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A data-driven crop model for maize yield prediction
Yanbin Chang1, Jeremy Latham1, Mark Licht 2 & Lizhi Wang 1✉

Accurate estimation of crop yield predictions is of great importance for food security under

the impact of climate change. We propose a data-driven crop model that combines the

knowledge advantage of process-based modeling and the computational advantage of data-

driven modeling. The proposed model tracks the daily biomass accumulation process during

the maize growing season and uses daily produced biomass to estimate the final grain yield.

Computational studies using crop yield, field location, genotype and corresponding envir-

onmental data were conducted in the US Corn Belt region from 1981 to 2020. The results

suggest that the proposed model can achieve an accurate prediction performance with a

7.16% relative root-mean-square-error of average yield in 2020 and provide scientifically

explainable results. The model also demonstrates its ability to detect and separate interac-

tions between genotypic parameters and environmental variables. Additionally, this study

demonstrates the potential value of the proposed model in helping farmers achieve higher

yields by optimizing seed selection.
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Predicting crop yield is central to addressing emerging
challenges in food security, particularly in an era of global
climate change1,2. Accurate yield predictions help farmers

make informed economic and management decisions and can
support famine-prevention efforts and the global food security.
Early crop model pioneers have developed research3–5 to cate-
gorize many relevant factors that are needed by crop models, such
as temperature, humidity and leaf area index (LAI). To date,
underlying yield prediction is one of the greatest challenges of
biology: understanding how phenotype is determined by geno-
type, environment, and their interactions. Specifically, the rela-
tionship between genetics, weather, soil and management
variables and crop yield has been the subject of extensive
studies6–16. Pursuing more accurate crop yield prediction tech-
niques has and will continue to motivate innovation at the
intersection of plant science and data analytics.

Majority of the literature on crop yield prediction falls into two
categories: processed-based crop models and data-driven
machine learning models, both of which have their salient
strengths and weaknesses. Process-based crop models, such as
APSIM17–19 and DSSAT20–22, describe the crop growth process
and development as a complex function of weather, soil, and
management. As such, process-based crop models reflect human
knowledge of plant biology and are easily explainable in terms of
physiological mechanisms. For example, Yield Prophet23, an
APSIM-based online crop simulation service, was set up to help
farmers avoid over- or under-investing in their crops by fore-
casting potential yields with detailed inputs such as nitrogen
application types and altered sowing dates. Since crop models can
be experimentally validated, their results provide not only crop
yield predictions but also scientific explanation of such predic-
tions. However, these models face several serious challenges.
Calibration of the numerous parameters of the a crop model
typically requires time-consuming and resource intensive field
experiments, yet these parameters are hardly generalizable across
different varieties and environmental conditions. Oftentimes, the
large variability of environmental conditions, coupled with
choices of model structure and parameters, limits the predictive
performance of these models beyond the spatiotemporal varia-
bility of observed yields in a large area24,25. Application of
process-based crop models is also limited by the paucity of spa-
tially detailed input data24. In the absence of spatial data on the
distribution of key model inputs such as information on crop
cultivars and management (e.g. irrigation, planting, fertilization,
tillage, weed control), modelers often make broad assumptions
across large geographic regions that may or may not reflect on-
the-ground decision-making of individual producers in the con-
text of economic opportunities and policy incentives26.

In contrast to the process-based methodology, machine learning
models take a data-driven approach to approximate the complex
relationship between input (genotype and environment) and out-
put (crop yield) without relying on human knowledge on crop
science, which is incomplete and sometimes incorrect. Several
machine learning models have been successfully deployed to pro-
duce remarkable prediction accuracy, including multiple linear
regression27, partial least squares regression28, random forest
regression29,30, convolutional neural networks31, deep neural
network10,32,33, among others. The sophisticated and powerful
model structures of these data-driven models, when trained with
high quality large datasets, are able to implicitly account for both
additive effects and interactions among genotype, environment,
and crop management practices, allowing them to outperform
most crop models in terms of prediction accuracy. Some satellite-
based indicators have also been utilized in the data-driven crop
model to study the crop yield in a large area, such as Gross Primary
Productivity (GPP)34, Normalized Difference Vegetation Index

(NDVI)35–37, and Enhanced Vegetation Index (EVI)38,39. Some
recent research has incorporated the remotely sensed data derived
indicators into the machine learning crop model40–45. However,
these models also inevitably suffer from the common limitations of
machine learning models. They are sensitivity to data quantity and
quality46, limiting their applicability to crops with sufficient data-
sets. Machine learning models often include a huge number of
parameters in a blackbox structure, but it is hard to discern how the
parameters are used to incorporate input data into the model to
predict a particular outcome such as crop yield; as such, it is dif-
ficult to extract scientific insights from the results or transfer them
spatially, temporally, or genetically47–49.

An emerging and promising research direction is to integrate
process-based models and data-driven ones. Huang et al.50 used
Bayesian averaging method to construct a process-based ensemble
model to provide a reliable maize yield forecast in Liaoning Pro-
vince, China. Feng et al.51 combined the APSIM and statistical
regression-based model to improve the accuracy of wheat yield
prediction by dynamically tracking climate and remote sensing
indices during the growing season. Shahhosseini et al.52 integrated
the APSIM model and machine learning models and achieved
improved yield prediction accuracy. Saha et al.53 used regression-
based machine learning models integrated with the crop growth
model to improve the prediction of temporal nitrous oxide emis-
sions from corn and soybean in the Midwest of the United States.

In this paper, we present a data-driven crop model for maize in
an attempt to combine the strengths of process-based models with
those of data-driven models and overcome their limitations. The
proposed model attempts to provide explanatory crop yield pre-
dictions with the available historical data over both temporal and
spatial dimensions without the need for experimental calibration.
The proposed model uses a crop model to describe how crop yield
is determined by genotype, environment, and their interactions;
data-driven techniques are used to calibrate model parameters
from historical data. Figure 1 illustrates how the data-driven crop
model (subfigure c) conceptually differs from a process-based
model (subfigure a) and a data-driven model (subfigure b). Similar
to the process-based model, the data-driven crop model also
describes plant phenotype as a result of genotype, environment and
their interactions throughout the crop growth process, preserving
the advantage of being scientifically explainable and insightful.
There are three major differences between the proposed data-
driven crop model and other existing crop models in the literature.
First, the data-driven crop model defines the genetic properties as
parameters for each crop variety. In contrast, some parameters
used in conventional crop models (e.g., LAR and LAI in APSIM)
are jointly determined by genotype and environment. Being inde-
pendent from environmental effects, the genotypic parameters in
the data-driven crop model are transferable to other environments,
whereas the parameters for other crop models may need to be re-
calibrated when the same varieties are grown in a different envir-
onment. Second, the data-driven crop model is designed to be a
flexible framework that consists of a number of modules to reflect
the crop growth process. The composition of these modules
depends on the availability of data. Conventional crop models have
a fixed requirement of datasets; as a result, missing or unavailable
data must be imputed or assumed before the modeling can be
used54. Third, rather than relying on large amount of field
experiments for parameter calibration, the data-driven crop model
employs machine learning methods to train the parameters to best
fit historical data within reasonable ranges.

Result
In order to demonstrate the effectiveness of the data-driven crop
approach, we applied the descriptive and predictive models to the
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dataset described in next Method section. Computational experi-
ments were conducted using the Python on a laptop with an Intel
i7-10750H processor running at 2.60 GHz with 16 GB of RAM.

Training accuracy. We were able to calibrate the genotypic
parameters to achieve an RMSE of 0.74 Mg/ha for the training
data; with respect to the average yield in 2020 in the Corn Belt
(10.34 Mg/ha), the relative RMSE (or RRMSE) was 7.16%. Fig-
ure 2 shows the observed and fitted yields between 1981 and
2020. The overall training accuracy in the last decade was slightly
higher than the first three; low accuracy years were often
accompanied by extreme weather, such as the great flood in 1993
and the drought in 2012.

To benchmark the modeling performance, we found two deep
learning models published in 201910 and 202011 using similar

Corn Belt datasets. Their training RMSEs were 0.67 Mg/ha and
0.72 Mg/ha, respectively. In a more recent study52, a new model
was proposed that combined machine learning and APSIM
models, and their training RMSE was 0.69 Mg/ha using a similar
dataset. Therefore, the data-driven crop model demonstrated its
capability to reach a comparable prediction accuracy with state-
of-the-art models in the literature.

Spatial extrapolation. To evaluate the predictive performance of a
trained data-driven crop model on an unseen location, we con-
ducted thirteen experiments. In each experiment, we first select a
county c in the test state, carving out all data of county c from the
training data and using them as test data. After obtaining the
predictive performance of the previously unseen county c, we move
to the next county in the test state until the process is complete for

Fig. 1 Comparison of process-based, data-driven, and the proposed data-driven crop models. a Process-based models are built with human knowledge
on plant physiology with explicit assumptions about genotype by environment interactions; numerous traits (modeling parameters) need to be estimated
using experiments or survey of the literature. b Data-driven models rely on historical data to approximate the complex relationship between input and
output. c The proposed Data-driven Crop model combines the strengths of two types of models.

Fig. 2 Training performance of proposed model. The cyan and red curves are, respectively, observed yield and fitted yield using training data between
1981 and 2020, averaged across all counties in the Corn Belt.
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all counties in the test state. The nearest-county approach was used
as a benchmark prediction strategy: the historical yield for the
nearest county to county c in year t was used as the predicted yield
for the unseen county c in year t; the planted area weighted average
predicted yield for all counties from 1981 to 2020 in the test state
was then used to compare with the observed average yield in the
test state. Figure 3 plots the RMSEs of the benchmark approach, the
data-driven crop prediction on the test data and training data, as
well as the planted areas.

The average RMSE and RRMSE for spatial extrapolation were
1.17 Mg/ha and 11.32%, respectively. In contrast, the benchmark
RMSE and RRMSE were 1.44 Mg/ha and 13.93%, respectively; the
training RMSE and RRMSE were 0.83 Mg/ha and 8.03%,
respectively. Nebraska and Kansas had the highest RMSEs, which
may be partly due to a lack of irrigation data. The descriptive
modeling assumes zero irrigation, given that many states in the
Corn Belt are rainfed and no irrigation data are available. However,
Nebraska and Kansas were among the most irrigated states in the
Corn Belt, which could lead to higher prediction errors. These
results suggest that the predictive performance of the model could
be further improved with additional irrigation data.

Temporal extrapolation. Similar to spatial extrapolation, we also
evaluated the temporal extrapolation of the data-driven crop
model. We carried out forty experiments, each time carving out
all data for one year between 1981 and 2020 from the training
data and using them as test data. The nearest-year approach was
used as a benchmark prediction strategy: the average historical
yield for county c in years t− 1 and t+ 1 was used as the pre-
dicted yield for county c in the unseen year t; the planted area
weighted average predicted yield for all counties in the test year
was then used to compare with the observed average yield in the
test year. Figure 4 plots the RMSEs of the benchmark approach,
the data-driven crop model prediction on the test data and
training data, as well as the planted areas.

The average RMSE and RRMSE for temporal extrapolation were
1.15 Mg/ha and 11.12%, respectively. In contrast, the benchmark

RMSE and RRMSE were 1.55 Mg/ha and 14.99%, respectively; the
training RMSE and RRMSE were 0.71 Mg/ha and 6.87%,
respectively. The benchmark approach struggled in drought
(1983, 1988, 2012) or flood (1993) years. The data-driven crop
model performance improved during the aforementioned years,
although 1993 was still more challenging than other years. These
results suggest the direction of improving predictive performance
by refining the design of the stress module in the descriptive model.

Genotype by environment interactions. Since the genotypic
parameters in the data-driven crop model were defined to be
solely determined by the genotype and independent of environ-
mental effects, the model is able to answer “what-if” questions
regarding genotype by environment interactions.

In this experiment we explore the hypothetical scenarios of
growing all the historical seeds under all historical weather
conditions. To estimate yields in all of these scenarios, we
extracted genotypic parameters for all states and all years and
combined them with environmental and management data to
produce the predicted yield for the desired combination. For
example, the predicted yield of growing genotype from year t1 in
the environmental conditions of year t2 in county c is calculated
from function f ðWt2;c

;Mt2;c
; Sc; gt1;c; scÞ.

Results for this analysis were presented in Fig. 5, where the
horizontal axis is the environmental conditions (weather, soil,
management) from 1981 to 2020 averaged across all counties in
the Corn Belt, and the vertical axis is the genotypic parameters
from 1981 to 2020 averaged across all Corn Belt counties. Each
colored square indicates the predicted yield of growing a given
genotype under a given set of environmental conditions averaged
over all counties in the Corn Belt. Diagonal thick squares
represented the actual observed historical scenarios with genotype
and environments belonging to the same years, while the other
colored squares represented predicted yields of other hypothetical
combinations. The lower triangle answers the question of “what if
historically available seeds were grown in subsequent years?”,
which could potentially have been carried out given sufficient

Fig. 3 Spatial extrapolation results. Green bars are average planted areas from 1981 to 2020. The three curves represent the benchmark nearest-county
approach on the test data, and the data-driven crop model on test data and training data.
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resources; whereas the upper triangle answers the question of
“what if future seeds were brought back and grown in historical
years?”, which would not be physically possible without a time
machine. The answers to both types of what-if questions provide
insights into the evolution of seed genotype, environmental
conditions, and their interactions over the past four decades. For
instance, the 2012 drought was so devastating that no seeds in the
past four decades could have produced much better; whereas the
genotype of the seeds since 2009 have improved so much that
they would have resulted in much higher yields if the same
environmental conditions from 1981 to 2018 were to be repeated.

Yield improvement from optimal seed selection. In this
experiment, we demonstrate the potential yield improvement
from optimal seed selection. For the growing season in year t in
county c, suppose all seeds for all counties in the Corn Belt from
1981 to t are available, then results from training can be used to
select the optimal seed to maximize the yield. Here we consider
two scenarios, one that assumes a complete knowledge of the
weather in year t at the time of seed selection, representing a more
optimistic scenario, and another that assumes zero additional
knowledge of weather in year t beyond historical weather data,
which is a more realistic scenario.

The seed selection problem for county c in year t under known
weather can be formulated as the following optimization model:

max
d;r

f ðWt;c;Mt;c; Sc; gr;d; scÞ ð1Þ

d 2 C ð2Þ

r 2 f1981; 1982; :::; tg; ð3Þ
where C is the set of all counties in the Corn Belt. The objective
function (1) is to maximize the predicted yield in county c in year
t by selecting the optimal genotype from county d in a historical
year r, which was simulated using Eq. (7) with detailed definitions
in Supplementary Note 3. Constraints (2) and (3) set the limits on
county d and historical year r, respectively.

The seed selection problem for county c in year t under
unknown weather can be formulated as the following optimiza-
tion model:

max
d;r

1
t � 1981

∑
t�1

τ¼1981
f ðWτ;c;Mτ;c; Sc; gr;d; scÞ ð4Þ

d 2 C ð5Þ

r 2 f1982; 1983; :::; tg; ð6Þ

Here, the objective function (4) is to maximize the expected
predicted yield in county c in year t under all historical weather
conditions by selecting the optimal genotype from county d in a
historical year r, with the ranges of d and r being specific by
Constraints (5) and (6), respectively.

Results are presented in Fig. 6, with the observed annual yield
(averaged across all counties in the Corn Belt), improved yield
with known weather using model (1) and (2), and improved yield
with unknown weather using model (3) and (4) are all plotted in
the same figure. The overall yield benefit trend is increasing over
time due to the increased pool of historically available genotype
since 1981. The average observed yield from 2011 to 2020 across
all counties in the Corn Belt was 9.72 Mg/ha, whereas optimal
seed selection would have been able to achieve an additional 0.38
Mg/ha, which was 3.91% of the average observed yield. With
perfect meteorological insight, such yield improvement would
have become 1.73 Mg/ha and 17.59%.

Results from this experiment demonstrated the potential value
of the data-driven crop model for prescriptive analysis, which
would not have been possible without its descriptive ability to
separate the genotypic and environmental effects of crop yield
and its predictive capability to answer what-if questions.

Discussion
In an attempt to combine the complementary strengths of
process-based models and data-driven models and overcome
their limitations, we proposed a data-driven crop model for maize
yield prediction; this model has several salient features. First, its
descriptive modeling framework adopts a crop model structure
without the need for experimental calibration. As such, the
modeling results are scientifically insightful and explainable.
Second, its predictive modeling framework is able to extract
knowledge from historical data without using a blackbox mod-
eling structure. Since all modeling parameters are biologically
meaningful, the training process is less sensitive to the quantity
and quality of the training dataset. Third, the model is capable of
providing prescriptive insight due to the clear separation of

Fig. 4 Temporal extrapolation results. Green bars are average planted areas from 1981 to 2020. The three curves represent the benchmark nearest-year
approach, data-driven crop model on test data and training data.
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Fig. 5 Genotype by environment interactions result. Each colored square in the heat map indicates the predicted yield using the data-driven crop model
when the genotype in the year from its corresponding vertical axis was grown in the environmental conditions in the year from its corresponding
horizontal axis.

Fig. 6 Comparison of observed corn yield with improved yield from optimal seed selection under known and unknown weather scenarios. In both
scenarios, optimal genotype were selected from all seeds in all counties in the Corn Belt that were historically available at the time of selection.
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genotypic parameters from environmental variables and explicit
descriptions of their interactions.

A comprehensive county-level dataset for the Corn Belt was
used to demonstrate the performance of the data-driven crop
model in our computational experiments. Many factors (such as
waterlogging) are assumed to be uniform across the county.
Results showed that the model was able to fit the historical data
with a 7.16% RRMSE, and its spatial and temporal extrapolation
RRMSEs are 11.32% and 11.12%, respectively. These predictive
performances are competitive against the state-of-the-art crop
yield prediction models. The data-driven crop model also pre-
dicted the yield of all combinations of historically available gen-
otype and environmental conditions using insights from genotype
by environment interactions. Additionally, the model demon-
strated its prescriptive value in maximizing predicted returns
through optimal seed selection. Our results indicated that optimal
seed selection would have increased the average yield between
2011 and 2020 by 17.59% and 3.91%, respectively, with and
without perfect weather predictions, under the optimistic
assumption that all historically available seeds would be available
in all counties in all subsequent years.

The proposed model is not without its limitations. For example,
prediction errors were particularly large under extreme weather years
such as 1983, 1988, 1993, and 2012. The transferability of a modeling
structure from one crop species to another is low, since each crop has
its unique physiological properties that need to be reflected by a
carefully designed new modeling structure. Furthermore, the model
relies on some data (such as irrigation and fertilization) that are hard
to find or only available at reduced resolution (such as plant popu-
lation density, planting and harvesting times).

Several future research directions are worth pursuing. First, the
data-driven crop model framework needs to be developed and
validated for other crop species. Second, more comprehensive
case studies should be conducted using a more complete and
higher resolution dataset. Third, results from optimal seed
selection need to be validated experimentally. Fourth, results from
the data-driven crop model, such as the genotypic parameters,
may provide useful information for plant breeders.

Method
In this section, we describe the data-driven crop model for maize yield prediction.
The modeling framework, however, may apply to other crop species with an
appropriately selected crop model for such species and available data.

Data. We collected data for the US Corn Belt, which is an important agricultural
region, accounting for approximately 87% of the total US corn production and 31%
of global production in 202155. Here, we briefly describe the data in different
categories. More details are provided in Supplementary Note 1.

Yield and geographic data. County-level corn yield in the Corn Belt area from 1981
to 2020 were collected from USDA56. After excluding missing values, 47,710
county-year combinations yield data were recorded. Shape files of counties were
collected from the National Weather Service57. This information was used to
determine the membership of counties in crop reporting districts and states. Shape
files were also used to locate weather stations and soil map units for calculating
average weather and soil variables within each county.

Weather data. Daily surface weather data on a 1-km grid from 1981 to 2020 were
collected from Daymet58.

Management data. All management data for counties in the Corn Belt area were
collected from USDA56. The plant and harvest dates were derived from the data
from the state-level crop growth process taking into account the agricultural dis-
tricts. The corn plant population density (number of plants per acre) data was also
at the state level with over 50% of missing value. We utilized the mean of non-
missing data (e.g., other years for the same state, if available) for data imputation.

Soil data. Soil data were collected from the latest version of the Gridded Soil Survey
Geographic (gSSURGO) Database released in July 202059.

The descriptive modeling framework. Here we present a data-driven crop model
for maize, which is tailored to the available weather, soil, and management data.
Several major simplifying assumptions were necessary to account for data that were
either lacking or only available at low resolution. First, due to unavailable genotype
data, we assume that all seeds in each county each year were collectively represented by
a unique genotype. As such, these genotypic parameters shed light on temporal and
spatial trends in the average genetic performance of commercially available seeds.
Second, due to lack of fertilization and irrigation data, we assume that crops were
grown without irrigation but under the appropriate fertilizer availability. It is worth
noting that the modeling framework does have the ability to incorporate genotype,
irrigation, and fertilization data into the crop model should they become available.

Figure 7 illustrates the major modules in the corn crop model, which are briefly
described as follows. More details are provided in Supplementary Note 3.

● Soil water: Daily soil water levels are affected by precipitation, runoff, crop
water uptake, and evaporation.

● Water uptake: Daily amount of water uptake is proportional to root mass
and atmospheric vapor pressure deficit.

● Radiation interception: Daily amount of solar radiation interception is
proportional to LAI.

● Phenology clock: The growth process of maize can be separated into two
growth stages: vegetative and reproductive. The transition occurs when a
hybrid specific growing degree daily threshold has been reached.

● Daily biomass and metabolism: Daily biomass accumulation is deter-
mined by water uptake, solar radiant and leaf weight. Daily metabolism is
influenced by crop weight and stress.

● Stress: Heat, drought, and flooding stresses are considered. Water deficits
caused by heat and drought stresses reduce the amount of soil water
available for plant uptake and transpiration, radiation use efficiency, and
eventually growth will also be reduced.

● Crop organs: In the vegetative stage, certain proportions of daily biomass
accumulation are allocated to leaves, roots, and other plant organs; during
the reproductive stage, grains begin to fill and leaves and roots cease
to grow.

The predictive modeling framework. We use the following function to represent
the descriptive model:

ŷt;c ¼ f ðWt;c;Mt;c; Sc; gt;c; scÞ: ð7Þ
Here,

● ŷt;c is the predicted yield for county c in year t,
● Wt,c is the weather data for county c in year t,
● Sc is the soil data for county c, which is assumed to be static over time,
● Mt,c is the management data for county c in year t,
● gt,c is the genotypic parameter for county c in year t,
● sc is the soil parameter for county c, and
● f(⋅) is the complex function defined in Supplementary Note 3 that describes

the complex relationship between input (genotype, weather, soil, manage-
ment) and output (corn yield), which was hypothesized based on human
knowledge in plant physiology and our simplifying assumptions. Detailed
variable definitions can be found in Supplementary Note 2.

Fig. 7 Illustration of a simplified maize growth model. Here “w”, “s”, “m”

represent weather, soil, and management variables, respectively, and “g”
represents the set of parameters that are determined solely by the
genotype and independent of the environment. The arrows indicate how
environmental variables and genetic parameters influence different
modules and eventually determine crop yield.
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A key component of the predictive modeling framework is the calibration of gt,c.
Rather than experimentally estimating such parameters as most traditional crop
models do, the data-driven crop model uses historical data to identify the optimal
set of genotypic parameters to produce the best fit between predicted yield and
observed yield. The calibration of genotypic parameter g can be formulated as the
following optimization problem. A heuristic algorithm that describes how to solve
the data-driven crop model is presented at the end of Supplementary Note 3. Also,
definitions of other variables are located in Supplementary Note 2.

min
g;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ðt;cÞ Marea
t;c

� �2
yt;c � ŷt;c

� �2

∑ðt;cÞ Marea
t;c

� �2

v

u

u

u

u

t

ð8Þ

ŷt;c ¼ f ðWt;c;Mt;c; Sc; gt;c; scÞ ð9Þ

gt1 ;c ≤ 1:25gt2 ;c 8c; t1; t2 ð10Þ

gt;c1 ≤ 1:25gt;c2 8c1; c2; t: ð11Þ
The objective function (8) is to minimize the root-mean square error (RMSE)
between predicted and observed yields weighted by planting areas. Equation (9)
defines the complex function that produces the predicted yield. Constraints (10)
and (11) limit, respectively, the temporal and spatial ranges of the genotypic
parameters, which not only help avoid overfitting but also better reflect the fact that
changes in genotype are usually gradual. The upper bound ratio of 1.25 between
any two counties or years was arbitrary, yet our computational results have shown
that the model is insensitive to such ratio.

The optimization model (8)–(11) serves as a data-driven training process, which
not only removes the need for experimental calibration of the genotypic parameters
(like typical process-based models have) but also enhances the predictive
performance of the model, as will be shown in the next section.

Although the training process is similar with that of machine learning models, the
data-driven crop model takes a fundamentally and philosophically different learning
approach from conventional neural networks. Neural networks use a generic modeling
structure with a large number of parameters and rely almost exclusively on data to
learn the input-output relationship without preset underlying assumptions. This
approach has the potential to capture extremely subtle and insightful knowledge
beyond the comprehension of human intelligence. Along with this potential benefit
come two disadvantages. The first is the risk of data deficiency, either quantitatively or
qualitatively, which could mislead the model into collecting biased or false knowledge
and offsetting the potential benefit. The second disadvantage is the large number of
parameters, which are necessary to achieve a universal approximation capability, but
they make the model not only prone to overfitting but also hard to explain.

On the other hand, the structure of the data-driven crop model is determined
according to human knowledge of plant physiology, which is advanced enough to
qualitatively describe the crop growth process; historical data were used only to
calibrate a small number of biologically meaningful parameters. For example, the
fact that radiation contributes to photosynthesis is incorporated in the structure of
the model, whereas historical data were used to quantitatively determine the exact
rate of radiation contribution to photosynthetic yield. These genotypic parameters
are independent of environmental influences, thus can be used to identify genetic
characteristics of unique genotype.

Statistics and reproducibility. The corn yield data from 1981 to 2020 in the Corn
Belt area downloaded from USDA-NASS contains many missing values in different
states. 47,710 county-year combinations of yield data remain after we excluded the
missing values. We also utilized the means of non-missing data to impute the
missing value in plant population density data.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this manuscript were openly available in public domain, and the sources
of these data can be found in the Method Section. Supplementary Data 1 contains the
source data behind the Figs. 2, 3, 4 and 6 in the paper.

Code availability
Code for the data-driven crop model built in this paper is available at https://doi.org/10.
5281/zenodo.7792271.

Received: 8 August 2022; Accepted: 10 April 2023;

References
1. Marko, O. et al. Soybean varieties portfolio optimisation based on yield

prediction. Comput. Electron. Agric. 127, 467–474 (2016).
2. Messina, C., Podlich, D., Dong, Z., Samples, M. & Cooper, M. Yield–trait

performance landscapes: from theory to application in breeding maize for
drought tolerance. J. Exp. Bot. 62, 855–868 (2010).

3. Penning de Vries, F. W., Van Laar, H. & Kropff, M. Simulation and Systems
Analysis for Rice Production (SARP) (PUDOC, Wageningen, The Netherlands,
1991).

4. Bouman, B., Van Keulen, H., Van Laar, H. & Rabbinge, R. The ‘school of de
wit’crop growth simulation models: a pedigree and historical overview. Agric.
Syst. 52, 171–198 (1996).

5. van Ittersum, M. K. et al. On approaches and applications of the wageningen
crop models. Eur. J. Agron. 18, 201–234 (2003).

6. Verón, S. R., De Abelleyra, D. & Lobell, D. B. Impacts of precipitation and
temperature on crop yields in the pampas. Clim. Change 130, 235–245 (2015).

7. Hatfield, J. L. & Walthall, C. L. Meeting global food needs: realizing the
potential via genetics × environment × management interactions. Agron. J.
107, 1215–1226 (2015).

8. Battisti, R. et al. Assessment of soybean yield with altered water-related genetic
improvement traits under climate change in southern brazil. Eur. J. Agron. 83,
1–14 (2017).

9. MacCarthy, D. S., Adiku, S. G., Freduah, B. S., Gbefo, F. & Kamara, A. Y.
Using ceres-maize and enso as decision support tools to evaluate climate-
sensitive farm management practices for maize production in the northern
regions of ghana. Front. Plant Sci. 8, 31 (2017).

10. Khaki, S. & Wang, L. Crop yield prediction using deep neural networks. Front.
Plant Sci. 10, 621 (2019).

11. Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop
yield prediction. Front. Plant Sci. 10, 1750 (2020).

12. Agnolucci, P. et al. Impacts of rising temperatures and farm management
practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).

13. Gul, F. et al. Use of crop growth model to simulate the impact of climate
change on yield of various wheat cultivars under different agro-environmental
conditions in khyber pakhtunkhwa, pakistan. Arab. J. Geosci. 13, 1–14 (2020).

14. Cooper, M. et al. Integrating genetic gain and gap analysis to predict
improvements in crop productivity. Crop Sci. 60, 582–604 (2020).

15. Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact
of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

16. Elahi, E., Khalid, Z., Tauni, M. Z., Zhang, H. & Lirong, X. Extreme weather
events risk to crop-production and the adaptation of innovative management
strategies to mitigate the risk: a retrospective survey of rural punjab, pakistan.
Technovation 117, 102255 (2021).

17. Keating, B. A. et al. An overview of apsim, a model designed for farming
systems simulation. Eur. J. Agron. 18, 267–288 (2003).

18. Malone, R. W. et al. Evaluating and predicting agricultural management
effects under tile drainage using modified apsim. Geoderma 140, 310–322
(2007).

19. Balboa, G. R. et al. A systems-level yield gap assessment of maize-soybean
rotation under high-and low-management inputs in the western us corn belt
using apsim. Agric. Syst. 174, 145–154 (2019).

20. Jones, J. W. et al. The dssat cropping system model. Eur. J. Agron. 18, 235–265
(2003).

21. Jones, J. W. et al. Estimatingdssat cropping system cultivar-specific parameters
using Bayesian techniques. In Methods of Introducing System Models Into
Agricultural Research, vol 2, 365–393 (Wiley, 2011).

22. Corbeels, M., Chirat, G., Messad, S. & Thierfelder, C. Performance and
sensitivity of the dssat crop growth model in simulating maize yield under
conservation agriculture. Eur. J. Agron. 76, 41–53 (2016).

23. Hunt, J. et al. Yield prophet®: an online crop simulation service. In Proc 13th
Australian Agronomy Conference, 10–14 (The Australian Society of
Agronomy, 2006).

24. Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals
in global crop yield simulations. Nat. Commun. 7, 1–13 (2016).

25. Ramirez-Villegas, J., Koehler, A.-K. & Challinor, A. J. Assessing uncertainty
and complexity in regional-scale crop model simulations. Eur. J. Agron. 88,
84–95 (2017).

26. Folberth, C. et al. Parameterization-induced uncertainties and impacts of crop
management harmonization in a global gridded crop model ensemble. PLoS
ONE 14, e0221862 (2019).

27. Ramesh, D. & Vardhan, B. V. Analysis of crop yield prediction using data
mining techniques. Int. J. Res. Eng. Technol. 4, 47–473 (2015).

28. Foster, A., Kakani, V. & Mosali, J. Estimation of bioenergy crop yield and n
status by hyperspectral canopy reflectance and partial least square regression.
Precis. Agric. 18, 192–209 (2017).

29. Jeong, J. H. et al. Random forests for global and regional crop yield
predictions. PLoS ONE 11, e0156571 (2016).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04833-y

8 COMMUNICATIONS BIOLOGY |           (2023) 6:439 | https://doi.org/10.1038/s42003-023-04833-y | www.nature.com/commsbio

https://doi.org/10.5281/zenodo.7792271
https://doi.org/10.5281/zenodo.7792271
www.nature.com/commsbio


30. Sakamoto, T. Incorporating environmental variables into a modis-based crop
yield estimation method for united states corn and soybeans through the use
of a random forest regression algorithm. ISPRS J. Photogramm. Remote Sens.
160, 208–228 (2020).

31. Sun, J., Di, L., Sun, Z., Shen, Y. & Lai, Z. County-level soybean yield prediction
using deep cnn-lstm model. Sensors 19, 4363 (2019).

32. Bhojani, S. H. & Bhatt, N. Wheat crop yield prediction using new activation
functions in neural network. Neural Comput. Appl. 32, 13941–13951 (2020).

33. Wang, X., Huang, J., Feng, Q. & Yin, D. Winter wheat yield prediction at
county level and uncertainty analysis in main wheat-producing regions of
china with deep learning approaches. Remote Sens. 12, 1744 (2020).

34. Reeves, M. C., Zhao, M. & Running, S. W. Usefulness and limits of modis gpp
for estimating wheat yield. Int. J. Remote Sens. 26, 1403–1421 (2005).

35. Kogan, F., Gitelson, A. A., Zakarin, E., Spivak, L. & Lebed, L. Avhrr-based
spectral vegetation index for quantitative assessment of vegetation state and
productivity: calibration and validation. Photogrammetric Engineering and
Remote Sensing 69, 899–906 (2003).

36. Becker-Reshef, I., Vermote, E., Lindeman, M. & Justice, C. A generalized
regression-based model for forecasting winter wheat yields in kansas and
ukraine using modis data. Remote Sens. Environ. 114, 1312–1323 (2010).

37. Esquerdo, J., Zullo Júnior, J. & Antunes, J. Use of ndvi/avhrr time-series
profiles for soybean crop monitoring in brazil. Int. J. Remote Sens. 32,
3711–3727 (2011).

38. Gusso, A., Ducati, J. R., Veronez, M. R., Arvor, D. & Silveira Junior, L. G. d.
Spectral model for soybean yield estimate using modis/evi data. Int. J. Geosci.
4, 1233–1241 (2013).

39. Kouadio, L., Newlands, N. K., Davidson, A., Zhang, Y. & Chipanshi, A.
Assessing the performance of modis ndvi and evi for seasonal crop yield
forecasting at the ecodistrict scale. Remote Sens. 6, 10193–10214 (2014).

40. Kuwata, K. & Shibasaki, R. Estimating crop yields with deep learning and
remotely sensed data. In 2015 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), 858–861 (IEEE, 2015).

41. Fernandes, J. L., Ebecken, N. F. F. & Esquerdo, J. C. D. M. Sugarcane yield
prediction in brazil using ndvi time series and neural networks ensemble. Int.
J. Remote Sens. 38, 4631–4644 (2017).

42. You, J., Li, X., Low, M., Lobell, D. & Ermon, S. Deep gaussian process for crop
yield prediction based on remote sensing data. In Proc AAAI conference on
Artificial Intelligence, vol. 31 (KP Publishing Services Network, 2017).

43. Haghverdi, A., Washington-Allen, R. A. & Leib, B. G. Prediction of cotton lint
yield from phenology of crop indices using artificial neural networks. Comput.
Electron. Agric. 152, 186–197 (2018).

44. Wang, X., Huang, J., Feng, Q. & Yin, D. Winter wheat yield prediction at
county level and uncertainty analysis in main wheat-producing regions of
china with deep learning approaches. Remote Sens. 12, 1744 (2020).

45. Khaki, S., Pham, H. & Wang, L. Simultaneous corn and soybean yield prediction
from remote sensing data using deep transfer learning. Sci. Rep. 11, 11132 (2021).

46. Dang, C., Liu, Y., Yue, H., Qian, J. & Zhu, R. Autumn crop yield prediction
using data-driven approaches:-support vector machines, random forest, and
deep neural network methods. Can. J. Remote Sens. 47, 162–181 (2021).

47. Ansarifar, J., Wang, L. & Archontoulis, S. V. An interaction regression model
for crop yield prediction. Sci. Rep. 11, 1–14 (2021).

48. Martinez-Feria, R. A., Licht, M. A., Antonio-Ordoñez, R. A., Hatfield, J. L. &
Archontoulis, S. V. An improved algorithm to predict in-field dry-down of maize
and soybean grains and genotype-by-environment analysis. In ASA, CSSA, and
CSA International Annual Meeting (2018) (ASA-CSSA-SSSA, 2018).

49. Mourtzinis, S. et al. Sifting and winnowing: analysis of farmer field data for
soybean in the us north-central region. Field Crops Res. 221, 130–141 (2018).

50. Huang, X., Huang, G., Yu, C., Ni, S. & Yu, L. A multiple crop model ensemble
for improving broad-scale yield prediction using Bayesian model averaging.
Field Crops Res. 211, 114–124 (2017).

51. Feng, P. et al. Dynamic wheat yield forecasts are improved by a hybrid
approach using a biophysical model and machine learning technique. Agric.
For. Meteorol. 285, 107922 (2020).

52. Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine
learning and crop modeling improves crop yield prediction in the us corn belt.
Sci. Rep. 11, 1–15 (2021).

53. Saha, D., Basso, B. & Robertson, G. P. Machine learning improves predictions
of agricultural nitrous oxide (n2o) emissions from intensively managed
cropping systems. Environ. Res. Lett. 16, 024004 (2021).

54. Peng, B. et al. Towards a multiscale crop modelling framework for climate
change adaptation assessment. Nat. Plants 6, 338–348 (2020).

55. USDA-NASS. Crop Production 2021 Summary (February 2022) (USDA-
NASS, Washington, DC, 2022).

56. USDA-NASS. United states department of agriculture national agricultural
statistics service. https://www.nass.usda.gov/Quick_Stats/ (2022).

57. National-Weather-Service. U.S. counties. https://www.weather.gov/gis/
Counties (2020).

58. Thornton, P. et al. Daymet: Daily surface weather data on a 1-km grid for
North America, version 3. https://doi.org/10.3334/ORNLDAAC/1328 (2020).

59. USDA. The gridded soil survey geographic. https://www.nrcs.usda.gov/wps/
portal/nrcs/site/soils/home (2020).

Acknowledgements
This work was partially supported by NSF and USDA (#1830478, #1842097, #2021-
67021-35329) and by the Plant Sciences Institute at Iowa State University. The authors
are grateful to the Editors and Reviewers for their insightful and constructive feedback,
which greatly improved the quality of this manuscript. We also thank Dr. Silvia Cianzio
and Dr. Maria Salas Fernandez for helpful discussions about plant physiology.

Author contributions
Y.C., J.L., M.L., and L.W. were involved in brainstorming the idea through numerous
discussions. Y.C. and L.W. designed the model and collected the data; Y.C. conducted
coding and computational experiments; Y.C. and L.W. wrote the manuscript. Y.C., J.L.,
M.L., and L.W. revised, proofread and approved the final version.

Competing interests
L.W. is a co-founder of Crop Convergence LLC. All other authors declare no competing
interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-04833-y.

Correspondence and requests for materials should be addressed to Lizhi Wang.

Peer review information Communications Biology thanks Roger Lawes and the other
anonymous reviewer(s) for their contribution to the peer review of this work. Primary
handling editors: Jonathan Touboul and Gene Chong.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04833-y ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:439 | https://doi.org/10.1038/s42003-023-04833-y | www.nature.com/commsbio 9

https://www.nass.usda.gov/Quick_Stats/
https://www.weather.gov/gis/Counties
https://www.weather.gov/gis/Counties
https://doi.org/10.3334/ORNLDAAC/1328
https://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home
https://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home
https://doi.org/10.1038/s42003-023-04833-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	A data-driven crop model for maize yield prediction
	Result
	Training accuracy
	Spatial extrapolation
	Temporal extrapolation
	Genotype by environment interactions
	Yield improvement from optimal seed selection

	Discussion
	Method
	Data
	Yield and geographic data
	Weather data
	Management data
	Soil data
	The descriptive modeling framework
	The predictive modeling framework
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




