulting in loss of
spatial information. It was established based on the higher PSNR,
β, and EPF that the proposed network is more effective at
removing speckle noise than multi-B-scans averaging while pre-
serving spatial feature information better. Additionally, while the
B-scan averaging method is still powerful in reducing speckle
noise, this method can only be applied to very stable scanning
methods in which adjacent frames are very similar, i.e. spatial
differences are smaller than the lateral resolution of OCT and free
from motion artifacts. Therefore, the B-scan averaging method
cannot be applied when the frame interval is large or imaging is
not stable due to motion. Of note, our method only uses a single
B-scan image. Therefore, the proposed method can be applied to
more diverse scanning situations, including intravascular OCT, in
which helical scanning is applied and adjacent frames exhibit
different features due to the relatively large frame interval. Fur-
thermore, we demonstrate that the proposed method can enhance
the resolution even for weak signals by comparing with contrast-
adjusted images (Supplementary Fig. 3). We expect the proposed
method to be useful when substantially enhanced OCT imaging
performance is required.

Another unique feature of our method is its ability to enhance
the spatial resolution without using super-resolution ground truth
images, which cannot be obtained. Instead, we used the currently
optimized OCT fringes/images and degraded OCT fringes/images
as ground truth and input, respectively, to train the network.
Because degraded OCT fringes/images were generated by a series
of processes that mimic physical limitations or practical issues of

OCT, such as imperfect dispersion compensation and bandwidth
truncation, the network learned to overcome these limitations.
Subsequently, when the currently optimized OCT fringes/images
were input to the network, enhanced OCT images were generated
by the trained deep learning network.

Interestingly, enhancements of resolution and reduction of
noise are clearly observed in both the state-of-the-art OCT images
obtained from the same types of samples referenced during the
training and from different types of samples from other OCT
systems, demonstrating versatility and expandability. As a result,
we present that this approach of directly accessing the fringes
enhances the acquired OCT signal, enabling further resolution
enhancement and noise reduction. Future work will include the
subjective evaluation by clinicians to examine whether the pro-
posed method is practically helpful in diagnosis or interpretation.
This method can be applied to any Fourier domain OCT from
which spectrograms can be obtained, such as swept-source OCT
and spectral-domain OCT. We anticipate that the proposed deep
learning-based OCT will contribute to broadening OCT usage in
clinical and preclinical applications by providing images with
higher resolution and SNR.

Methods
Data acquisition. Data were collected using a customized benchtop-based SS-
OCT38. with galvanometer scanners and a scan lens (LSM03, Thorlabs. Inc.)
having axial and lateral resolution of 10 µm (air) and 13 µm, respectively. The OCT
system has a central wavelength of 1290 nm, a bandwidth of 110 nm, an average
output power of 40 mW, and a frame rate of 117 frames/s. The acquired training
data consists of a total of 12 samples (5 different thyroid tissue specimens, finger
nails, fingertip, cucumber, grape, lemon, pork meat, and Scoth tape). For each
sample, a total of 5 sets were obtained in different regions. Each set consists of 1000
B-scans consisting of 1024 A-scans with a depth of 2048 pixels; thus, the total
number of B-scans in the dataset is 60,000. The training set and the test set were
constructed by dividing the pullback sets for each sample into a ratio of 8 to 2,
resulting in 48,000 and 12,000 B-scans, respectively. The thyroid tissue specimen
imaging was reviewed and exempted from deliberation by the Institutional Review
Board of Gil medical center (GBIRB2021-241).

To investigate the expandable performance of the proposed deep learning
approach, datasets not referenced during training were additionally acquired. With
the same system as before, OCT images of droplets with 3 µm TiO2 microspheres

Fig. 4 Comparison with multi-B-scan average method. a A single B-scan of the finger tip used as input to the deep learning framework. b, c Results of
speckle reduction via multi-B-scan averaging of 7 and 21 B-scans, respectively. The multi-B-scans were acquired with a frame interval of 2 μm. d Output
processed by the proposed deep learning-based framework. The ROIs (red and yellow boxes) on the right side of the image show magnified views (3X).
Scale bars, 1 mm.
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Fig. 5 Results of comparative studies with other methods. Example results for a thyroid tissue specimen and b TiO2 microsphere data. Input, BM3D, K-
SVD, SRCNN, SRResNet, Unet, VDSR, cycleGAN, Pix2Pix, and our result are presented in order on both a and b. The input is an image reconstructed by the
currently optimized OCT processing. The ROIs (red and yellow boxes) on the right sides of the images show magnified views (3X for a; 5X for b) from the
same location. Scale bars, 1 mm. Metrics based on thyroid tissue specimen sample for quantitative comparison, c PSNR, d β, and e EPF. Our method
showed superiority in terms of SNR and in preserving spatial features. f Axial and lateral resolution measured by microsphere data. Dashed lines represent
the axial and lateral resolutions of input. While axial and lateral resolution enhancements were revealed in our method, the quantitative results of other
methods were mostly inconspicuous for resolution enhancement. Error bars in c–f represent standard deviations. All of these statistical results were
calculated for 200 randomly selected images, and the results of f was estimated from a total of 800 microsphere data. All multiple comparison results for
our method were statistically significant (P < 0.0001 (*) according to a one-way ANOVA test).
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(10086A, TSI Corp., USA) were acquired. In addition, arterial data were collected
using a previously reported catheter-based SS-OCT4,39, with an axial resolution of
11 µm (air) and a lateral resolution of 21 µm. The OCT system has a central
wavelength of 1294 nm, a bandwidth of 110 nm, an average output power of
25 mW, and a frame rate of 114 frames/s. More details on the OCT system can be
found in the previous works4,39. The acquired data consists of a pullback sets, some
from in vivo swine coronary arteries implanted with bioresorbable scaffolds (a male
Yucatan minipigs weighting ~15–20 kg, n= 1, Optipharm, Korea); others from
rabbit abdominal aortas with atherosclerotic plaque (a male New Zealand white
rabbit weighting ~3–3.5 kg, n= 1, DooYeol Biotech, Korea). Note that the OCT
images helically scanned in polar coordinates were provided as inputs of the
models, and the output images after the deep learning process were subjected to
Cartesian transformation for visualization. All animal experiments were approved
by the Institutional Animal Care and Use Committee of Korea University
(KOREA-2019-0152-C1, KOREA-2021-0076) and were performed in accordance
with national and institutional guidelines.

Preparation of training datasets for NetA. Training datasets for each model were
separately generated by directly processing the raw interference fringes. The input
and ground truth of the dataset for NetA were constructed by pairing OCT A-scans
and interferograms with degraded axial resolution and the currently optimized
OCT A-scans, respectively. Here, the currently optimized OCT A-scans are the
A-scans with the best axial resolution achievable using our OCT system, which
applies the best post-processing methods including background removal, k-line-
arization, and numerical dispersion compensation7. On the other hand, the input
was processed by applying imperfect numerical dispersion compensation and
bandwidth truncation. Imperfect compensation in terms of dispersion was applied
by randomly adjusting the polynomial fitting coefficients of dispersion, resulting in
degraded axial resolution. The degree of degradation has been determined
empirically to deteriorate the axial resolution by up to a factor of 2; detailed
procedures can be found in the Supplementary Note 2. In addition, the axial
resolution is inversely proportional to the bandwidth of the laser7. Accordingly, by
truncating the bandwidth of the laser source, A-scans with degraded axial reso-
lution can be obtained. The degree of bandwidth truncation was randomly selected
within 0.5 times by applying Gaussian windows to the raw fringe before applying
FFT. Example results of optimal and degraded OCT images, A-scans, and spec-
trograms for one of those A-scans are shown in Supplementary Fig. 6. The window
and overlap size of the STFT were empirically set at 325 and 275 cm�1, respectively,
to generate a spectrogram with 14 different depth profiles derived from different
spectral bands.

Each piece of data was normalized to improve the training efficiency of a
gradient descent algorithm. Specifically, the transform results of STFT and FFT are
a log compressed amplitude spectrum with a single precision floating point.
Therefore, the range of the valid intensity range of the STFT and FFT results was
normalized to between -1 and 1, respectively. After preprocessing, to augment the
training dataset, two adjacent A-scans were randomly selected in each B-scan and
randomly flipped in the horizontal direction.

Training strategy of NetA. The schematic of NetA architecture is shown in
Fig. 6a; details are provided in the Supplementary Note 3, along with Supple-
mentary Table 1. In the training phase, the generator receives degraded inter-
ferograms and A-scans and learns to generate paired optimal A-scans. Then, the
reconstructed A-scans are fed to a discriminator that learns to discriminate
between the ground truth A-scans and the generated A-scans, and then returns
feedback (0 or 1) to the generator. As the generator and discriminator networks
are, alternately, trained, the two networks compete to the theoretical limit at which
the generated A-scan and the ground truth cannot be distinguished. The loss
functions of the generator and the discriminator were defined as follows. The
generator was trained with L1 loss, L2 loss, and gradient loss regarding only the
axial direction, each defined as follows:

L1 ¼ 1
m

∑
m�1

i¼0
Aout ið Þ � AgroundtruthðiÞ
�
�
�

�
�
� ð1Þ

L2 ¼ 1
m

∑
m�1

i¼0
Aout ið Þ � AgroundtruthðiÞ
h i2 ð2Þ

Lgradient ¼
1
m

∑
m�1

i¼0

∂Aout

∂z
� ∂Areal

∂z

�
�
�
�

�
�
�
�

ð3Þ

where m, Aout , and Aground truth are the sizes of the A-scans (2048 in our study),
reconstructed A-scans, and ground truth A-cans, respectively. The adversarial loss
included in the generator loss and the discriminator loss are defined as binary cross
entropy (BCE), represented as follows:

BCE x; y
� � ¼ � 1

N
∑
N

i¼1
ðylogx þ ð1� yÞlogð1� xÞÞ ð4Þ

where N, x, and y are the total number of outputs, the discriminator’s result, and
the actual label. For example, in the case of the ground truth, the actual label is 1,
and the closer the discriminator’s result is to 1, the smaller the loss. Using these

functions, the losses of the generator and the discriminator are defined as follows:

LossG ¼ λ1L1þ λ2L2þ λ3Lgradient þ λ
4
BCEðDðGðzÞÞ; 1Þ ð5Þ

LossD ¼ BCE D zð Þ; 1ð Þ þ BCEðD G zð Þð Þ; 0Þ ð6Þ
where λ is weight of each term, and D(·) and G(·) refer to the outputs of the
discriminator and the generator, respectively. In LossG, the four λs are empirically
defined as 1, 0.6, 0.9, and 10−4, respectively. The reason why BCEðDðGðzÞÞ; 1Þ is
included in LossG is to use feedback to train it adversarially to determine whether
the generator can deceive the discriminator well.

Preparation of training datasets for NetB. The dataset for training NetB was
generated from the same raw data utilized for NetA, but with different pre-
processing. The ground truth data were generated by B-scan averaging of 7 adja-
cent OCT images with the best compensation applied. By defining the frame
interval of the averaged OCT images to be lower than the lateral resolution of the
OCT system, proper noise reduction was achieved while preventing excessive
spatial blurring. The interval between each frame is ~2 µm. Gaussian weights were
also taken and averaged over the B-scans to retain as much spatial information as
possible while suppressing speckle noise. B-scan images with degraded lateral
resolution and prominent noise were generated and used as input data, after three
processes of bandwidth truncation, lateral Gaussian filtering, and SNR deteriora-
tion. Note that the input B-scan is a single image in the middle of the OCT B-scans
used to create the averaged image. Bandwidth truncation larger than 0.8 times the
normal bandwidth was applied to introduce variation in the noise pattern with a
slight degradation of axial resolution. After reconstructing the B-scan OCT images,
lateral Gaussian filtering and SNR deterioration were performed. The filter size and
sigma of Gaussian filtering were randomly selected within 5–15 and 1–5, respec-
tively, to blur the B-scan without oversmoothing. Finally, SNR deterioration was
applied either by lowering the intensity level to a maximum of 3 dB or by
amplifying the noise level to a maximum of 3 dB. These processes were applied
randomly. Each pair of input and ground truth data was normalized to a scale
between −1 and 1.

Training strategy of NetB. The schematic of NetB architecture is shown in
Fig. 6b; the details are summarized in the Supplementary Information, along with
Supplementary Table 2. In the training phase, the generator is trained to recon-
struct the desired output, B-scan averaged-optimal OCT image, by receiving the
degraded OCT B-scan. The reconstructed B-scan is then fed to the discriminator to
learn to discriminate the generated B-scan with a single output of 0 and 1, and then
the feedback is returned to the generator. To train NetB, the loss functions are
separately defined for generator and discriminator. Because the generators pro-
cesses images, their loss functions comprise metrics used to measure the image
quality. First, L1 and L2 losses were used to compare the difference between output
and ground truth in pixels. Each loss is defined as follows:

L1 ¼ 1
h
1
w

∑
h�1

j¼0
∑
w�1

i¼0
Iout i; j

� �� Igroundtruthði; jÞ
h i

ð7Þ

L2 ¼ 1
h
1
w

∑
h�1

j¼0
∑
w�1

i¼0
Iout i; j

� �� Igroundtruthði; jÞ
h i2

ð8Þ

where h, w, Iout , and Iground truth are the height of the images, the width of the
images, generated images, and ground truth images, respectively. The two losses
above directly compare pixel-wise differences. However, it has been reported that
using only these losses can blur the results55. Therefore, MS-SSIM loss was addi-
tionally adopted to ensure that structural features are well preserved; this process is
defined as:

LMS�SSIM ¼ 1�MS SSIM
�

Iout ; Igroundtruth
�

2
: ð9Þ

The gradient loss is also utilized to compare the difference in gradient and
variation in the height and width directions. By adding the gradient loss, the
morphological edge features and texture information can be well preserved. The
gradient loss is defined as follows:

Lgradient ¼ abs
∂Iout
∂x

� ∂Igroundtruth
∂x

� �

þ abs
∂Iout
∂z

� ∂Igroundtruth
∂z

� �

ð10Þ

where the operators ∂/∂x and ∂/∂z refer to directional intensity variations in the x
and z directions. Using these loss functions, the losses of the generator and the
discriminator are defined as follows:

LossG ¼ λ1L1þ λ2L2þ λ3LMS�SSIM þ λ4Lgradient þ λ5BCEðDðGðzÞÞ; 1Þ ð11Þ

LossD ¼ BCE D zð Þ; 1ð Þ þ BCEðD G zð Þð Þ; 0Þ ð12Þ
where λ is the empirically determined weight of each term, and LossD is defined in
the same way as in the A-model. In LossG, the five λs are empirically determined to
be 0.8, 0.6, 1, 0.9, and 10−4, respectively. Details of the system implementation for
training both networks are summarized in Supplementary Note 4.
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Statistics and reproducibility. The number of data and the statistical analysis are
described in figure legends. All statistical analyses were performed using GraphPad
Prism (GraphPad Prism 7.0, Graph Pad software Inc).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the source data presented in the main figures are available as Supplementary Data 1.
The imaging datasets generated and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
Deep learning-based OCT signal processing framework can be found in the oct-
enhancement-framework repository (https://github.com/KAIST-BOOM/oct-
enhancement-framework)
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