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The therapeutic potential of neurofibromin
signaling pathways and binding partners
Juan Báez-Flores 1,2, Mario Rodríguez-Martín 1,2 & Jesus Lacal 1,2✉

Neurofibromin controls many cell processes, such as growth, learning, and memory. If

neurofibromin is not working properly, it can lead to health problems, including issues with

the nervous, skeletal, and cardiovascular systems and cancer. This review examines neuro-

fibromin’s binding partners, signaling pathways and potential therapeutic targets. In addition,

it summarizes the different post-translational modifications that can affect neurofibromin’s

interactions with other molecules. It is essential to investigate the molecular mechanisms

that underlie neurofibromin variants in order to provide with functional connections between

neurofibromin and its associated proteins for possible therapeutic targets based on its bio-

logical function.

Neurofibromatosis type 1 (NF1) (OMIM#162200) is an autosomal dominant multi-
systemic disorder with a worldwide incidence of approximately 1 in 3000 individuals
caused by germline mutations in the NF1 tumor suppressor gene1. The NF1 gene

encodes neurofibromin, a multifunctional protein capable of regulating multiple signaling
pathways including Ras/MAPK2, Raf/MEK/ERK3, PI3K/AKT/mTOR4, Rho/ROCK/LIMK2/
cofilin5, PKA-Ena/VASP6 and cAMP/PKA7. As a consequence, neurofibromin regulates a wide
variety of cellular processes such as proliferation, migration, differentiation, cytoskeletal
dynamics, apoptosis and stress responses8. As neurofibromin regulates the Ras/MAPK pathway,
NF1 is included among the RASopathies, a group of developmental disorders caused by germline
mutations in genes encoding components of the Ras/MAPK pathway9.

Neurofibromin can be found in human cells in two major isoforms: Isoform I (2818 residues)
and Isoform II (2839 residues) and is ubiquitously expressed in most tissues; however, it is
highest in the central nervous system, especially in neurons, oligodendrocytes, peripheral nerve
trunks, glial cells, astrocytes, leukocytes, adrenal medulla and Schwann cells10,11. Despite the fact
that the NF1 phenotype is variable, due to epigenetics, stochastic events and genetic modifiers12,
it is characterized by café-au-lait macules (CALMS)13, skinfold freckling14, Lisch nodules15, optic
pathway gliomas16 and neurofibromas17. Other symptoms include but are not limited to skeletal
abnormalities, vascular injuries, learning disabilities, attention deficit, increased susceptibility to
autism and social and behavioral problems18 and conferral of drug resistance in cancer
therapy19. Hematopoietic neoplasms, such as juvenile myelomonocytic leukemia20 and the
presence of pheochromocytoma21, are also associated with clinical manifestations in NF1
patients. The NF1 clinical observations suggest that the NF1 gene is a critical regulator of brain
neuronal function22, embryonic development23, pneumothorax and cardiovascular defects23, as
well as a common driver gene in several aggressive human sporadic malignancies not associated
with NF124, including glioblastoma25, melanoma26, ovarian carcinoma27, lung cancer28,
cholangiocarcinoma29, breast cancer30, lymphoblastic leukemia31 and other types of tumors32.
To date, according to COSMIC database, more than 5524 different somatic variants in the NF1
gene have been identified in human tumors, whether they are pathogenic or benign is not
known. The correlation between specific genetic variants and the manifestation of different
tumors in NF1 has been extensively studied; The presence of NF1 microdeletions has been found
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to be associated with severe forms of NF1 and a higher risk of
developing MPNST33, deletion of Met 992 (c.2970-2972 delAAT)
has been identified as a causative factor for benign forms of
NF134, and the R1809C mutation has also been shown to be
associated with benign symptoms35. Missense mutations in the
region between amino acids 844–848 of the cysteine/serine-rich
domain (CSRD) have been linked to more severe phenotypes,
including spinal plexiform neurofibromas, optic pathway gliomas
and malignant tumors36, and missense mutations affecting R1276
and K1423 have been linked to severe phenotypes such as car-
diovascular abnormalities and spinal plexiform neurofibromas,
while those affecting Met 1149 are associated with more benign
symptoms37. There are also other studies that provide a com-
prehensive overview of the direct correlation between specific
variants in the NF1 gene and different tumors, and may be useful
for further reading on the topic24,38–40. Also, an analysis was
conducted on neurofibromin to identify regions that may be
considered hotspots in neurofibromatosis type 1; the study found
three regions within neurofibromin that were statistically sig-
nificant including the RAS-GTPase domain, the CSRD, and the
Armadillo141. In this context, elucidation of the canonical and
non-canonical effector pathways downstream of Ras activation
and their ultimate cell-specific consequences has identified pro-
mising therapeutic targets42. These findings demonstrate the
crucial role that specific genetic variants play in the manifestation
of tumors in NF1, and the importance of understanding the
genetic basis of NF1 for the development of new therapeutic
strategies.

For several years, only the Ras-GTPase-activating protein-
related domain (GRD)43 and the Sec14-PH domain44 of neuro-
fibromin were structurally characterized. Recently, the biggest
breakthrough in the field consisted in the resolution of the
structure of the neurofibromin dimer. Full-length neurofibromin
3D structures were solved by a series of biochemical and bio-
physical experiments including size-exclusion chromatography
multi-angle light scattering (SEC-MALS), small-angle X-ray
(SAXS), small-angle neutron scattering (SANS) and analytical
ultracentrifugation45. These experiments showed that neurofi-
bromin exists as a high-affinity dimer and identified the regions
important for dimerization, suggesting that neurofibromin is
highly sensitive to mutations that disturb its structure45. After
this study, several detailed molecular structures of neurofibromin
by cryo-electron microscopy (cryo-EM) were reported, suggesting
that the dimeric architecture rest in an equilibrium between the
closed and open conformation states46,47. Cryo-EM reveals
domain organization and structural details of the isoform 2 in
either a closed, self-inhibited, zinc-ion-binding site stabilized
state, or an open state46. In the closed conformation, HEAT/ARM
core domains shield the GRD so that Ras binding is sterically
inhibited. In the open conformation, a large-scale movement of
the GRD occurs, which is necessary to access Ras, whereas Sec14-
PH reorients to allow interaction with the cellular membrane46.
The transition between closed and open states provides guidance
for targeted studies that decipher the complex molecular
mechanism behind the widespread neurofibromatosis syndrome
and neurofibromin dysfunction in carcinogenesis46. Furthermore,
the homodimer is characterized by a central lemniscate-shaped
core formed by the assembly of the N- and C-HEAT domains47.
Three-dimensional variability analysis was captured by the GRD
and Sec14-PH domains positioned against the core scaffold in a
closed conformation, suggesting that interaction with the plasma
membrane may release the closed conformation to promote Ras
inactivation47. Mutation or deletion at a disproportionate number
of sites is likely to result in improper assembly of the dimer,
contributing to the acute sensitivity of NF1 gene to mutations in
disease47. To date, the latest structural study that has been

published using cryo-EM reveals an extended neurofibromin
homodimer that has two conformational states: an auto-inhibited
state with occluded Ras-binding site and an asymmetric open
state with an exposed Ras-binding site48. This new model suggests
that the GRD may interact simultaneously with two sets of Ras
homodimers, but likely not a single homodimer48. While the
occluded conformation is incompetent for Ras binding, both
states of neurofibromin are compatible with the interaction of the
SPRED1-EVH1 domain with the GAPex domain48. Also, the
interaction of the Sec14-PH domain with membranes and lipids
may have impacted the transition between occluded and open
conformation, although the zinc-ion-binding site may be stripped
out before the GRD-Sec14-PH linker is rearranged into an active
conformation. It was found that nucleotide binding stimulates the
active conformation of neurofibromin dimer and releases a lock
that maintains an occluded inactive state, leading to the activation
of the protein48. In addition, it was reported that a Zn2+ binding
site stabilizes the dimer in a closed conformation, which is rele-
vant to the overall conformational changes that neurofibromin
undergoes upon activation46. These recent structures revealed a
complex set of helical repeats throughout the protein, that if
disrupted, are likely to affect the overall structure of the protein in
a way that it interferes with the positioning of the GAP domain,
probably leading to alteration of GAP activity. Despite these great
advances, structural and functional insights into neurofibromin
activation still remain incompletely defined. In this review, we
provide functional connections between neurofibromin and its
binding partners, signaling pathways and possible therapeutic
targets.

Neurofibromin domains and known interacting partners.
Neurofibromin contains several functional domains and regions
allowing the interaction with many binding proteins and effectors
(Fig. 1). The N-terminal region of neurofibromin contains several
variants (R103K, D105N, M108I, L114M, E116*, A131S, and
E225Rfs*6) that have been suggested to result in a non-functional
protein leading to NF1 and tumor formation49 (Supplementary
Table 1).

The cysteine/serine-rich domain (CSRD, residues 543–909) is
an important allosteric activator of the adjacent GRD after PKCα-
dependent phosphorylation in neural cells50. In addition, it has
been shown to increase the association of neurofibromin with
actin upon phosphorylation, resulting in allosteric regulation of
the GRD by increasing its Ras-GAP activity to arrest cell
growth50. This region contains three cysteine pairs (622/632, 673/
680, 714/721) presumably implicated in stabilizing the tridimen-
sional structure of neurofibromin, and the highly probable
palmitoylation site C84551 (Supplementary Table 2). Recent
genetic analyses have pinpointed variants in CSRD as associated
with a higher risk of developing optic pathway glioma36,52,
plexiform and/or spinal neurofibromas, malignant neoplasm and
osseous lesions36,51, and patients with pheochromocytoma53.
Neurofibromin may interact with dimethylarginine
dimethylaminohydrolase-1 (DDAH1), coinciding with the
regions containing specific PKA phosphorylation sites54, whereas
DDAH1 interacts with Ras55. DDAH1 is a nitric oxide regulator
that degrades the endogenous nitric oxide inhibitor asymmetric
dimethylarginine (ADMA) responsible for regulating cell
proliferation56. Additionally, a microtubule-associated protein
(MAP) domain resides within the CSRD and is thought to
regulate the association of neurofibromin with microtubules57

(Fig. 1).
The tubulin-binding domain (TBD, residues 1095 to 1197)

contains a series of 12 predicted HEAT-like repeats commonly
involved in protein–protein interactions45 although it lacks the

REVIEW ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04815-0

2 COMMUNICATIONS BIOLOGY |           (2023) 6:436 | https://doi.org/10.1038/s42003-023-04815-0 | www.nature.com/commsbio

www.nature.com/commsbio


conserved four tandem C-terminal microtubule-binding repeats
(KXGS motif)58 and contains sequences recognized by the
proteasome (1095–1097 (KYF) and 1098–1100 (TLF))59. This
domain interacts with β-tubulin60, cytoplasmic dynein heavy
chain (DHC), and the leucine-rich pentatricopeptide repeat
motif-containing (LRPPRC) protein61. The interaction with
LRPPRC is of pathological interest in that it links neurofibromin
to Leigh’s syndrome French Canadian (LSFC), an autosomal
recessive neurodegenerative disorder that arises from variants in
the LRPPRC gene62. Whereas some authors showed that TBD
mediates neurofibromin dimerization45, this possibility has
recently been ruled out46–48.

The GAP-related domain (GRD, residues 1198–1530) is
responsible for the interaction with Ras, and it is the most well-
studied functional domain of neurofibromin (Fig. 1). Neurofi-
bromin-GRD, located central to the protein, consists of GAPex,
including Nex (residues 1176 to 1247) and Cex (residues
1478–1573), and the Ras-GTPase-activating (Ras-GAP) region
(1248 to 1477 residues)63. The Ras-GAP mediates the down-
regulation of the activity of all classical Ras proteins64, Ras-like
RRAS and MRAS65. Indeed, when GRD is overexpressed it is
sufficient to normalize the increased Ras activity and cell
hyperproliferation in Nf1-deficient mouse cells and tissues66,67.
It also partially restores normal phosphorylated cofilin levels and
suppresses the accumulation of actin stress fibers68. The GRD’s
Nex and Cex interact with the EVH1 domain of Spred163,69, and
do not impact catalysis63. Mutations which reside on the protein
surface in the vicinity of the GRD, are more likely to directly
impair or abolish the binding of this domain with Ras, whereas
mutations embedded deep within the protein structure
(p.R1204G and p.R1204W) may impact upon protein structure
stability and abolish Ras–GRD binding indirectly70. Other
variants (R1276E, K1423E) abolished GAP activity without
reducing protein stability48, whereas others are dispensable for
GAP activity (Supplementary Table 1). A recent precise analysis
provides insight into how the membrane targeting of neurofi-
bromin by Spred1 allows simultaneous interaction with activated
KRas71. Other GRD interacting proteins are FAF2, APP and
kinesin-1. FAF2 interacts with neurofibromin fragments
(372–1552, specially from 1176 to 1552)72, promoting its
ubiquitin-dependent proteolysis72. APP interacts with neurofi-
bromin residues 1357–1557 in human melanocytes, and both
proteins colocalize with melanosomes73 and share their interac-
tion with the molecular motor protein kinesin-1 (Fig. 1). Kinesin-
1 is required for normal distribution of mitochondria and
lysosomes, and also transports cargo such as ATP along

microtubules, consisting of two 120-kDa heavy chains (KHC)
and two 64-kDa light chains (KLC)74. Neurofibromin interacts
with KHC whereas APP interacts with KLC75. There is a
syndecan-binding region (SBR, residues 1357–1473), as well as
one in the CTD (residues 2619–2719) (Fig. 1). The SBR was
found to mediate the interaction of neurofibromin with the
cytoplasmic tail of all four mammalian syndecans76, transmem-
brane proteins that regulate signaling pathways involved in cell
adhesion and migration, cellular behavior, intracellular calcium
regulation and homeostasis77. Finally, other potential interesting
regions are the Poly-Ser (1352–1355), the putative palmitoylation
site C1365 and a cholesterol motif (1364–1375)51.

The leucine-rich domain (LRD, residues 1579–1971) consists
of a glycerophospholipid binding Sec14-like domain (1560–1698),
a PH-like domain (1715–1816) and part of the HEAT-like repeats
(HLR) (1825–2428)78 (Fig. 1). It is involved in learning
disabilities, skeletal problems like tibia bone defects and
scoliosis79, as well as in inhibiting tumor metastasis and invasion
of human glioblastoma cells78. The LRD failed to hydrolyze Ras,
suggesting that its suppressive function is independent of Ras
signaling78, and binds to caveolin-1 (Cav-1) which may act as a
scaffolding protein within caveolar membranes80. In particular,
one of the most commonly mutated positions in neurofibromin
(R1809G) would impair neurofibromin function, implying a Ras-
independent mechanism48. The SecPH binds phospholipids44, it
also interacts with LIMK2 and would specifically prevent LIMK2
activation by ROCK5. However, no structural data on the
complexes are available and it is not known whether this
proposed mechanism actually takes place with these or other
partners81. The serotonin 5-HT6 receptor, one of the several
GPCRs for serotonin, activates cAMP formation on agonist
stimulation and was found to interact with neurofibromin PH
and CTD domains82. The residues K1634 and K1731 within the
SecPH domain have been identified as minor and major SUMO-
conjugation sites, respectively, and are hypothesized to play a
critical role in the function of neurofibromin83. Specifically,
SUMOylation of K1731 has been shown to modulate the Ras-
GAP activity of the GRD domain, which is located adjacent to the
SecPH domain. Additionally, it has been observed that a K1731R
mutation negatively impacts the Ras-GAP activity of GRD-SecPH
fragment of neurofibromin, suggesting that this site is critical for
the proper functioning of neurofibromin83.

The HEAT-Like Repeat (HLR, residues 1825–2428) contains
the structurally related Armadillo (ARM) superfamily regions
1849–1886 and 1920–198478 (Fig. 1). These repeats are
comprised of short hydrophobic α-helical hairpins that stack on
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Fig. 1 Neurofibromin domains and interacting partners. CSRD (cysteine-serine rich domain, residues 543–909), TBD (tubulin-binding domain, residues
1095–1197), GRD (GAP-related domain, residues 1198–1530), Sec14-PH (residues 1560–1816), LRD (leucine-rich domain, residues 1579–1971), the CTD (C-
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top of each other to form long super-helical structures usually
involved in protein–protein interactions78. Variants in this
domain have been linked to NF1, suggesting an importance of
the entire helical repeat scaffold for neurofibromin function84,
including a lower risk for optic pathway glioma in NF1
patients52,85 (Supplementary Table 1).

The C-terminal domain (CTD, residues 2260–2818), contains a
third Armadillo region (residues 2200–2571), the nuclear
localization site (NLS) (residues 2534–2550)86 and the tyrosine
kinase recognition sites (TRS) (residues 2549–2556)87 (Fig. 1).
The CTD regulates cAMP via G-protein-dependent activation of
adenylyl cyclase88, and has been shown to regulate the transition
from metaphase to anaphase89, acting as a tubulin-binding
domain, and to regulate nuclear localization through phosphor-
ylation on S2808 a residue adjacent to a nuclear localization signal
in the CTD by PKC-ε in glioblastoma cells, resulting in a
predominantly nuclear localization60. Consequently, this phos-
phorylation could be responsible for neurofibromin translocation
to the nucleus60, whereas phosphorylation by cAMP-dependent
PKA (Supplementary Table 2) promotes association with 14-3-3
proteins, negatively regulating neurofibromin GAP activity55. It
has been demonstrated a physical interaction between the
C-terminal domain of neurofibromin and the N-terminal domain
of FAK90, which also binds to the TPPKM motif present in the
NLS (KRQEMESGITTPPKMRR) of neurofibromin90. The differ-
ential Microtubule-Associated-Protein (MAP) properties of NLS
in both the assembly of the mitotic spindle as well as faithful
genome transmission have been recently discussed91. Other CTD
interacting proteins are CRMP-2 and CRMP-492 (Fig. 1).
Neurofibromin directly regulates CRMP-2 phosphorylation
accessibility and activity by suppressing CRMP-2-
phosphorylating kinase cascades via its Ras-GAP function,
regulating neurite outgrowth and dendritic filopodia formation93.
CRMP-2 has been implicated in multiple neurological disorders,
including the development of Alzheimer’s disease. In addition,
neurofibromin and CRMP-2 also work together in non-neuronal
cells and contribute to cell cycle control92.

Signaling pathways upstream of neurofibromin. A better
understanding of the implications of neurofibromin signaling
functions may help to explain the diverse clinical manifestations
and the increased cancer risk observed in NF1 patients. Neuro-
fibromin is under the regulation of several upstream signaling
elements including several transmembrane receptors, kinases, and
cytosolic proteins (Fig. 2). Transmembrane receptors include the
cytokine receptor granulocyte-macrophage colony-stimulating
factor (GM-CSFR)94, tyrosine kinases receptors (RTKs)95, ana-
plastic lymphoma kinase (ALK)96, vascular endothelial growth
factor (VEGFR)97, epidermal growth factor (EGFR)98, platelet-
derived growth factor (PDGFR)99, hepatocyte growth factor
(MET), GPCRs endothelin B (EDNRB)100 and serotonin 5-HT6

receptor82 (Fig. 2).
Receptor tyrosine kinase APP is expressed in many tissues and

concentrates in the synapses in neurons where it performs
physiological functions relevant to neurite growth, neuronal
adhesion and axonogenesis, including kinesin-mediated axonal
transport of β-secretase and presenilin-1101. APP and neurofi-
bromin colocalize with melanosomes73, perhaps, as part of a
melanosome transport/biogenesis regulating mechanism (which
could be related to the etiopathogenesis of pigment-cell-related
manifestations in NF1) or a mechanism for sequestering
neurofibromin from the plasma membrane73. Another receptor
upstream of neurofibromin is the GM-CSFR, which is necessary
to maintain JMML in Nf1-mutant mice and in neurofibroma
formation after nerve injury94. ALK was identified as an upstream

activator of neurofibromin-regulated Ras signaling in Drosophila
and it is responsible for several dNf1 defects, including cognitive
performance96. VEGFR is known to be expressed in cutaneous
neurofibromas and MPNST, where it correlates with poor patient
prognosis. The PDGFR is another RTK; overexpression of wild-
type PDGFR associated with neurofibromin deficiency leads to
aberrant activation of downstream Ras signaling and thus
contributes importantly to MPNST development, indeed, it is
overexpressed in Schwann cells derived from neurofibromas and
MPNST99. Overexpression of PDGFR cooperates with loss-of
neurofibromin and p53 to accelerate the molecular pathogenesis
of MPNST99. MET has been reported activated in some MPNSTs,
and implicated in resistance to Ras pathway inhibition in several
cancers, including melanoma and colorectal cancer102. Also, the
expression levels of MET and its ligand hepatocyte growth factor
correlate with MPNST progression103.

Serum and growth factors trigger the rapid ubiquitination and
complete proteasomal degradation of neurofibromin in many cell
types59 (Fig. 2). Specifically, the literature has demonstrated that
PKC plays a critical role in promoting Ras activation by
destabilizing neurofibromin104. Additionally, research has indi-
cated that PKCδ and α/β are essential components for
maintaining the aberrant Ras signaling and promoting cell
viability in neurofibromin-deficient cells105. Furthermore,
PKCε-dependent H-Ras activation involves the recruitment of
the RasGEF SOS1 and the Ras-GAP neurofibromin to the lipid
rafts of embryonic neurons51. Lastly, neurofibromin has been
shown to regulate atypical PKC activity in a RAS-dependent
manner, implicating PKCz as a potentially novel effector of
neurofibromin/Ras signaling in the brain22.

Other cytosolic upstream proteins include Spred169,
DAAH155, the GPCR-activated protein Gβγ subunits106 and
5-HT6 receptor. Phosphorylation of S105 on Spred1 by an
oncogenic RTK (EGFRL858R) disrupted the binding of Spred1 and
neurofibromin, and as a consequence blocked negative regulation
of Ras-GTP71. DDAH1 may interacts with CSRD and CTD and
facilitates phosphorylation on these domains by PKA, T586, S818
and S876 on CSRD and some residues from 2620 to 2818 on
CTD54. DDAH1 also exerts effects on cyclin D1 and cyclin E
expression through multiple mechanisms, including VEGF, the
NO/cGMP/PKG pathway, the Ras/PI3K/AKT pathway, and NF1
expression107. 14-3-3 interacts with CTD upon phosphorylation
by PKA, an interaction that could decrease NF1-GAP activity55.
Finally, neurofibromin promotes 5-HT6 constitutive activation of
Gαs/AC pathway in striatal neurons82. Both NF1 silencing and
NF1 patient variants within the PH domain inhibited constitutive
receptor activity on the Gαs/AC pathway and reduced basal
cAMP levels82.

Signaling pathways downstream of neurofibromin. One of the
principal functions of neurofibromin consists in the modulation
of the Ras/MAPK pathway2, although other signaling pathways
have been studied including the Raf/MEK/ERK3, PI3K/AKT/
mTOR4, Rho/ROCK/LIMK2/cofilin5, PKA-Ena/VASP6 and
cAMP/PKA pathways7.

Ras signaling pathway. Neurofibromin enhances the rate at
which the GTP-bound form of Ras is converted into the inactive
GDP-bound form2,108. Therefore, loss-of-function mutations in
neurofibromin result in the accumulation of Ras in the GTP-
bound state. GTP-bound Ras proteins activate fundamental sig-
naling pathways involved in several cellular processes such as cell
polarity, proliferation, differentiation, adhesion, migration and
apoptosis109. For instance, neurofibromin is the main Ras inac-
tivator in dendritic spines of hippocampal pyramidal neurons110,
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long-term potentiation and hippocampal-dependent learning in
interneurons111. Ras-GTP signals through three main molecular
pathways, namely, the Raf/MEK/ERK, the Ral/NFkB and the
PI3K/AKT/mTOR (Fig. 3).

The Raf/MEK/ERK pathway, as well as the PI3K/AKT/mTOR
pathway, are both well-characterized pathways downstream
Ras112,113. Both pathways are hyperactivated in neurofibromin-
deficient cells, although the dependence on either MAPK or AKT
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signaling differs from cell type to cell type. For instance,
neurofibromin-deficient hematopoietic cells are more dependent
on neurofibromin/MAPK pathway growth control114, whereas
the proliferation of neurofibromin-deficient glial cells (Schwann
cells and astrocytes) primarily relies on neurofibromin/AKT
signaling115. Hypo and hyperactivation of Ras/Rap signaling
impair the capacity of synaptic plasticity, underscoring the
importance of a “happy-medium” dynamic regulation of the
signaling behavior116.

In the absence of neurofibromin, aberrant mTOR activation
depends on Ras and PI3K, mediated by AKT phosphorylation and
inactivation of tuberin4. The mechanism that involves AKT, the
TSC complex and Rheb is the primary mechanism through which
PI3K signaling activates mTORC1117. In lysosomes, neurofibro-
min negatively regulates mTOR in a LAMTOR1-dependent
manner118. Ral-GEFs have also been implicated downstream of
Ras as a novel cell signaling abnormality in MPNSTs119. Indeed,
neurofibromin regulates EMT transition in a way that down-
regulation of neurofibromin encourages the EMT transition120.
The EMT factors including SNAIL, SLUG, TWIST-1 and ZEB
have been shown to be upregulated in MPNST deficient for
neurofibromin120,121.

PKA-enabled/vasodilator-stimulated phosphoprotein (PKA-
Ena/VASP). Neurofibromin modulates PKA-Ena/VASP path-
way, implicated in the formation of filopodia and dendritic
spine6, axonal outgrowth122, actin polymerization along bundle
formation123, and probably for proper differentiation of nerve
cells6. In part due to neurofibromin association with microtubular
and microfilamentous cytoskeleton91, FAK90 and syndecan-276,
the normal development of the cerebral cortex may be affected74.
FAK is one of the main proteins localized at focal adhesions,
playing an essential role in regulating cell migration, adhesion,
spreading, reorganization of the actin cytoskeleton, formation
and disassembly of focal adhesions and cell protrusions, cell cycle
progression, cell proliferation and apoptosis90. It also plays a role
in osteogenesis and differentiation of osteoblasts124. Syndecan-2
interacts with neurofibromin and CASK, forming a multidomain
scaffolding protein including also APP73 and neurexins125, while
also having a role in synaptic transmembrane protein anchoring
and ion channel trafficking. Indeed, it shows overlapping dis-
tribution at synaptic junctions, suggesting a potential role of
neurofibromin in adhesion and signaling at neural synapses126.
Therefore, deregulation of postsynaptic Ras signaling may explain
learning disabilities associated with NF1110. Recent findings
indicate a reciprocal regulation of Wnt/β-catenin signaling
pathway and APP processing involving a physical interaction
between APP and β-catenin127. Furthermore, APP is implicated
in the pathogenesis of Alzheimer disease, as well as in cancer
development in breast, pancreas, prostate and non–small cell lung
cancers128.

Rho/ROCK/LIMK2/cofilin pathway. Neurofibromin enhances
cell motility by regulating actin filament dynamics via the inhi-
bition of the Rho/ROCK/LIMK2/cofilin pathway68 (Fig. 3). In
neurofibromin-depleted cells, RhoA hyperactivates ROCK and its
downstream effector LIMK1/2, which continued sustained
phosphorylation and inactivation of cofilin, leading to enhanced
cell migration and invasion68. Actin depolymerizing by cofilin is a
mechanism that may be one of the responsible for the neurofi-
broma formation in patients with NF168.

Rac1/PAK1/LIMK1/cofilin pathway. Neurofibromin also acts as
a negative regulator of the Rac1/PAK1/LIMK1/cofilin pathway
independently of Ras signaling pathways68 (Fig. 3). LIMK1 is

phosphorylated and activated by PAK1, downstream of Rac1 and
Cdc42 GTPases68. Cells with constitutively activated Rac exhibit
dramatic increase in membrane ruffling, with an increase in actin
polymerization and formation of stress fibers129. Neurofibromin
involvement in these signaling pathways has been established.
However, most of its molecular targets are still unknown, and the
molecular mechanisms remain in most cases to be elucidated64.

cAMP/PKA pathway. Neurofibromin is a positive regulator of
intracellular cAMP levels (Fig. 3), which cannot be reversed by
inhibition of Ras-MEK or Ras-PI3K downstream signaling130.
The cAMP/PKA pathway is involved in many processes, such as
inhibition of cell growth131, induction of apoptosis132, arrest of
the rearrangement of the cytoskeleton133, neuropeptide
responses134, development and functioning of the nervous sys-
tem, synaptogenesis6, learning process and memory shaping135,
sugar and lipid metabolism136 and cancer137. The stimulation of
GPCR causes neurofibromin to regulate cAMP production in
CNS neurons through different Gα activators, not Gαi. This
regulation is dependent on Ras and results in interaction with
target PKA22 (Fig. 3). Ras/cAMP regulation operates through the
activation of atypical PKCz, leading to GRK2-driven Gα
inactivation22. These observations highlight the regulation of a
diverse number of GPCRs in distinct CNS cell population, sug-
gesting a potential strategy to correct NF1-related CNS deficits22.

In NF1 melanocytes, the molecular mechanisms of melanin
synthesis, if NF1 is inactivated, are linked to increased activity of
cAMP-mediated PKA and ERK signaling pathways, which in turn
leads to overexpression of the key transcription factor MITF and
melanogenic enzymes, such as tyrosinase and TRP-2/dopachrome
tautomerase, resulting in hyperpigmentation138. Moreover, the
overexpression of cAMP-responsive element-binding protein
(CREB) bound to the brain-enriched microRNA-9 promoter
has been described to repress expression of NF1, and encourage
cell migration139. Interestingly, miR-514a overexpression was
correlated with increased melanoma cell resistance to BRAFi
through decreased expression of NF1 and associated with pairing
therapies involving target-based therapy140,141.

A Drosophila Nf1 model revealed that neurofibromin is
essential for the cellular response to neuropeptides, like pituitary
adenylate cyclase activating polypeptide-38 (PACAP38) at the
neuromuscular junction, through activation of the cAMP/PKA
pathway134. Human PACAP38 activates the receptor for insects
PDF when co-expressed with neurofibromin, potentiating PDF
action by coupling to AC142, and induces cell growth in astrocytes
activating MAPK143. In neuroblastoma cells, PACAP38 regula-
tion is mediated by PAC1 receptor through a cAMP-dependent
but PKA-independent mechanism144,145.

The ubiquitin–proteasome pathway. Neurofibromin is dyna-
mically regulated by the ubiquitin–proteasome pathway, triggered
by several growth factors which reduced neurofibromin levels
rapidly in a variety of cell lines59. This regulation appears to be
independent of Ras activation, as exogenous expression of an
activated Ras allele did not induce neurofibromin degradation,
and inhibitors of MEK and PI3K did not prevent degradation59.
Neurofibromin is a physiological substrate of the SAG E3 ubi-
quitin ligase during embryogenesis146. Also, the Cul E3 complex
and the BTB adaptor protein KBTBD7 regulate PKC-mediated
neurofibromin ubiquitination in normal and pathogenic
settings147. The hypoxia-associated factor (HAF) might also
promote ubiquitination and proteasomal degradation of neuro-
fibromin, which may be significant during physiological hypoxia
including embryonic development and wound healing, but may
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also play a driving role in the development and progression of
hypoxia-associated cancers148.

Neurofibromin as an estrogen-receptor (ER) transcriptional
co-repressor in breast cancer. The correlation between NF1 loss
and upregulation of ER-associated pathways in human breast
cancer149, increased tumor aggressiveness and poor patient
prognosis, associate neurofibromin with breast cancer149. In
addition, NF1 has been reported to be mutated more frequently in
ER+ metastatic breast cancer, suggesting it is a driver of breast
cancer progression150. Recently, it has been demonstrated that
neurofibromin acts as a dual repressor for both Ras and ER sig-
naling; co-targeting may treat neurofibromin-deficient ER+

breast tumors151.

Neurofibromin-HIPPO. HIPPO signaling is known to regulate a
variety of cellular processes including cell cycle progression,
apoptosis, tissue regeneration, cell differentiation, and the control
of organ size and development. In this pathway MST1/2 kinases
activate LATS1/2 kinases, which in turn phosphorylate and
inhibit the nuclear translocation of transcriptional coactivators
YAP and TAZ, regulating gene expression152 (Fig. 4a). Dysre-
gulation of the HIPPO pathway contributes to cancer develop-
ment through tumorigenesis153 and cutaneous neurofibromas
from NF1 patients154,155. On the other hand, MPNSTs show an
elevated HIPPO-YAP/TAZ expression156. Remarkably, the YAP
signature is present in MPNSTs regardless of their NF1 genetic
status, suggesting that activation of the HIPPO-YAP/TAZ path-
way is common to both genetic and sporadic MPNSTs156. YAP

and TAZ directly interact with JUNB and STAT3 via a WW
domain important for transformation, and they stimulate tran-
scriptional activation by AP-1 proteins, implicated in the devel-
opment and maintenance of cancers157.

JAK2/STAT3 signaling pathway. This signaling pathway can
influence the transcription and expression of multiple genes
involved in biological processes such as cellular growth, meta-
bolism, differentiation, degradation and angiogenesis (Fig. 4a).
The JAK-signal transducer and STAT members, particularly
STAT3, have been demonstrated to be very important for cancer
progression158. EGFR is one of the receptor tyrosine kinases that
mediates STAT3 phosphorylation and is expressed in most
human MPNST159. In addition to the JAK-signal transducers and
activators of transcription axis, JAKs can also affect other sig-
naling pathways through intracellular crosstalk, highlighting the
Ras pathway160.

Neurofibromin and dopamine. Neurofibromin is a positive
regulator of dopamine homeostasis, as NF1 variants in human
and mouse neurons lead to reduced levels of the neurotransmitter
dopamine161,162. Using behavioral, electrophysiological and pri-
mary culture, it has been demonstrated that reduced dopamine
signaling is responsible for cAMP-dependent defects, whereas
pharmacological elevation of dopamine reverses in neuron
function, learning, memory and attention deficits in NF1-mice163

(Fig. 4b). A dose-dependent relationship was identified between
neurofibromin levels, dopamine signaling and cognitive deficits in
the hippocampus and striatum on NF1 patients164.
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Neurofibromin therapeutic targets. When altered, neurofi-
bromin has been involved in neurofibromatosis type 1, highly
aggressive malignant diseases and mechanisms of treatment
resistance. In that context, several studies have reviewed the
potential therapeutics, the mechanism of action, as well as the
information on the status of how far a drug has progressed
clinically42,165–168. In this work, we have summarized all thera-
pies targeting the upstream/downstream molecules of neurofi-
bromin with potential to become novel strategies for the
treatment of NF1-related malignancies (Fig. 5). Attractive ther-
apeutic targets include: the modulation of nitric oxide54,107, his-
tone deacetylase inhibitors169, YAP and TAZ156, inhibition of
VEGFR2/MET/RET by cabozantinib in MPNST102, the HIPPO
pathway152,155 and Ral-GEFs for MPNSTs119,170, CRMP-2 for
therapeutic intervention in patients with NF1 pain171, ALK172,
inhibition of FAF272 and STAT3 on neurofibromas173, and
VCP174 for NF1-cancer therapy, 5-HT6 receptor for cognitive
impairment175 and neurofibromin-mediated cAMP
production176.

MPNST therapies include nivolumab and ipilimumab (Phase II
clinical trial)177, inhibition of BRD4 with CPI-0610 (Phase II
clinical trial) triggering apoptosis through Bim178, and a
combination of a BET, MEK, and PD-L1 receptor inhibitors166.
Recently, a NF1 patient treated with tofacitinib, a selective JAK1/
JAK3 inhibitor that regulated neurofibromas growth179, as well as
their progression to MPNST, has been described159. On the other
hand, the combination of everolimus and bevacizumab did not
achieve favorable results in studies in patients with MPNST180.
Likewise, neither targeting VEFG-A using ranibizumab, nor
targeting VEFGR with sorafenib or imatinib, were effective for
cutaneous neurofibromas or MPNST respectively181. EGFR is
abundantly expressed in neurofibroma and MPNST cell lines,
although unfortunately the EGFR inhibitor erlotinib failed to

inhibit tumor growth in Phase 2 trials of patients with advanced-
stage MPNST166. Forskolin and rolipram have also been used for
impaired cAMP production, in particular, rolipram inhibited
optic glioma growth and tumor size162,182. Everolimus is well
suited for future consideration as initial therapy in patients with
low-grade pediatric glioma183. Immune checkpoint inhibitors/
therapies include targeting PD-1 and PD-L1184, although
immunotherapy with monoclonal antibodies remain to be
identified in NF1 preclinical models185. The proteasomal
regulation of neurofibromin represents an important mechanism
of controlling both the amplitude and duration of Ras-mediated
signaling, which may be exploited therapeutically by promoting
degradation of neurofibromin146,186,187.

Preclinical trials suggest that dopamine-target therapies, such
as methylphenidate, a stimulant medication that increases
dopaminergic and noradrenergic neurotransmission, may be
useful treatments for children with NF1-associated cognitive
abnormalities. However, the therapeutic effect on cognitive
performance is unclear188. Nevertheless, targeting VEGF-A
suggested a qualitative improvement in vision after
bevacizumab-based treatment in children with OPGs189.

When expression of NF1 is inhibited, the resulting ER+ breast
cancer cells were stimulated by tamoxifen (a drug commonly used
to prevent relapses from ER+ breast cancer) instead of inhibited,
and these cells became sensitive to a very low concentration of
estradiol151. Breast cancer patients with NF1 sporadic mutations
treated with the estrogen-receptor antagonist fulvestrant showed
a good outcome190. Combination with CDK4/6 inhibitors, which
target ER-independent cyclin D1 transcription, results in
substantially enhanced efficacy of endocrine therapy in vitro190.
These findings suggest that the prognosis of patients with
pretreatment detection of NF1 mutation in the PALOMA- phase
III trial191 could overcome the risk of early relapse via the
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investigation in an adjuvant setting in NF1-mutant cancers of
combined fulvestrant and palbociclib192.

Inhibitors for the major signaling pathways related to
neurofibromin have also been studied. Ras inhibitors include
tipifarnib and pirfenidone, although they did not significantly
prolong the time to progression compared with placebo in
children and young adults with NF1 and progressive plexiform
neurofibromas193. Inhibitors for the Raf/MEK/ERK pathway
include the MEK inhibitor trametinib194 and selumetinib, which
resulted in shrinkage in neurofibromin-related gliomas in the
optic pathway195, becoming the first FDA-approved treatment for
inoperable plexiform neurofibroma196. The mTOR pathway has
been investigated as a potential therapeutic target180, including
the inhibitor sirolimus (rapamycin) which did not provide any
favorable results of shrinkage of the plexiform neurofibroma,
although it could delay their growth in selected patients197.

Conclusions. Neurofibromin is ubiquitously expressed with
enrichment in neurons, Schwann cells, oligodendrocytes, astrocytes,
leukocytes and adrenal medulla, and it is highly conserved among
species. Due to its high degree of conservation, several animal
models can be used to identify potential effectors, partners, and
promising therapeutic targets to complete the functional char-
acterization of this protein. Neurofibromin is known to associate
with a large number of proteins, including transmembrane recep-
tors, soluble effectors, proteins at the cell surface, the cytoskeleton
and the nucleus. Although the biological significance of these
protein–protein interactions is largely unknown, there is profound
evidence on neurofibromin roles in actin cytoskeleton remodeling,
cell motility, cell adhesion, proliferation, differentiation, apoptosis,
stress responses, learning and memory. Variants throughout the
protein affecting different domains that interact with different
binding partners may be associated with the vast array of clinical
manifestations. Some neurofibromin effectors have been verified,
whereas many reported interactions remain unsubstantiated and
may be irrelevant. The diversity of protein associations does how-
ever emphasize the point that neurofibromin is likely to act through
the canonical and non-canonical effector pathways downstream of
Ras activation. Several groups have reviewed neurofibromin protein
structure, putative interacting partners and therapeutic
strategies42,198–201, but to date, a high-quality NF1 interactome has
not been described yet. The fact that neurofibromin has been
related to a variety of membrane receptors and that binding part-
ners may be cell type-specific makes elucidating its additional
binding partners and functions even more intriguing. Further stu-
dies on the regulation of neurofibromin in various model organisms
and cell types are needed in order to identify the role of neurofi-
bromin under pathological conditions.
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