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Fine-mapping of retinal vascular complexity loci
identifies Notch regulation as a shared mechanism
with myocardial infarction outcomes
Ana Villaplana-Velasco 1,2, Marie Pigeyre 3, Justin Engelmann2, Konrad Rawlik 1, Oriol Canela-Xandri4,

Claire Tochel2, Frida Lona-Durazo5, Muthu Rama Krishnan Mookiah 6, Alex Doney6, Esteban J. Parra 5,

Emanuele Trucco 6, Tom MacGillivray 7, Kristiina Rannikmae 2, Albert Tenesa 1,2,4,

Erola Pairo-Castineira1,9 & Miguel O. Bernabeu 2,8,9✉

There is increasing evidence that the complexity of the retinal vasculature measured as

fractal dimension, Df, might offer earlier insights into the progression of coronary artery

disease (CAD) before traditional biomarkers can be detected. This association could be partly

explained by a common genetic basis; however, the genetic component of Df is poorly

understood. We present a genome-wide association study (GWAS) of 38,000 individuals

with white British ancestry from the UK Biobank aimed to comprehensively study the genetic

component of Df and analyse its relationship with CAD. We replicated 5 Df loci and found 4

additional loci with suggestive significance (P < 1e−05) to contribute to Df variation, which

previously were reported in retinal tortuosity and complexity, hypertension, and CAD studies.

Significant negative genetic correlation estimates support the inverse relationship between Df

and CAD, and between Df and myocardial infarction (MI), one of CAD’s fatal outcomes. Fine-

mapping of Df loci revealed Notch signalling regulatory variants supporting a shared

mechanism with MI outcomes. We developed a predictive model for MI incident cases,

recorded over a 10-year period following clinical and ophthalmic evaluation, combining

clinical information, Df, and a CAD polygenic risk score. Internal cross-validation demon-

strated a considerable improvement in the area under the curve (AUC) of our predictive

model (AUC= 0.770 ± 0.001) when comparing with an established risk model, SCORE,

(AUC= 0.741 ± 0.002) and extensions thereof leveraging the PRS (AUC= 0.728 ± 0.001).

This evidences that Df provides risk information beyond demographic, lifestyle, and genetic

risk factors. Our findings shed new light on the genetic basis of Df, unveiling a common

control with MI, and highlighting the benefits of its application in individualised MI risk

prediction.
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Coronary artery disease (CAD) remains the leading cause of
death and disability worldwide1. Early diagnosis and
preventive therapies are essential strategies to control

CAD morbidity and the mortality associated with its outcomes,
such as myocardial infarction (MI). There is increasing evidence
that morphological changes in the retinal vasculature, for instance
in vessel width and vascular complexity, might offer insights into
CAD before traditional risk factors (such as systolic blood pres-
sure and cholesterol levels)2,3. Recent studies reported that a
reduced degree of vascular complexity, quantified through esti-
mates of the fractal dimension (Df), is found in individuals who
had a higher CAD risk, independent of their age4. In one of the
most extensive studies to date, Zekavat et al. showed associations
between Df and incident CAD, amongst several other conditions5.
This suggests that Df could be a promising non-invasive and
highly accessible biomarker. However, these findings have not
translated so far to a substantial increase in prediction accuracy
for major adverse cardiac events (MACE) risk when leveraging
retinal vascular information in epidemiological models, compared
to models based on patient demographics and lifestyle risk
factors6,7. Likewise, in a landmark study, Poplin et al. developed a
deep learning approach capable of accurately predicting some
known MACE risk factors from retinal fundus images that only
attained marginal improvements in MACE risk estimation
compared to known risk factors alone8. More recently, Diaz-
Pinto et al.9 demonstrated another deep-learning-based model
capable of predicting two measures of left ventricular mass
volume, recognised as MI biomarkers, from fundus images and
subsequently showed risk prediction improvement over a
demographic-based risk model (including age, sex, SBP, DBP,
cholesterol levels, glucose levels, Hba1c, daily alcohol intake and

smoking status). However, it remains unknown whether these
‘blackbox’ approaches leverage vascular information or otherwise.
Finally, little is known about the degree of overlap between MI
risk information provided by Df and established genetic risk
factors. Such knowledge would provide invaluable data for
untangling genetic and environmental contributors. Beyond ret-
inal vascular structural phenotyping, Theuerle et al. showed the
potential of functional testing of retinal microvasculature for the
prediction of MACE risk10. However, it remains unclear what
improvement functional testing offers over the ubiquity of retinal
fundus photography.

Evidence points towards coronary and retinal vessels experi-
encing similar pathophysiological changes at even early CAD
stages11–14, plausibly influenced by a shared genetic basis13,15–20.
Population-based studies demonstrated that both tortuosity and
width of arteries and veins have a genetic basis16,17. Veluchamy
et al. described two novel loci near the COL4A2 and ACTN4
genes associated with retinal tortuosity, previously reported in
genetic atrial fibrillation and CAD17 studies. During the pre-
paration of this manuscript, a genome-wide association study
(GWAS) was published identifying 7 loci contributing to Df

5.
Zekavat et al.5 calculated Df from available fundus images of a
subset of 54,813 multi-ancestry participants in the UK Biobank
cohort. That study, however, did not investigate shared Df and MI
molecular regulation and the GWAS is based on a linear model
with multiple ancestries that do not account for individuals’
genomic relatedness.

We report here a GWAS of Df, from ~38,000 white-British
participants from the UK Biobank. The aim is twofold: to com-
prehensively study the genetic control of Df and to assess the
extent of its relationship with CAD (Fig. 1). We replicated 5 Df

Fig. 1 Study results and application to stratify MI risk in UKBB. The authors created this figure with BioRender.com.
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loci and found 4 additional loci that are suggestive to contribute
to Df variation. Two of these loci (SLC12A9 and RDH5 genes)
were previously associated with cardiovascular risk factors and
diseases21. Genetic correlation estimates indicate a shared genetic
signal between Df and CAD, suggesting that decreasing Df might
be influenced by clinical CAD manifestations and, in part, by
common genetic effects. Fine-mapping and enrichment analysis
on Df loci identified Notch signalling regulatory variants sup-
porting a shared mechanism with MI outcomes. Given this strong
connection, we developed a model to predict incident MI cases in
the UK Biobank over the 10 years following ophthalmic exam-
ination at baseline, including Df and a CAD polygenic risk score
(PRSCAD). Internal 10-fold cross-validation shows a considerable
performance improvement compared with the SCORE model22,
an established CAD risk prediction score based on epidemiolo-
gical variables. This enhancement can be partly explained by the
additional predictive power of retinal and genetic determinants,
as these respectively capture early vascular morphological
abnormalities and personalised MI risk (Fig. 1). Furthermore, our
ablation study demonstrates that our model improves on an
extension of SCORE including PRSCAD, evidencing that Df pro-
vides risk information beyond epidemiological and genetic risk
factors in a population subset of UKBB. Our findings shed new
light on the genetic component of Df, suggesting an intricate
common genetic basis with CAD aetiology, and demonstrate its
potential for individual MI risk prediction.

Results
Automated quality control and fractal dimension calculation
in UK Biobank fundus images reveal interocular asymmetry in
vascular complexity at an individual level. For this study, we
first developed a semi-automated pipeline to segment the vas-
culature and select good-quality segmentations in 175,611 fundus

images available in the UK Biobank (Fig. 2a) using VAMPIRE
software (version 3.1, Universities of Edinburgh, and
Dundee)23,24, and a previously published fundus image
classifier25. An image quality score (IQS) was computed as part of
the classification process (see section “Methods”). Df was subse-
quently calculated from binary vessel maps produced auto-
matically by VAMPIRE for ~98,600 good-quality images.

We completed the, to our knowledge, largest within individual
interocular Df comparison (n= 39,656 participants) reported so
far. The population median (1.492 ± 0.043) and Df distributions
appear identical between left and right eyes (Fig. 2b and
Supplementary Data 1). However, their moderate correlation
(r= 0.61, P-value= 2 × 10−16 Fig. 2d) and the significant
difference between left and right Df (paired T-test P-
value= 1.59 × 10−75) highlight an individual interocular asym-
metry (Fig. 2c), where 50% of the individuals have a right Df 1 SD
unit larger than their respective left Df. As shown in Fig. 2d,
differences occur in both directions and are more pronounced
when any of the Df is lower than the median. To control for this
individual asymmetrical effect (Fig. 2e), we performed further
analysis in both eyes separately.

We next fitted univariate linear models using Df as the
dependent variable and estimated the Pearson correlation
between Df and 779 UKBB binary and quantitative traits (see
“Methods”) and IQS. Amongst these 780 variables, IQS has the
strongest effect (βright= 0.033, P-value < 10−300; βleft= 0.024, P-
value < 10−300; r2right= 0.39, P-value < 10−300; r2left= 0.36, P-
value < 10−300). Supplementary Figure 1 illustrates this associa-
tion and that a larger interocular IQS difference moderately
affects Df variation (β= 0.014, P-value < 10−300). Therefore, we
account for IQS influence in our following analysis.

Besides IQS, 75 quantitative and 161 binary traits were
significantly associated with Df after Bonferroni correction26

Fig. 2 Pipeline and Df characteristics. a Study design diagram describing the stepwise development of this project. b Left and right Df histogram.
c Individual variation distribution between left and right Df. d Overlapping left and right Df histograms including the regression line. e Example of individual
interocular asymmetry in UKBB fundus images.
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(P-value < 0.05/780= 6.41 × 10−5). Age, sex, height, retinal dis-
orders, smoking, hypertension, and CAD have the greatest
significant effect on Df in both eyes amongst all measurements
(Supplementary Data 2).

Fine-mapping reveals nine fractal dimension loci and their
association with cardiovascular risk factors. Here we present a
GWAS on Df. This was completed with 38,811 and 38,017
unrelated white-British UK Biobank participants that had a right
and left Df measure, respectively. After QC (see “Methods”), there
were 9,275,849 imputed SNPs with HWE > 10−6,
MAF > 5 × 10−3, a call rate >0.9, and an imputation score >0.9.
The GWAS model included hair and skin colour to control for
spurious associations given the influence of eye and skin colour
on fundus colour27,28. Hair colour replaced eye colour because
the latter is not recorded during UKBB assessments. In addition,
we completed a supplementary GWAS including an eye colour
PRS based on the study by Lona-Durazo et al.29, which indicated
no eye colour effect in our GWAS results (see section “Methods”).
The quantile-quantile plot of both GWASs indicated an adequate
control of the genomic inflation in our analysis (λGC = 1.065 and
λGC= 1.067 in the right and left eye, respectively, see Supple-
mentary Figure 2). Fig. 3c illustrates the SNPs effects comparison
between eyes GWAS studies, highlighting analogous results.
Furthermore, an additional GWAS of mean Df including parti-
cipants from both left and right eye populations (see “Methods”
section) reported equivalent SNP associations to those from eye-
specific populations (Supplementary Figure 3). The genetic cor-
relation estimates close to 1 between mean Df and eye-specific
GWAS (Mean Df and right Df: 0.93 ± 0.03, P-value= 3.89e−201;
mean Df and left Df: 0.89 ± 0.07, P-value= 2.62e−38) revealed
that mean Df GWAS was equivalent to those of left and right Df

measures.
Fine-mapping analysis of Df GWAS observations indicated

that there were nine independent credible SNP sets with a
posterior inclusion probability (PIP) > 0.95 (Supplementary
Table 1). The credible SNP sets with strongest associations were
located at OCA2 (rs72714116, P-value= 7.41 × 10−48) and
HERC2 (rs12913832, P-value= 2.16 × 10−96) genes in chromo-
some 15 (Fig. 3a, b and Supplementary Table 2). We observed
another significant association near IRF4 gene (rs12203592, P-
value= 6.59 × 10−24). These results are consistent with Zekavat et
al. GWAS. Phenome-wide association studies (PheWAS), using
GeneATLAS30 and GWASCatalog31, have commonly reported
these SNPs in skin, hair, and eye colour analyses. Recent ocular
studies demonstrated their implication in lens disorders, cataract,
glaucoma, visual acuity, and retinal venular and arteriolar width
and tortuosity5,17,20,28,32–40.

In addition to these regions, we found 4 credible SNPs that had
suggestive significance (P-value < 10−06) which did not reach
genomic-wide significance (Table 1). The SNP located at SLC45A2
gene was previously reported in pigmentation analyses29,41,
whereas those near EIF2B5 and AGPAT3 genes were described
in blood content and inflammation GWASs34,36,42. Those SNPs
located at RDH5/ORMLD2 and AGPAT3 genes also have a strong
effect on multiple ocular traits and diseases (such as macular
thickness and retinal detachment), hypertension, and arterial
disorders. The effect of the SNP at SLC45A2 gene is in line with
Zekavat et al.5 results. We could not make a complete comparison
between studies as the available summary statistics are truncated
at a P-value= 10−4. The comparison between reported variants is
in Supplementary Table 3.

The SNP heritability (h2SNP) of the left and right Df estimate
are, respectively, 0.09 ± 0.015 and 0.10 ± 0.014. These h2SNP
magnitude is in line with previous results from retinal vascular

tortuosity17,20, retinal width18, and the recently published
Df

5 GWAS.
We completed additional Df GWAS using independent UKBB

participants with European (nleft= 4340 and nright= 4288), Asian
(nleft= 562 and nright= 568), and African (nleft= 498 and
nright= 509) ancestry to assess if these populations replicated
our observations. Only the GWAS including participants with a
white European ancestry replicated the strongest associations (P-
value < 0.05/9= 0.0056), which can be explained by the con-
siderably larger number of participants in this analysis when
compared with Asian and African ancestries. Little heterogeneity
and forest plots of Df loci indicate that multiple significant genetic
variants (rs16891982, rs12203592, rs12913832 and rs31381412)
have a similar effect across Asian, African, European, and white-
British ancestries (Supplementary Fig 4).

We complemented the replication of our GWAS results with
an association study in the Canadian Longitudinal Study on
Aging (CLSA). This consisted on fitting a linear regression on Df

that controlled for the 20 first principal components and a genetic
risk score (GRS) for Df, which was estimated using the summary
statistics of the GWAS reported above (see “Methods”). We
found that the Df GRS had a significant effect on left, right and
mean Df phenotypes (Table 2), suggesting thus that the SNPs
previously described in the UKBB GWAS contribute to Df

variation in the CLSA population.

Genetic correlation estimates and functional analysis indicate
shared genetic signal between fractal dimension and coronary
artery disease. To assess the link between Df and CAD risk
factors and outcomes, we calculated their genome-wide genetic
correlation using LD score regression (LDSC)43. Genetic corre-
lation estimates (rg) indicated a negative correlation between Df

and hypertension (rg=−0.30, P-value= 4.52 × 10−06), acute MI
(rg=−0.16, P-value= 0.03), and CAD (rg=−0.18, P-value=
0.025) (Table 3). All these estimates agree in direction with
phenotypic correlations (see Supplementary Data 2) and pub-
lished studies, which reported that retinal Df decreases as people
develop these conditions2,3,11,44. Therefore, our results suggest
that these correlations of phenotypes could be partly explained by
its shared genetic basis.

Moreover, we estimated the rg between pigmentation traits and
Df to examine the similarities in their genetic basis (Supplemen-
tary Fig 5). Although the estimates are non-significant (rg=
−0.0751, P-value= 0.64), local genetic correlation near to
GWAS peaks may be significant.

We investigated possible causal relationships between CAD,
hypertension, MI and Df using Mendelian randomisation. We
found evidence of horizontal pleiotropy on the loci of interest
(pleiotropy analysis P-value= 0.0056), which indicated that we
are unable to infer the causality between Df and such
cardiovascular events (Supplementary Table 4).

A subset of credible genetic variants points towards associated
myocardial infarction post-conditioning signalling pathways.
We examined the potential for transcription factor binding site
(TFBS) disruption of the lead snps from each credible set from the
fine-mapping analysis. We observed 20 TFBS with a strong dis-
ruptive effect described in Supplementary Table 5. Eight of these
TFBS remained significant after applying a more restrictive thresh-
old to the predicted disruptiveness of its activity between reference
and alternative alleles (|AlleleDif| > 1.5). We investigated those
associated TF whose binding activity influenced the expression of a
gene within 150 kb in the chromosome. This left us with 4 Df SNPs,
5 TFBS and 9 regulated genes. Protein–protein interaction networks
show that these TFs and regulated genes participate in Notch and
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VEGF signalling pathways. Numerous studies indicate that the
upregulation of both signalling pathways after an MI event leads to
reduced infarct size, improved angiogenesis, and cardiac function,
increasing the survival rate and limiting cardiac injury45–47.

Fractal dimension improves prediction of incident myocardial
infarction in UK Biobank cases. Given our findings, we hypo-
thesized that Df and PRSCAD can provide additional information
for MI risk estimation at an individual patient level. We thus

    Manhattan plot of left Df GWAS

  Manhattan plot of right Df GWAS

a)

b)

c)

HERC2

OCA2

SLC12A9 RDH5

IRFA

SLC45A2EIF2FB5

HERC2

OCA2

SLC12A9
RDH5

IRFA

SLC45A2EIF2FB5

Fig. 3 GWAS of both eyes’ Df. Manhattan plot of a left (top) and b right (bottom) Df. Points are truncated at –log10(P)= 50 for clarity. c Comparison of
the genetic variant effects between left and right Df results. Colour depth indicates the significance of each variant (navy, violet, and purple for non-
significant, close to genome-wide significance and significant, respectively). Genetic variants included are truncated at a minimum –log10(p)= 3 for clarity.
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developed a model to predict incident cases of MI over the 10
years following ophthalmic examination at baseline (Fig. 4a).
Briefly, the model includes PRSCAD derived from a meta-analysis
completed by the CARDIoGRAMplusC4D Consortium21, clinical
variables from an established CAD risk assessment strategy
named SCORE22 (age, sex, smoking status, SBP and BMI), and
the Df of both eyes. We also considered model versions excluding
either PRSCAD or Df to elucidate their independent effect. As a
baseline for comparison, we retrained the original SCORE
model22. The MI model was trained with the 526 individuals who
experienced an MI event after their UKBB ophthalmic exam-
ination. We created a control group with an equal number of
individuals with an equivalent age range and had no underlying
MI and CAD (Supplementary Table 6). The mean age and SD in
the case and control group are respectively 57.31 ± 6.47 and
54.21 ± 7.84 years. We chose the random forest classifier (RFC) as
this method allows one to model non-linear associations with the
outcome and interactions between the predictor variables, which
boosts the prediction while being interpretable48,49. Internal 10-
fold cross-validation (FCV) indicates that our models
dominate the ROC curve of the SCORE model, achieving a
greater precision, recall, and AUC (Fig. 4b and Table 4). Amongst
our considered models, the model including PRSCAD (AUC=
0.741 ± 0.001) yielded an AUC significantly different from the
one introducing Df (AUC= 0.763 ± 0.001), and the one com-
bining both Df and PRSCAD (AUC= 0.770 ± 0.001) (Table 4 and
Supplementary Table 7). Additional assessments in our proposed
model indicated that the replacement of Df measures with Df

adjusted by IQS, the introduction of one-eye Df measurements in
our MI model, or the use of mean Df in our model yielded a
comparable performance to the aforementioned ones (Supple-
mentary Table 8).

Next, we investigated survival rate differences between low and
high MI-risk groups. These groups were defined by the
predictions obtained with our top-performing MI model and by
subsequently separating these with a probability threshold of 0.5
(high MI-risk>0.5 and low MI-risk= <0.5). The Kaplan-Meier
curve (Fig. 4c) illustrates a significant divergence between these
groups (Log-rank test P= 3.52 × 10−30), which can be explained

by the pronounced decrease in survival during the first 4 years in
the high MI risk group.

Finally, we performed an ablation study to understand the origin
of the performance improvement in our new model. Briefly, we
evaluated the performance of all possible variations between
SCORE and the top-performing model (see “Methods” section).
This assessment revealed three key contributors to the reported
improvement: the use of quantitative variables, the introduction of
PRSCAD and Df, and the use of a random forest classifier. An
extended discussion can be found in Supplementary Table 9. The
added predictive value of Df is supported by the RFC development
analysis which reveals that age, BMI and Df are the most important
features in its architecture (Supplementary Figure 6). PRSCAD is
also a determinant of the model’s development as its RFC
importance is equivalent to SBP and smoking taken together,
which is in line with recently published results14.

Discussion
This work provides a comprehensive examination of the Df

genetic basis, unveiling regulatory mechanisms at the Notch
signalling pathway that contribute to an intricate shared genetic
basis with MI. Given the strong Df and MI connection, we pre-
sented a predictive model for MI based on a random forest
algorithm that includes Df and a CAD polygenic risk score
(Fig. 1). This novel model improves MI individual risk prediction
compared to state-of-the-art approaches, demonstrating the
additional predictive power of these complimentary traits to early
identify high-risk groups.

We identified an individual interocular Df asymmetry in UKBB
that led us to perform most of the analyses in both eyes sepa-
rately. This finding is in line with published studies that reported
lateral asymmetry in Df, tortuosity, and retinal width50. We
observed that this asymmetry is more pronounced when one of
the two eyes has a Df below the population median. Interestingly,
the regression coefficients and the Pearson’s correlation estimates
between Df and UKBB traits, and the genetic findings are
equivalent in both eyes independently, suggesting that the
asymmetrical effect has a negligible influence at a population
level. A quantitative assessment of the asymmetry of retinal
vascular measurements between eyes seems crucial for studies on
retinal vascular biomarkers, often conducted on a single eye, and
require further work.

We found that age, sex, smoking, and developing ocular and
cardiovascular diseases have a significant effect on Df, agreeing
with studies reporting that Df decreases with age or by developing
these conditions2,11,15,19. Interestingly, IQS has the strongest
effect on this trait. To overcome quality imaging differences,
numerous studies elaborate on the importance of assessing
quantitatively image quality, especially in large cohorts analysed
automatically51. In our case, IQS is computed from the binary
vessel map and encapsulates the vessels segmentation’s sharpness

Table 1 Summary statistics of summary statistics of Df-associated SNPs and its nearest located gene.

Right Df Left Df Nearest gene

SNP BETA SD −Log (P-value) BETA SD −Log (P-value)

rs73175105 −1.83E−03 3.33E−04 5.33 −1.01E−04 3.60E−04 5.22 EIF2B5
rs16891982 3.53E−03 6.94E−04 6.46 3.75E−03 6.59E−04 7.93 SLC45A2
rs12203592 −2.85E−03 2.80E−04 23.62 −2.31E−03 2.68E−04 28.67 IRF4
rs6018400 −1.06E−03 2.48E−04 5.72 −1.07E−03 2.37E−04 5.17 RDH5/ORMLD2
rs12913832 5.65E−03 2.71E−04 96.97 6.34E−03 2.58E−04 131.28 HERC2
rs72714116 4.20E−03 6.35E−04 51.76 3.33E−03 5.99E−04 27.07 OCA2
rs73226964 −4.00E−03 7.75E−04 6.63 −4.21E−03 7.48E−04 4.63 AGPAT3

Table 2 Association estimates between Df measures and its
respective GRS in the CLSA population.

CLSA models Estimate SE P-value

Df (both eyes)* (n= 16,205) 0.0212 0.0024 <2E16
Df (right eye) (n= 14,820) 0.0225 0.0026 <2E−16
Df (left eye) (n= 11,826) 0.0220 0.0030 5.33E−13

*measure from the best quality image of either sides, or average of both sides when both images
were of similar quality.
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and connectivity, which are key features frequently used51,52 to
compute vascular branching complexity.

We replicated the effect of 5 loci associated with Df with similar
effects across European, Asian, and African UKBB participants.
We found 4 loci close to genome-wide significance that are
suggestive to contribute to Df. The effect of these 4 novel
loci could not be compared with Zekavat et al.5 due to the

P-value < 10−04 truncation in their summary statistics. Never-
theless, differences between both Df GWAS can be attributed to
our different strategies as the previously published GWAS com-
bines multiple ancestries and does not control for individuals'
relatedness, increasing then the type I error. Furthermore, pub-
lished tortuosity GWAS17,20 reported the significant effect of
COL4A2 and ACTN4 genes. Neither this study nor the Zekavat

Fig. 4 Development and performance of MI predictive models. a Diagram illustrating the development of our MI model. b ROC curve of MI predictive
models. c Kaplan–Meier curve of incident MI cases separated by predicted MI probability. * Df fractal dimension, PRSCAD CAD polygenic risk score, BMI
body-mass index, SBP systolic blood pressure.

Table 3 Genetic correlation estimates and significance (P-value) between Df and associated cardiovascular events.

Correlated trait LEFT EYE RIGHT EYE

rg SE P value rg SE P value

Hypertension −0.2229 0.0534 3.026E−05 −0.3020 0.0659 4.52E−06
Acute myocardial infarction −0.1717 0.0809 0.0801 −0.1585 0.1075 0.0308
Self-reported acute myocardial infarction −0.2071 0.0754 0.006 −0.2663 0.0982 0.0067
Coronary artery disease −0.2214 0.0591 1.785E−04 −0.1776 0.0795 0.025
Atherosclerosis −0.3585 0.1819 0.084 −0.2668 0.2100 0.051
Right Fractal dimension 0.9468 0.0962 1.75E−26 – – –
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et al.5 paper found an association at these genomic regions,
suggesting that Df and tortuosity also have distinct associated loci
contributing to their regulation, which is consistent with pub-
lished GWAS in retinal width and tortuosity17,20,32.

Most of the genetic variants we report here are relevant to
multiple traits and diseases; for instance, the one located near
HERC2 has been previously associated with hair33, skin40, and eye
colour35; but recent studies also suggest a strong effect in AMD36,
glaucoma37, intraocular pressure38, visual acuity39, retinal arterial
width18,32, retinal vascular complexity and density5, and arterial
and venular retinal tortuosity17,20. Another interesting associated
SNP is the one near the SLC12A9 gene as it has been reported in
pigmentation33,35,40, mean arterial pressure34, and resting heart
rate42 GWAS. We found significant negative r2g estimates
between Df and hypertension, CAD, and MI. The direction of
these estimates agrees with their phenotypical correlations and
published papers4,5,11, suggesting the correlation of phenotypes is
influenced by its genetic correlation. This finding agrees with four
aforementioned studies5,17,20,32 which identified novel retinal
width and tortuosity loci associated with CAD but did not esti-
mate a genetic correlation between retinal phenotypes and CAD.

We complemented our functional analysis with in silico TFBS
disruptiveness prediction of credible variants. We observed four
credible Df gene sets with a strong disruptive effect in 5 TFBS and
9 regulated genes, which participate at different Notch signalling
pathway stages (Fig. 5). One possible mechanism to modulate its

activity is through the alteration of ESRRA binding affinity, which
influences VEGFA transcription. In-vitro and animal model stu-
dies indicate that after an MI event, VEGFA upregulation acti-
vates VEGF signalling pathway, which has a cross-link with
Notch pathway and increases its activity45,53–55. Another
mechanism derives from HES1 binding site affinity. HES1 influ-
ences MAML1 and NOTCH1 expression and directly affect Notch
signalling45–47,56. The last mechanism influencing Notch activity
is mediated through TBX20 binding site affinity, which plays a
role in TLE3 transcription. Under a MI event, multiple studies
indicate that TLE3 upregulation activates PI3K/Akt signalling
pathway, a downstream process of Notch signalling pathway57,58.
Numerous in-vitro and animal models studies support that this
increased Notch activity, mediated by HES1, ESRRA and TBX20
upregulation, leads to reduction of cellular oxidative stress con-
sequently improving myocardial viability, regeneration, and sur-
vival rate after a MI event45–47. We hypothesize that the TF
binding disruption caused by these genetic variants influence
Notch activity and, in the case of MI, might have a risk-conferring
effect46,47,56–62. Furthermore, the alleles which predict a stronger
TFBS disruptiveness have a negative effect size on Df (see Sup-
plementary Figure 7). Then, we could speculate that individuals
with higher Df might not have a disrupted Notch signalling
pathway, which might be protective towards the response of a
myocardial infarction event. An extended discussion is available
in the Supplementary Table 5. Thus, these analyses suggest that

Fig. 5 Enrichment analysis of Df loci. a Protein–Protein interaction network of enriched TF and regulated genes. Upregulation of b ESRRA (top), c HES1
(middle) and d TBX20 (bottom) in VEGF and Notch signalling pathway after an MI event.

Table 4 Internal 10-fold cross-validation of MI models evaluated with precision, recall and AUC.

MI

Model Precision (95%CI) Sensitivity (95%CI) Specificity (95%CI) AUC (95%CI)
SCORE model22 0.716 (0.664–0.741) 0.725 (0.691–0.767) 0.691 (0.652–0.731) 0.719 (0.681–0.737)
Random Forest including PRSCAD 0.735 (0.708–0.782) 0.756 (0.726–0.801) 0.739 (0.702–0.777) 0.741 (0.725–0.775)a

Random Forest including both eye-
specific Df

0.756 (0.732– 0.802) 0.778 (0.762–0.831) 0.758 (0.721–0.795) 0.763 (0.750–0.802)a

Random Forest including mean Df and
PRSCAD

0.733 (0.716–0.770) 0.779 (0.743–0.814) 0.756 (0.717–0.797) 0.748 (0.722– 0.773)a

Random Forest including Df and PRSCAD 0.770 (0.734–0.805) 0.790 (0.757–0.826) 0.764 (0.728–0.800) 0.770 (0.751–0.802)a

aAUC estimates significantly different (Wilcoxson signed-rank test P-value < 0.005) from the ones obtained with the SCORE model. The obtained Wilcoxon signed-rank P-value for each model
comparison is included in Supplementary Table 7.
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there is an intricate shared genetic basis between vascular com-
plexity and MI and further in-vitro experiments are needed to
characterise gene expression and regulation of retinal tissue to
better understand it.

The potential of the retinal vasculature for stratifying the risk
of Major Adverse Cardiac Events (MACE) has already been
assessed in diabetic6,7 and non-diabetic8,10 individuals. Several
predictive models have included retinal traits, either in a
semantic6 or a non-semantic construction8, but reported very
modest improvements in terms of AUC compared to the estab-
lished risk estimation strategies based on epidemiological vari-
ables (e.g., 0.73 vs 0.72 in ref. 8). This discrepancy with our results
might be attributed to the different clinical definitions of MACE,
comprising normally a heterogeneous group of cardiovascular
events where some of which might be not well captured in sec-
ondary care data. This situation reduces the model’s statistical
power as there might be an overlap in case-control groups. In the
case of diabetic population studies, both cases and controls also
have comorbidities directly affecting the architecture of the retinal
vasculature that might reduce predictive power for MACE risk.
Theuerle et al.10 reported that retinal arterial dilation response to
induced flickering light (FI-RAD) promisingly stratified MACE
risk over 200 individuals from a local medical centre. Even
though they found CAD family history and reduced FI-RAD to
be the strongest MACE risk predictors, no comparison with
traditional models is described. We could not assess the effect of
this functional phenotype in this work as its computation derives
from an invasive procedure that is not possible to apply retro-
spectively to existing imaging repositories (e.g. UKBB, SCONe).
In this work, we focused on retinal structural variations, and MI
events, and considered available ICD10 guidelines and UKBB
validation reports of MI data to characterize cases, achieving the
maximum possible statistical power.

Recent papers have addressed the additional predictive value of
a CAD PRS in MACE and CAD risk stratification6,7,14,63–65.
These approaches, although mainly developed in European
populations, achieve a better identification of high-risk MI indi-
viduals than those strategies based only on epidemiological
variables14,63–65. Given this promising finding and the observed
shared genetic basis between Df and MI, we examined the effect
of both retinal and genetic determinants on MI event risk stra-
tification. We found that adequate clinical phenotyping is key to
our models’ performance, but, as shown by our ablation study,
the choice of the random forest algorithm, the use of continuous
variables and the introduction of Df and PRSCAD in the model all
independently improve traditional individual MI risk predictions
in this moderate population of study. In addition, the model
including these three modifications achieves the greatest perfor-
mance. Df thus provides an early indication of coronary
abnormalities not fully captured in clinical variables of these
participants and that PRS accounts for the individual protective/
risk-conferring effect on the genetic architecture of the disease.
Hence, the proposed model has the potential, as illustrated in the
Kaplan-Meier analysis, to stratify UKBB individuals by MI risk.
This could be applicable to equivalent populations and after
further external validations, allow for early targeted preventive
efforts, like the administration of cholesterol-lowering treatments.

Our work has multiple limitations. Firstly, there are only 526
MI cases with a good-quality fundus image taken in UKBB.
Higher numbers of such participants would allow us to train and
evaluate our models more robustly. Secondly, the study popula-
tion for the predictive models only consisted of UKBB partici-
pants with European ancestry with similar sociodemographic
status, restricting the application of translational strategies to
non-white European and British individuals among different
sociodemographic profiles. Furthermore, the PRS included in the

proposed predictive model is based on a meta-analysis completed
with participants with mainly white European non-British and
white British ancestries. Then, it is of utmost importance to
complete GWAS in non-European populations to provide input
for PRS estimations so that they are included in such medical
applications. Thirdly, the stability of numerical estimates of the
fractal dimension is the object of a continuing debate in the
retinal image analysis community66–68. Fourth, we did not have
an external validation cohort to complete an external validation
of our MI model. This matter is attributed to the lack of available
datasets containing extensive phenotyping from its participants.
Finally, there is little information about the genetic expression
profiles and the regulation mechanisms of retinal and ocular
tissues in public databases. This might be influenced by the
minority of studies across these tissues and the complicated
protocols to extract and characterise them.

In conclusion, our study contributes to a growing body of
evidence showing associations between abnormal morphologic
characteristics in coronary vessels and retinal vascular remodel-
ling. In particular, we found that credible fractal dimension loci
modulate Notch signalling regulation, and partly explains the
intricate shared genetic basis with MI. Remarkably, our MI model
improved the stratification of the high-risk population. This is of
great interest as it discloses a promising holistic strategy that can
prevent MI incidence and triage those with an elevated MI
hazard. This study ultimately sheds new light on the value of
easily accessible vascular imaging phenotypes and their promising
application in personalised medicine.

Methods
UK Biobank. UK Biobank (https://www.ukbiobank.ac.uk) is a large multi-site
cohort study that consists of 502,655 individuals aged between 40 and 69 years at
baseline, recruited from 22 centres across the UK during 2006–2010. The study was
approved by the National Research Ethics Committee, reference 11/NW/0382, and
informed consent was obtained from all participants as part of the recruitment and
assessment process. From these, a baseline questionnaire, physical measurements,
and biological samples were undertaken for each participant. Ophthalmic exam-
ination was not included in the original baseline assessment and was introduced as
an enhancement in 6 UKBB centres across the UK. This examination consisted on
capturing paired retinal fundus with a 45º primary field of view obtained with
Topcon 3D OCT-1000 MKII (Topcon Corporation). This project was completed
using fundus images collected in the first and the repeated ophthalmic examination
which took place in 2012 and 2013. It includes 175,709 fundus images (87,552 left
and 88,157 from the right) from 67,725 participants.

Image classification. Image quality was not reported in the UKBB cohort and was
found wanting for the purpose of automatic analysis in the first study of this
kind69. A previous study defined an automated classifier for this dataset using three
imaging features following vessels segmentation: white pixel ratio (WPR), largest
connected component ratio (LCCR) and the number of connected components
(NCC) on a support vector machine (SVM) classifier25. We reproduced this
classifier using a data subset of 448 random fundus images and VAMPIRE
3.1 software running in MATLAB 2018a23,24. The software performs automatic
detection of the retinal vasculature, creating a binary vessel map for each image.
A.V.V. manually classified the quality of these images based on the connectivity
and the sharpness of the binary vessel map, and the lack of imaging artefacts.
Manual classification was repeated 2 times using the same random subset of 100
images and the intra-classifier agreement coefficient was 0.897. This dataset was
subsequently split in a training (n= 278) and validation (n= 170) sets. Both data
subsets included an even number of manually classified good and bad quality
images. We obtained a precision of 0.95, and a recall of 0.87, agreeing with the
original study.

The classifier found 98,603 images with good quality from a total of 175,709
fundus images, of which 49,903 were from the right eye and 48,700 from the left
eye. These images were derived from ~45,000 participants with different ancestries
and included individuals with both or one eye examined at least one time. In the
case of those participants that had two good quality images from one eye, following
analyses are completed using the images obtained at the first examination.

Besides classification, the classifier returns an imaging quality score (IQS) based
on the distance of an image from the classification boundary computed at the
training phase of the SVM. We retrieved IQS using the score parameter in the
prediction function running in MATLAB 2018a. We thus quantify individually the
reliability of each image being classified as bad and good image.
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Calculating fractal dimension. Retinal fractal dimension, Df, was computed from
the binarized good-quality images using VAMPIRE software based on the multi-
fractal analysis method70. This process was parallelised using 12 cores and 10GB
per core.

Statistics and reproducibility. To compare left and right Df values we used
participants who had both eyes scanned at the same UKBB examination and whose
images were classified as good quality. 39,659 participants met these criteria. Both
Df distributions were compared using a paired T-Test and by estimating the
Pearson correlation with the SciPy package in python 3. We also fitted a linear
regression using respectively left and right Df as dependent and independent
variables.

We estimated the Pearson correlation and the effect of 779 UKBB traits on Df

by fitting univariate linear regressions with each variable and using Df as the
dependent variable. This included 121 quantitative variables (such as age, height,
and BMI) and 658 binary variables (such as sex, diagnosed myopia, and diagnosed
hypertension) which were extracted as reported elsewhere in30. The effect of IQS
was also analysed following this approach. In addition, we evaluated the IQS
difference effect on Df variability by fitting univariate linear regression using
participants who had a good-quality image of both eyes scanned at the same UKBB
examination. These analyses were completed using SciPy in python 3. Allied graphs
were created using matplotlib and seaborn graphical packages in python 3.

Genome-wide association studies. We included 38,811 and 38,017 individuals in
the right and left GWAS, respectively, with a self-reported and genotyped con-
firmed unrelated white-British ancestry71. Unrelated individuals were selected
using a 0.0442 threshold from UKBB data and a previous work that established
unrelated UKB participants with a white British ancestry30. Variants included were
autosomal SNPs present in the genotyping arrays employed by UKBB and from the
UKBB imputation panel with HWE > 10−6, MAF > 5 × 10−3, call rate >0.9 in
unrelated white British individuals (kinship < 0.0442) and imputation score >0.9 in
the imputed SNPs. The number of total SNPs analysed after quality control was
9,275,849.

Following genotype-level QC, a linear regression model was used to analyse the
association of each SNP genotype with Df using PLINK v2.0. We assumed an
additive genetic model, adjusting for age at examination, sex, IQS, assessment
centre, the first 10 genomic principal components and genotyping batch. In
addition, we included hair and skin colour as covariates to control for the influence
of skin and eye colour on the fundus image colour, which can affect image
segmentation and Df calculation. Hair colour replaced eye colour as the latter was
not recorded during UKBB assessments, and it has a similar genetic control to eye
pigmentation. Besides, we performed an additional GWAS including a polygenic
risk score (PRS) for eye colour to assess its influence on our GWAS results. This
PRS derives from an eye colour GWA study that defines it quantitatively (i.e., 1 =
blue or grey, 2 = green, 3 = hazel, and 4 = brown) completed by Lona-Durazo
et al. using the CanPath cohort, which includes ~5000 participants with European
ancestry29. We estimated this PRS for each participant by extracting those
independent genetic variants with a P-value < 5 × 10−8 from the summary statistics
and applying linear regression to the effects of these SNPs and the genotypes of our
UKBB participants (Supplementary Table 10). We then included this PRS as a
covariate in an additional GWAS. Supplementary Figure 8 demonstrates that the
results of these GWAS are analogous to those of GWAS including both skin and
hair colour.

Furthermore, we completed a supplementary mean Df GWAS using those
participants with white British ancestry from both left and right eye populations.
We decided that mean Df was calculated only on those participants whose image
quality score for both eyes was within 3SD from the population mean. If this
condition was not met, we used the Df measure from the eye with the highest IQS
or the available measure. This left us with a sample size of 39,799 participants.

QQ plots were generated using the R package qqman and ggplot2, and
Manhattan plots and GWAS comparisons plots were generated using Matplotlib
and seaborn libraries in python 3.

We completed a PheWAS to assess whether Df loci have a significant effect on
other traits. To this end, we searched Df-associated SNPs in GWASCatalog31 and
GeneATLAS30. GWAScatalog contains hundreds of GWAS performed in different
traits and populations and it constantly updates new GWAS to its database.
GeneATLAS contains GWAS summary statistics for 778 UKBB traits and diseases
using individuals from European ancestry from UKBB. These genetic variants have
a P-value smaller than 5 × 10−8 on the trait in order to assume a strong association
common to Df.

GWAS and meta-analysis of Df loci across UKBB ancestries. We performed
additional GWAS including UKBB participants with European non-British
(nleft= 4340 and nright= 4288), Asian (nleft= 562 and nright= 568) and African
ancestries (nleft= 498 and nright= 509) following the aforementioned model and
procedure.

The multi-ancestry GWAS comparison was completed with those significant
and independent SNPs from the Df GWAS including white British participants.
We extracted the summary statistics of these SNPs from the Asian, African, and

white-European GWAS and compared their effects across UKBB ancestries. Forest
plots were carried out with Meta package in R 4.0 software.

Association between Df genetic risk score and Df measures in the CLSA. We
complemented our replication study with an association analysis using Df measures
and the genotypes from CLSA participants with a white European ancestry. The
Canadian Longitudinal Study on Aging (CLSA) is a large, national, stratified,
random sample of ~50,000 Canadians aged 45 to 85 years at the time of recruit-
ment (2010–2015), followed until 2033 (or until death), which aims at investigating
the associations between various risk factors and incidence of chronic diseases72. A
subset of 30,000 participants (i.e., comprehensive subset) had physical examina-
tions and biological specimen collection, including fundus photographs (1 for each
eye) obtained using the Topcon TRC-NW8 non-mydriatic retinal camera. A total
of 50,957 retinal photographs, from 25,717 CLSA participants, were analysed using
VAMPIRE (Vascular Assessment and Measurement Platform for Images of the
Retina) software version 3.1, to compute the image quality (good/moderate/poor)
and the fractal dimension (Df) of the retinal vascular pattern. Participants with
poor quality images for both eyes were excluded for subsequent analyses.

Among the comprehensive subset, 26,622 CLSA participants (with 93% of
Europeans) were successfully genotyped using the UK Biobank Array71. Quality
control steps have been detailed elsewhere73. Briefly, phasing and imputation were
conducted using the TOPMed reference panel74 at the University of Michigan
Imputation Service75. We used the TOPMed reference panel version r2, and then
pre-phased and imputed the genotype data using EAGLE276 and Minimac77

respectively, for both autosomal and X chromosomes. Samples with low call rates
(<95%), sex mismatches, or cryptic relatedness were removed. Imputed SNPs were
excluded on the basis of HWE > 10−6, MAF > 1 × 10−4, call rate >0.9, and
imputation quality (imputation score <0.6).

A total of 19 independent genetic variants significantly associated with Df in the
UKB were selected to calculate a genetic risk score (GRS) (Supplementary
Table 11). CLSA Individual’s risk score consisted in the sum of each SNP dosage
weighted by each SNP-Df association coefficient given in Df unit per effect allele. A
linear regression was performed to estimate the association between FD measures
and Df GRS in 16,205 CLSA participants, with at least one retinal image of
moderate or good quality of either side, and suitable genetic material. Models were
adjusted for the 20 first principal components.

Genetic correlation and heritability estimation. To investigate the shared genetic
signal between Df and associated traits, we estimated their genome-wide genetic
correlation. For this purpose, we obtained the GWAS summary statistics of traits of
interest to our study from GeneATLAS and the eye colour study29. These calcu-
lations were computed with LD Score43, a toolbox that estimates genetic correlation
using GWAS summary statistics considering possible inflation caused by SNPs in
linkage disequilibrium (LD). To ascertain the LD blocks within each variant, the
software uses the 1000 Genomes panel as reference. Heatmaps were created with
the genetic correlation estimate using the seaborn library in python 3.

LD Score was also used to calculate the SNP heritability of both eyes’ Df. In this
case, the software uses the reference map and the GWAS summary statistics to
estimate the fraction of Df variance explained by the SNPs’ additive effect.

Mendelian randomization. To infer the causality between the shared genetic basis
of CAD, MI, hypertension and Df, we performed a Mendelian randomization
analysis. For this procedure, we extracted the summary statistics of MI, hyper-
tension, and CAD from GeneATLAS. We next selected for each cardiovascular
condition separately those SNPs with a P-value < 5 × 10−08, and MAF > 0.01. We
then selected those independent SNPs which were not palindromic by clumping
these regions in windows of 10,000 kb and applying a r2 < 0.001 and a significance
of 0.99 thresholds. The effect and the significance of these variants were also
extracted from Df GWAS summary statistics. We then estimated the causal effect
of these genetic variants through different methods (inverse-variance weighted
regression, Egger’s regression, and Maximum likelihood) to analyse whether using
different scenarios could better characterise the causality. This process was com-
pleted with TwoSamplesMR package in R 4.078. This package applies a quality
control and a sensitivity analysis to evaluate the presence of palindromic SNPs,
pleiotropy and heterogeneity which might influence the results of the study.

Fine-mapping. Fine-mapping of significant Df SNPs was completed with SusieR
v.0.11.42 R package79. For each significant variant locus, we selected those variants
that were located within 1Mbp window at each side and estimated the correlation
matrix among them with plink v1.9. Next, we ran the Susie_rss function with the
Z-score from Df GWAS and the correlation matrix of the previously selected
variants. We ascertained that each credible set must have a coverage >0.95 and a
minimum and median correlation coefficient (purity) of r= 0.1 and 0.5,
respectively.

Transcription factor binding sites prediction. The identification of variants with
strong evidence to disrupt TF binding activity based on position probability
matrices (PPM) was carried out with the R library motifbreakR v2.2.080. For the
TFBS we used default settings except the P-value threshold to declare TF binding
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site matching either of the allelic configurations, which was set to 5 × 10−04, and
the relative entropy scoring method set to information content algorithm
(method= ic) as performed in81. MotifDb and motifbreakR_motif were the
selected databases of TF motifs which contain 14 public collections (including
JASPAR, HOCOMOCO, ENCODE, HOMER and FactorBook) to perform this
analysis. We calculated accurate P-values for both reference and alternative alleles
by implementing calculatePvalue() function. We investigated those TFBS motifs
with a P-value < 0.001 in both alleles and an absolute allelic score difference > 1.5.

Protein–protein interaction networks analyses were completed with those TF
that bind at significant TFBS and the regulated genes located within a 150 kb
window using DAVID82 and STRING83 software. We considered associated
pathways those with an FDR and Bonferroni correction < 0.001.

Development of MI predictive model. We used a subset of the UKBB data for MI
model training and evaluation. We extracted white British UKBB participants who
had good-quality images and a MI event after UKBB recruitment. MI events were
defined in UKBB as a participant self-reporting MI at first repeated assessment visit
[code 1075 from UKBB data field 20002] and MI hospitalizations identified using
ICD10 codes [codes I21.1, I21.2, I21.3, I21.4, I21.9, I22, I22.0, I22.1, I22.8, I22.9,
I23, I23.0, I23.1, I23.2, I23.3, I23.4, I23.5, I23.6, I23.8, I24.1, and I25.2 from UKBB
data field 41204 and 41202]. The UKBB team previously validated this MI
extraction algorithm and reported a minimum precision of 75%84. To define
incident cases occurring after UKBB recruitment we used the date of the MI event
[UKBB algorithmically defined MI event date from data field 42000] and the
approximate period when participants underwent the ophthalmic examination,
resulting in 526 incident cases. We randomly selected an equal number of age-
matched participants with good-quality images of both eyes no cardiovascular
event within the CAD spectrum and no known risk factor (e.g., hypertension, and
family history of heart disease). This match was completed using the age range of
the cases (i.e. 45–61 years) and constricting the random selection of controls to
these ages.

Our MI predictive model uses age at baseline, sex, systolic blood pressure,
smoking status, BMI, and a polygenic risk score for CAD and Df of both eyes
separately as features in a classification algorithm. We chose a random forest
classifier algorithm allowing both non-linear associations between outcome and
variables as well as inter-variable interaction in the model. Permutation-based
feature importance scores85 were extracted in the modelling phase to assess the
effect of each variable in the random forest construction using the
feature_importances_ function from the scikit-learn package. Given the influence of
IQS on Df, we trained an additional model replacing Df to Df adjusted by IQS to
assess the existence of major differences in the model’s performance. We also tested
whether introducing just one eye Df in the model implied major differences in its
performance.

We then extracted the information of the established risk variables, that is, age,
sex, SBP, BMI, and smoking status, for the population of study using the curated
phenotypes from UK Biobank July 2017 release30 We extracted controls only
considering those UKBB participants with no missing data and both Df measures,
as the majority of individuals with a Df measure were healthy. 56 MI cases had a
missing Df measure from one eye. In these cases, we did not predict the missing
value and only used the available Df measure.

To evaluate the performance of the predictive model, we reproduced SCORE
with this MI dataset. SCORE uses age, sex, systolic blood pressure, smoking status,
and BMI as input variables for logistic regression, with quantitative variables being
discretized using healthcare guidelines8. We then assessed each model’s
performance by using internal 10-fold cross-validation and computing its AUC,
precision, and recall. We used the same data partitions across SCORE and our MI
models. A Wilcoxon signed-rank test was completed across all the trained models
to evaluate the significance of the AUC differences.

We used Kaplan–Meier curves to assess the difference in survival rate difference
between patients with high and low predicted MI probability, dichotomised at a
probability of 0.5. This probability was obtained with our top-performing MI
model. A Log-rank test was completed to evaluate the difference between these
groups’ curves.

We investigated the sources of improvement of our MI model compared to the
SCORE model through an ablation study. The model differs from SCORE in four
key aspects: (1) introducing Df, (2) the use of not-discretized quantitative variables,
(3) using Random Forest instead of logistic regression, and (4) introducing
PRSCAD. This ablation study consisted of assessing the performance of a modified
version of SCORE through its AUC, recall and precision. These modifications
included all the possible independent combinations across these alterations.

This part of the study was written in Python 3.5.7 using the sci-kit-learn,
NumPy and Pandas packages. ROC curves were plotted using the predicted MI
probability from each model using the ROCurve plot package in R 4.0. Both
Kaplan–Meier curves and the Log-rank test were completed with the lifelines
Python package.

Estimating CAD polygenic risk score. PRSCAD derives from the CARDIo-
GRAMplusC4D Consortium21 which is one of the largest completed CAD meta-
analyses. This study does not include UKBB data, but it is developed with multiple
CAD databases with different ancestries to better characterise the genetic control of

this outcome. We estimated PRSCAD for each participant in the MI dataset by using
PRSice-2 software86, the summary statistics of the meta-analysis, and the genotypes
of this MI dataset. We then included this PRS as a variable in our MI
predictive model.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of the present study are
available within the paper and its supplementary information files. The fractal dimension
GWAS summary statistics of all fitted models are openly available from the University of
Edinburgh DataShare repository within the following collection: https://datashare.ed.ac.
uk/handle/10283/4794. Data are available from the Canadian Longitudinal Study on
Aging (www.clsa-elcv.ca) for researchers who meet the criteria for access to de-identified
CLSA data.

Code availability
The authors declare that the customised code for the myocardial infarction predictive
model is available within the following GitHub repository: //github.com/Anavillaplana/
MI_risk_prediction.
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