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Variational relevance evaluation of individual fMRI
data enables deconstruction of task-dependent
neural dynamics
Xiaoyu Lv 1, Shintaro Funahashi2, Chunlin Li 3,4✉ & Jinglong Wu 5,6✉

In neuroimaging research, univariate analysis has always been used to localize “repre-

sentations” at the microscale, whereas network approaches have been applied to char-

acterize transregional “operations”. How are representations and operations linked through

dynamic interactions? We developed the variational relevance evaluation (VRE) method to

analyze individual task fMRI data, which selects informative voxels during model training to

localize the “representation”, and quantifies the dynamic contributions of single voxels across

the whole-brain to different cognitive functions to characterize the “operation”. Using 15

individual fMRI data files for higher visual area localizers, we evaluated the characterization of

selected voxel positions of VRE and revealed different object-selective regions functioning in

similar dynamics. Using another 15 individual fMRI data files for memory retrieval after offline

learning, we found similar task-related regions working in different neural dynamics for tasks

with diverse familiarities. VRE demonstrates a promising horizon in individual fMRI research.
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It is widely accepted that a full theory of any cognition requires
both representations and operations, especially high-level
cognitive functions. In cognitive neuroscience research,

“representations” analysis approaches ascribe distinct cognitive
processes to individual brain regions1. In functional MRI (fMRI)
studies, a common “representation” approach is univariate ana-
lysis, which regards voxels independently. This approach can be
carried out with patterns of large spatial scale, including those
derived from whole-brain fMRI activity. However, there are limits
on what can be learned about cognitive states by examining
voxels in isolation2, as this could result in discarding the spatial
relationships among cortical locations3. In particular, the spatial
averaging method prunes voxels with weaker responses to a
particular condition that might carry some information about the
presence/absence of that condition and blurs out fine-grained
spatial patterns that might discriminate between experimental
conditions4.

In effect, cooperation and effective communication between
spatially separate neural regions play a crucial role in the
execution of many cognitive behaviors5. A series of approaches
have evolved to functionally label brain networks rather than
focal brain regions such that “operation” characterization is
possible. A “network” describes spatially distinct brain regions, or
nodes, that are functionally or structurally connected through
edges6. Methods for identifying brain networks vary by spatial
scale, temporal scale, and relation to cognition, but most utilize
covariation in brain activity across time or experimental trials7,8.
Considerable interest has arisen in resting-state networks (RSNs),
such as the default mode network (DMN) and the salience
network;9–11 and in large-scale connectivity-based, task-related
networks (cTRNs). While RSNs are defined as regions that tend
to be functionally related during rest and cTRNs link the network
topology to behavior directly with a similar logic as RSNs, neither
can specify the corresponding contributions of each region or the
flow of information and control across regions during a task12.
Compared to univariate fMRI analysis, functional connectivity
realizes interaction analysis based on brainwide regions at the
cost of voxelwise analysis, which makes it impossible to separate
the function-responsive representation across single regions at the
microscale, such as single voxels.

Neither conventional “representation” nor “operation” approa-
ches can answer the central question: how the operations and
representations are linked through dynamic interactions at the
microscale? Moreover, identifying the unique functional archi-
tecture of an individual’s brain is crucial to understand the neural
basis of variation in human cognition and behavior13. However, the
overfitting problem due to high-dimensionality and minor-dataset
characteristics of fMRI data has become a major obstacle for
methodology innovation in neuroscience studies, especially for
research based on individual datasets that are collected via con-
ventional paradigms. To address this, we need a representation-
operation hybrid approach based on individual data to characterize
how the brain is carved up in terms of its dynamic contributions to
cognition functioning at the microscale is needed.

We developed variational relevance evaluation (VRE, shown in
Fig. 1a) and the relevance index (RI, shown in Fig. 1b) to identify
brain representations for stimulus condition and cognitive state
dynamics (dynamic, in short) characterizing brainwide con-
tribution variety in the temporal domain at the level of single
voxels for individuals, based on the assumption that the brain
works as an entirety with sophisticated parts that cooperate to
perform disparate cognitive functions14. Within the variational
Bayesian (VB) framework, we develop the batch-feature-input
trick to avoid overfitting due to the simultaneous analysis of a
large number of voxels, and two adversarial strategies are per-
formed by two parallel linear layers to concurrently conduct

feature evaluation and model training. Intriguingly, only two fully
connected layers are recruited to perform linear classification in
this paper. For this, we agree with the perspective proposed by
ref. 15, who stated that all brain processes essentially reflect a
series of nonlinear computations; it is pivotal to avoid adding
additional nonlinear steps16 to characterize the information
processed by a brain region.

In this research, we first evaluated the classification perfor-
mance and the characterization of selected voxel positions of VRE
using 15 individual fMRI data files for higher-visual area
localizers17. The results show that VRE selects voxels with loca-
tion distributions that are consistent with known functional
anatomy for disparate categories with reasonable classification
accuracy. Furthermore, dynamic research demonstrates that dif-
ferent object-selective regions function in similar patterns for
distinct visual stimulus conditions. Then, using another 15 indi-
vidual fMRI data files for memory retrieval after offline
learning18, we found three dynamics in the dorsal lateral pre-
frontal cortex (DLPFC), bilateral sensorimotor area, medial
temporal lobe (MTL), and vision association area across four
different tasks with diverse degrees of familiarity for subjects
(offline improvements occurred in one task with others evolving
from the task). Subjects with distinct offline learning abilities
showed different neural dynamics across the performance of the
trained task. When analyzing the dynamics of single regions, we
conclude that progressive trends are correlated with task contents.

Results
Overview of VRE feature evaluation and relevance index. To
select the most informative features linearly related to stimulus
conditions from the whole-brain, we propose to evaluate the
validity of features batch by batch. As shown in Fig. 1, VRE
feature evaluation involves multiple computation iterations, each
with a classification model composed of two parallel linear layers.
First, the features batch awaiting evaluation needs to be con-
firmed by the mask with green background. Second, a linear
classification model matching the dimensionality of the batch is
trained to predict the label of the corresponding stimulus con-
dition. Third, the Sparsity Selection Array is transformed from
the Position Array, and the position of a feature is set to zero if all

weights related to the feature meet the predefined criteria (wμ
c ≤ μ

^

for weights from the mean layer, and wσ2
c ≤ σ

^2
for weights from

the variance layer), as shown in the purple part of Fig. 1. The
dotted part denotes the informative feature positions evaluated in
the iteration. To guarantee efficiency, we set max_fea (equal to
the size denoted by Position Array_1) as the maximum number
of features computed spontaneously. The feature quantity eval-
uated in each iteration should meet max_fea if the features not
analyzed are sufficient for complement. According to the Sparsity
Selection Array evaluated in the last iteration, the Position Array
of the feature batch awaiting evaluation in the next iteration is
confirmed by the positions of informative features evaluated
before (dotted part) and that of new features (green part). Finally,
the VRE feature validity evaluation is not complete until the
Position Array and Sparsity Selection Array in one computation
iteration are the same, which denotes that the least number of
informative features is confirmed to guarantee the model con-
vergence. Then, the model of the last computation iteration is
reserved. With the Sparsity Selection Array of the reserved model,
the brain representation for each condition is obtained.
Throughout the paper, vectors and scalars are signified in bold-
faced letters and normal face letters, respectively. “Features”
denote BOLD responses of voxels.

The relevance index (RI) is defined to quantify the contribution
of every single feature to the correct classification. Using the
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reserved model, we can predict the label of the volume while only
one informative voxel is considered (the red dot shown in
Fig. 1b). The RI for the voxel is the mean of the (C-1)
proportions, with each signifying the ratio of the difference
between the correct category label element (y�1 i in Fig. 1b) and

one of the other alternatives predicted from the voxel to the
similar difference predicted from all informative voxels. The
cognitive state dynamic for one voxel is arranged temporally by
the RIs estimated from volumes of one condition collected
sequentially. The pattern analysis mentioned here was based on a
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single brain scan, which is accessible only if the cognitive states
expressed by the selected features are sufficiently disparate from
one another for model building19–28.

Different brain regions may work in distinct patterns. In regard
to a single voxel cluster selected by VRE, voxels within the cluster
may have distinct dynamics. To identify the dominating pattern
of each voxel cluster compatible with most voxels in the cluster,
we applied two-category hierarchical clustering to the dynamics
of the voxels from a single cluster selected by VRE. It should be
noted that the dynamics of the voxel cluster researched in this
paper represent the dominant cognitive state dynamics.

Localizer for higher-visual areas. We use the data from the
StudyForrest dataset17 to test whether the locations of VRE-
selected voxels are consistent with known functional anatomy,
and explore the representation and operations, involved in
higher-visual object-selective cognition. Subjects were required to
view the pictures of 6 categories sequentially in a block experi-
mental design.

To test the position accuracy and specific condition exclusive-
ness of the selected voxels, we applied the VRE method to these
fMRI data. A series of 6-class individual classification models
based on the VRE framework were constructed with brainwide
voxels. Classification accuracy reflects the extent of valid
information mined in the brainwide voxels for discriminating
among the experimental conditions tested16. The related models
finally achieved ideal accuracy (98.6 ± 1.1%, average accuracy
and standard deviation across all models), guaranteeing mean-
ingful feature evaluation. Note that there are six different linear
classification functions, implying six disparate stimulus condi-
tions with one voxel selection for every condition. Then, we
compared the activated voxels selected by the VRE model with
those selected with the general linear model (GLM) from the
Functional Magnetic Resonance Imaging of the Brain (FMRIB)
Software Library (FSL, provided by the original paper) relevant to
every experimental condition. For both approaches used to select
meaningful features, “labels” are needed. Label functions were
fulfilled here by stimulus temporal sequences and hemodynamic
response function (HRF)-convolved stimulus temporal sequences
for the VRE and GLM, respectively. The middle parts of Fig. 2a, b
illustrate the topology mapping of Subject_01 on a flat surface
under different conditions selected by the GLM and VRE model.
Substantial distribution consistency was achieved between the
voxels selected by the VRE model and those of the previous
study29 regarding object-selective regions. As the six line charts in
Fig. 2a depict, the block-mean, voxel-mean BOLD responses
across five regions of interest (ROIs) constitute the BOLD
temporal sequences for five task conditions (House and Scene are
both regarded as the Place category in the original paper), and 14

continuous volumes (2 volumes before, 8 volumes during, and 4
volumes after stimulus presentation; volume 0 corresponds to
stimulus onset) alongside one specific stimulus implementation
are shown on the six line charts in Fig. 2a. For VRE, one predicted
label element (yc in Fig. 1b) of the corresponding ROI can be
predicted by the linear function established for every condition
after model convergence. As Fig. 2b denotes, the block-mean
predicted label elements from the same 14 continuous volumes
constitute the temporal sequence, and the sequences for different
conditions are shown on the six line charts in Fig. 2b. Every line
chart contains two bold lines: the black line is the HRF-convolved
stimulus temporal sequence or stimulus temporal sequence of
the corresponding task occurring during these blocks, and the
colored line is the correct object-selective ROI result (e.g., the
black line signifies the HRF-convolved temporal sequence of
face condition, and the red line on the same chart is the averaged
BOLD sequences of the face-selective ROI selected by the GLM in
the upper-left chart of Fig. 2a). From Fig. 2a, b, we can conclude
that the correct label element sequences of the VRE are in
substantial accordance with the corresponding stimulus condition
relative to other sequences. In addition, the individual results of
the remaining 14 subjects are presented in Supplementary
Figs. 1–14. In other words, the VRE can achieve a discriminative
classification result for a specific condition.

To quantify the classification specificity of the GLM and VRE,
we calculated Pearson correlations not only between the predicted
label element sequences of the voxels selected by the VRE and the
stimulus temporal sequences, but also between the averaged
BOLD temporal sequences of the voxels selected by the GLM and
the HRF-convolved stimulus temporal sequences. All blocks of all
stimulus conditions (eight blocks of one condition for one
subject) for all 15 subjects were used in this correlation analysis
instead of the block-mean results of every condition shown in
Fig. 2. Positive and negative correlation results are shown
separately for GLM and VRE in Fig. 3a, b, respectively, and the
line width in the Circos plot signifies the absolute value of the
correlation between stimulus condition and ROI result. For a
specific stimulus condition, a model with ideal classification
accuracy needs to select the most informative features from the
irrelevant alternatives. Put differently, the classification index
(BOLD predicted label element sequence for VRE or voxel-mean
BOLD temporal sequence for GLM) should be as positively
correlated with this condition exclusively and as negatively
correlated with other conditions as possible. Regarding the
classification specificity of the models, the correlation results of
the VRE model shown in Fig. 3b are in higher congruence with
this norm than the results of the GLM shown in Fig. 3a.
Moreover, the condition specificity differences between these two
models are more prominent when both the positive and negative

Fig. 1 Overview of VRE feature evaluation and Relevance Index. a VRE feature evaluation. Multi-linear classification models matching the feature batch
dimensionality need to be trained to predict the correct stimulus labels. According to the weights of the model, the Sparsity Position Array distinguishing
the informative feature positions can be obtained. To guarantee the feature evaluation efficiency, the Position Array is composed of the positions of both
productive features evaluated by the last computation iteration (dotted part) and supplementary features not analyzed before (green part) to meet the
features maximum analyzed in one iteration. Reserving the model when the Position Array and Sparsity Selection Array of one computation iteration are
the same as each other, denoting the linear relation between the least number of features and labels is established. The Sparsity Selection Array evaluated
from the parameters of the reserved model signifies the ROI for each stimulus condition. The green part signifies the positions of features not analyzed
before, the purple part signifies the positions of unproductive features evaluated before, and the dotted part signifies the positions of informative features
evaluated before. � signifies the Hadamard product. � denotes the dot product. b Relevance Index (RI) and Cognitive Stage Dynamic. Vol_1–Vol_n are n
volumes collected sequentially during one stimulus condition (corresponding to the correct category label element y�1 ). The dotted part signifies the
positions of informative voxels for the stimulus condition evaluated from Model_K parameters, namely Sparsity Selection Array_K in Fig. 1a. The red dot
Vox_i denotes each voxel of the dotted part. The label consists of C elements, with each corresponding to one category. The mean of (C-1) proportions,
with each denoting the ratio of difference predicted from one informative voxel between correct category label element (y�1 i) and another element, to the
similar difference predicted from all informative voxels, is the RI of Vol_n-Vox_i. RI is defined to quantify the contribution of every single voxel to the correct
classification. The Cognitive State Dynamic of Vox_i is arranged temporally by the RIs analyzed from n volumes collected sequentially (Vol_1–Vol_n).
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results are described in a single heatmap, as depicted in Fig. 3c. The
radial direction of the heatmap denotes six stimulus conditions,
and the circumference direction signifies the six ROIs selected by
the two models, consisting of 720 columns (6 × 15 × 8, six ROIs,
15 subjects, and eight blocks of one condition for every subject;
House and Scene are regarded as Place by original paper, so that the
House sector and Scene sector in the GLM heatmap signify the
same correlations; due to data leakage from the ROIs of
some subjects from the original paper, four zero gaps exist in the
Scramble, Object and Face sectors in the GLM heatmap).

Then we researched the difference between the dominating
cognitive state dynamics of six object-selective regions during a
stimulus block. As shown in Fig. 4a, the dynamics of the six object-
selective regions for Subject_01 are similar. To quantify the
difference between the dynamics of distinct object-selective regions,
we performed intergroup and intragroup Pearson’s correlation

analysis between all stimulus group pairs. Additionally, the sign
permutation test (n1 ¼ 28 and n2 ¼ 64 for intragroup and
intergroup correlations, respectively, p < 0.001, FDR-corrected
significance level p < 0.05) between the inter- and intragroup
correlations demonstrated no significant differences between the
dynamics of disparate object-selective regions. The individual
cognitive state dynamics analysis results for the remaining 14
subjects are presented in Supplementary Figs. 15–28.

Compared with the conventional univariate GLM, we conclude
that the VRE can achieve absolute classification specificity on the
basis of rational ROI positioning. Cognitive state dynamic
research indicates that different higher-visual stimuli are
processed by different brain regions in similar working patterns.

Memory retrieval after offline learning. Procedural memory is
consolidated by “online” learning, in which skills initially improve

Fig. 2 Individual object-selective results selected by the GLM and VRE for Subject_01. The six different colors in the pie color bar indicate the
corresponding task conditions, and the bottom black color signifies the “label” (HRF-convolved stimulus temporal sequence for the GLM; stimulus temporal
sequence for the VRE) used to select the features. The colored topology mapping on the flat surface denotes the features selected by the GLM and VRE
under the six conditions. The 0 point on the x-axis of the line charts indicates the volume gathered at stimulus onset, and 14 continuous volumes obtained
during the stimulus presentation block were included in the analysis (the first two volumes collected before, the eight volumes gathered during, and the last
four volumes collected after stimulus presentation). a GLM-selected feature topology distribution of the six stimulus conditions; six line charts of block-
averaged, voxel-mean BOLD responses of every object-selective region (colored bold lines) versus the corresponding HRF-convolved stimulus temporal
sequences occurring during these blocks (black bold lines). b VRE-selected feature topology distribution of the six stimulus conditions (every column of
Sparsity Selection Array evaluated from a reserved model in Fig. 1a signifies the ROI for each condition); six line charts of block-averaged predicted label
element (yc in Fig. 1b) sequence for every object-selective region (colored bold lines) versus the corresponding stimulus temporal sequences occurring
during these blocks (black bold lines).
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relatively fast andmore slowly thereafter30,31, and “offline learning”,
which includes skill stabilization and improvement31–33. Offline
learning expressed as delayed gains (DGs) is often dependent on
sleep34. To reveal the brain response patterns to motor retrieval
after offline learning, we applied VRE to fMRI data collected when
15 right-handed subjects performed four finger motion tasks (with
one task trained beforehand) and obtained from ref. 18. The prior
training and fMRI experiments were implemented over two con-
secutive days separated by an 18-h period (including 6 h of sleep).
The subjects were required to perform four tasks during the fMRI
experiment: trained hand performing the trained sequence (T_T),
trained hand performing the untrained sequence (T_U), untrained
hand performing the trained sequence (U_T), and untrained hand
performing the untrained sequence (U_U). Among the four motion
conditions, only the T_T condition was trained beforehand,
whereas the other three conditions evolved from the T_T condition.
Whether offline learning only occurs for the T_T condition or the
four conditions during the delay (18-h period)? Memory con-
solidation in this experiment is expressed as DGs. Namely, “off-
line” gains reflecting the procedural memory consolidation process
are dependent on evolution occurring over a long period after
practice35,36. Regarding motor sequences, DGs expressed as faster
and more accurate performance are related to sleep34,37.

Posttraining and overnight behavior tests were conducted to
grade the DG scores in motion performance speed and accuracy
for each task. Based on the DG score, offline learning was
demonstrated during the delay for the T_T condition. The speed

gains and reduction in the absolute number of errors were
significant (overnight test vs. posttraining test for T_T, in speed
and accuracy correspondingly: F(1,14)= 14.42, p < 0.01;
F(1,14)= 9.18, p < 0.01). Compared with the post training test
score, no significant DGs were identified for other conditions.
While estimating the DGs on the individual performance,
however, the 15 subjects were divided into two groups, including
the No_DG group, consisting of 5 subjects who had low
improvements or reduced performance in speed and accuracy
(<2%), and the DG group, consisting of 10 subjects who achieved
valid gains in performance speed and accuracy.

Given the particular experimental design, the data were
preprocessed for every run. Then, we designed individual four-
class classification models for the 15 subjects based on the VRE
framework using 80% of fMRI data as the training dataset and the
remaining 20% as the test dataset. Reasonable accuracy was
achieved by the related models (99.1 ± 1.5%, average accuracy
and standard deviation across all conditions for the 15 subjects),
guaranteeing meaningful feature evaluation. We performed a
similar Pearson correlation analysis as Fig. 3 for all blocks of all
subjects, as shown in Fig. 5. Overall, 360 blocks (15 × 4 × 3 × 2,
15 subjects, four conditions, three runs per condition, two blocks
per run) were adopted in the correlation analysis. Positive and
negative results are separately shown in Fig. 5a, with the stimulus
sequence positively correlating with the predicted label element
sequence from the corresponding stimulus-responsive region and
negatively correlating with the predicted label element sequences

Fig. 3 Pearson correlations between the classification indices (voxel-mean BOLD temporal sequences for the GLM and predicted label element
sequences for the VRE) and classification labels (HRF-convolved stimulus temporal sequences for the GLM and stimulus temporal sequences for the
VRE) for every stimulus block of higher-visual-areas localizer task. These results are analyzed from continuous volumes (the same 14 volumes shown in
Fig. 2) obtained during one stimulus block for all 15 subjects. a Pearson correlations between the voxel-mean BOLD temporal sequences among the object-
selective ROIs selected by the GLM and the HRF-convolved stimulus temporal sequences shown separately in positive and negative Circos plots. b Pearson
correlations between the predicted label element sequences among the object-selective ROIs selected by the VRE and the stimulus temporal sequences
are shown separately in positive and negative Circos plots. c Positive and negative Pearson correlations between the classification indices and classification
labels are shown together in the heatmap for the GLM and VRE. The radial direction denotes the six stimulus conditions, and the circumferential direction
signifies the ROIs selected by the two models.
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from other stimulus-responsive regions; positive and negative
results are shown together in Fig. 5b.

After VRE feature evaluation, we found that the selected voxels
clustered in five regions: the dorsal lateral prefrontal cortex (DLPFC),
bilateral sensorimotor area, medial temporal lobe (MTL), and vision
association area. Then, we analyzed the dominating cognitive state
dynamics of the five clusters across four tasks.

The five clusters with dominating tendencies were projected
into MNI space and overlapped across the 15 subjects, as shown
in Fig. 6a–d for the T_T, T_U, U_T, and U_U conditions,
respectively. The magnitude was affected by both the spatial

variability across brains and the subjective cognition differences
to a certain condition. Regarding the T_T condition, the voxels
with dominating dynamics were significantly clustered across the
left DLPFC, left sensorimotor area, right precentral gyrus, left
MTL, and right vision association area for all subjects. For the
T_U condition, the voxels with dominating dynamics were
clustered similarly to but not exactly as those of the T_T
condition, which indicates that the cognitive states related to
these two conditions are similar to a certain extent. In the U_T
condition, the voxels with dominating dynamics were signifi-
cantly clustered across the left DLPFC, left the sensorimotor area,

Fig. 4 Dynamics of six stimulus-responsive regions and their Pearson’s correlation analysis results for Subject _01. a Dominating cognitive state
dynamics temporally arranged from voxels’ RI summation of six stimulus-responsive regions are presented separately. The x-axis signifies the volume
collection temporal sequence, with point 0 denoting the start of the stimulus block. The shaded area denotes the standard errors. b To estimate the
difference between the cognitive state dynamics of distinct stimulus-responsive regions, inter-groups, and intragroup Pearson’s correlation analysis are
performed between all stimulus group pairs. The correlation difference significances between inter and intra-groups are assessed by sign permutation test
(n1 ¼ 28, n2 ¼ 64 for intragroup and intergroup correlations correspondingly, p < 0.001, FDR-corrected significance level p < 0.05). No significant
differences exist between the cognitive state dynamics of different stimulus-responsive regions.
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bilateral MTL, and bilateral vision association area for all subjects.
In the U_U condition, the voxels with dominating dynamics were
significantly clustered across the right DLPFC, left postcentral
gyrus, right sensorimotor area, bilateral MTL, and right vision
association area for all subjects.

Based on the dominating dynamic of every cluster, cognitive
state dynamics within three continuous runs for one experimental
condition were averaged as the final dynamic for this condition.
As noted in the upper-right portion of Fig. 7, the dominating
dynamics of the five clusters are consistent with three tendencies
in displaying certain patterns of variation in classification
contributions.

The results for the DG group and No_DG group are shown
separately in Fig. 7. For the DG subjects in the T_T condition
(depicted in the upper-left part in Fig. 7), the dynamics of the
DLPFC, the sensorimotor area ipsilateral to the performance hand
and the MTL denote decreasing classification specificities for these
three clusters during the whole run. In addition, the dynamic of
the sensorimotor area contralateral to the performance hand

indicates a decreasing classification contribution of this cluster
during every block, and the dynamic of the vision association area
signifies an increasing classification contribution of this cluster
during every block. For the No_DG subjects in the T_T condition
(shown in the bottom-left part of Fig. 7), the dynamics of the four
clusters are similar to those of the DGs group, except for the
dynamic of MTL, which indicates a decreasing classification
contribution of this cluster during every block.

Given that the difference in the dynamics of the five clusters
between the DG group and the No_DG group was not significant as
that under the T_T condition, the dynamics were not analyzed
separately for the other three experimental conditions. For the T_U
condition, as noted in the upper-left part of Fig. 8, the dynamics of
the DLPFC denote a decreasing classification contribution from this
cluster during the whole run, which is similar to that noted in the
T_T condition. In addition, the dynamics of the sensorimotor area
ipsilateral to the performance hand and the vision association area
indicate increasing classification specificities from these two clusters
during every block, and the dynamics of the MTL and sensorimotor

Fig. 5 Pearson correlations between the predicted label element sequences and stimulus temporal sequences for every stimulus block of four motion
tasks. These results are analyzed from continuous 14 volumes obtained during one block (2, 8, and 4 volumes were collected before, during and after the
block) for all 15 subjects. a Pearson correlations between the predicted label element sequences among the stimulus-responsive ROIs selected by the VRE
and the stimulus temporal sequences shown separately in positive and negative Circos plots. b Positive and negative Pearson correlations results shown
together in the heatmap for all subjects. The radial direction denotes the four conditions, and the circumferential direction signifies the ROIs selected
by VRE.
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area contralateral to the performance hand signify decreasing
classification specificities from these two clusters during every block.

For the U_T condition, as depicted in the bottom-left part of
Fig. 8, the dynamics of the DLPFC, the sensorimotor area
ipsilateral to the performance hand and the vision association
area indicate increasing classification specificities of these three
clusters during every block. In addition, the dynamics of the
sensorimotor area contralateral to the performance hand and the
MTL denote decreasing classification specificities from these two
clusters during every block.

The upper-right part of Fig. 8 shows the dynamics of the five
clusters under the U_U condition. Similar to the U_T condition,
the dynamics of the DLPFC, the sensorimotor area ipsilateral to
the performance hand and the vision association area indicate
increasing classification contributions of these three clusters
during every block. Moreover, the dynamics of the sensorimotor
area contralateral to the performance hand denote a decreasing
classification contribution of this cluster during every block.
Unlike the U_T experimental condition, however, the dynamics
of the MTL indicate an increasing classification contribution from
this cluster during every block.

Collectively, the region positions for the four disparate tasks
were similar but functioned under different patterns. Explicitly,
we found three dominating dynamics across five regions for the
four different conditions with high reproducibility across the

subjects. The individual cognitive state dynamics within the five
clusters of the 15 subjects are presented in Supplementary
Figs. 29–43. Pearson correlation analysis between the cognitive
state dynamics in the runs and the three dominating tendencies
across the four tasks for all 15 subjects is provided in
Supplementary Figs. 44, 45.

Discussion
To link brain “representation” and “operation” through dynamic
interactions at the microscale, we designed a variational Bayesian-
based feature evaluation strategy, named variational relevance
evaluation (VRE), to assess the validity of brainwide features
based on individual fMRI datasets. By comparing the predicted
label element computed from one feature for the correct stimulus
condition and other alternatives, we proposed the RI to evaluate
the contribution of every feature to the correct classification. VRE
allows analysis of the whole-brain as an entirety without pre-
liminary feature preselection and achieves reasonable linear
classification accuracy. Applying two fMRI datasets, we demon-
strated the following: (1) by eliminating unrelated features across
model training, the VRE prevents overfitting and achieves better
classification accuracy than a GLM; (2) the selected voxel dis-
tribution is consistent with known functional anatomy; (3) six
higher-visual object-selective brain regions function in similar

Fig. 6 MNI projected topologies in lateral and posterior views of the five clusters with dominating tendencies across the 15 subjects for four memory
retrieval tasks. The red-colored voxels (maximum 15 on the color bar) denote that these voxels were selected for all subjects. a MNI projected topology
for T_T condition. b MNI projected topology for T_U condition. c MNI projected topology for U_T condition. d MNI projected topology for U_U condition.
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working patterns; (4) the brain representations for four memory
retrieval tasks after offline learning spread in similar areas; and
(5) three cognitive state dynamics in five disparate regions across
four memory retrieval tasks after offline learning are identified
by VRE.

In regard to the problem of how the brainwide cortical circuits
are linked at the microscale to advance cognition functioning for
individuals, the voxel dependency of multivariate pattern analysis
(MVPA) makes it an ideal choice. Besides, advances in machine
learning have provided enough choice for MVPA application in
the exploration of neural mechanisms behind detectable brain
activity. However, the application of machine learning always
requires big data to help brighten the model, which is not
accessible or not easy for neuroimaging condition. Given the
concerns of overfitting or model impairment due to the high-
dimensionality and minor-dataset characteristics of the fMRI data
or the possible noise inherent in a vast number of voxels, espe-
cially the research based on the individual dataset, a feature
selection strategy is needed to perform dimension reduction
beforehand2. Traditional feature selection methods include the
recruitment of anatomical landmarks, functional localizers, or a
univariate statistical analysis performed with training data or data
from an additional experiment22,23,38,39. Another option is a
transformation of the original feature space into a subspace of
fewer dimensions using principal component analysis (PCA) or
independent component analysis (ICA)19. The Searchlight

method4 takes advantage of the correlation structure within a
5-mm radius sphere of voxels. Sparse logistic regression (SLR)
achieves feature selection during the linear regression process
with the help of automatic relevance determination (ARD), but
the high computational costs (time and memory) restrict its use
on a large spatial scale. These methods, however, neglect the
dependency among voxels or do not take into account potential
correlations between spatially remote voxels. Given the situation
of high-level cognition with poor availability to predefine regions
of interest (ROIs) and the potential involvement of multiple
distributed brain areas, an approach based on the minor dataset
for characterizing both region correlation and contribution
diversity across the entire brain is needed. VRE is developed to
characterize both region correlation and contribution diversity
across the whole-brain voxels based on an individual dataset that
are collected via conventional paradigms.

Using high-level visual stimulus localizer data, we compared
the classification accuracy and selected voxel position rationality
of VRE with those of the GLM. The individual results shown in
Fig. 2 indicate that the predicted label element sequences of VRE
are significantly consistent with the corresponding stimulus
temporal sequences compared with the relevance between the
voxel-mean BOLD responses of GLM and the HRF-convolved
temporal sequences. Moreover, pairing all quantified correlations
between these two classification indices and their “labels” shown
in Fig. 3, we conclude that the VRE outperforms the GLM in

Fig. 7 Three dynamic tendencies (upper-right plots; the dashed line denotes the boundary for two continuous blocks of one run) and dynamics plots of
the five clusters across subjects of the DGs group (upper-left plots) and the NoDGs group (bottom-left plots) for the T_T condition. The three axes in
the waterfall plots are defined as follows: Volume 0 on the x axis denotes the motion performance run onset, the first eight volumes were collected during
the first block, and the second eight volumes were collected during the second block; the y axis signifies the relevance index (RI); and the points on the z
axis denote the subject IDs, indicating that the result was analyzed by an individual subject’s VRE model.
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selecting stimulus-specific voxels. For individual topology map-
ping, the distribution of voxels selected by the VRE is consistent
with the known functional anatomy;29 however, some position
differences are noted between the results of the two models,
which can possibly be explained by the benefit of voxels with
noise correlation38. We found no significant difference between
cognitive state dynamics of different object-selective ROIs,
demonstrating higher-visual stimulus unfolding in distinct brain
regions with similar working patterns.

Then we implemented the VRE on an individual fMRI dataset
across four memory retrieval tasks to reveal the brain responses
after offline learning. The classification accuracy evaluation
(Fig. 5) demonstrated the feature validity selected by VRE.
Therefore, every volume was valid for separation21,23. The RI
dynamics for each voxel can be obtained with the same temporal
resolution as the BOLD signal. By summing the RIs of the voxels
compatible with the dominating tendency, the dominating
dynamic of every cluster was obtained. The voxels compatible
with the dynamics clustered in five similar regions for the four
conditions, as shown in Fig. 6. These results reveal that a repre-
sentation was established for a specific task as a function of
learning40,41 and attentional demands42,43. Three dominating
dynamics were identified for the five clusters across the four
conditions, as depicted in Figs. 7, 8. Subjects were required to
perform the tasks in a block paradigm, with two blocks com-
prising a run. The three dominating tendencies that emerged
included sustaining suppression during the entire run, suppres-
sion during every block, and enhancement during every block.
The DLPFC is associated with the control of spatial attention,
action intention, and object-order memory44–46, and is activated

during the assimilation of new memories with the existing
memory structure47. According to our results, the spatial atten-
tion needed to perform the task decreased as the task was per-
formed iteratively due to the familiarity with the T_T and T_U
conditions. The DLPFC RI increased during every block to aid in
new memory assimilation if the motion sequence was not so
familiar, such as that noted in the U_T and U_U sequences.
Regarding the MTL, which is associated with object-order
memory44,48,49, the activity can be modulated by the number of
details of memory content50–52. As our results show, MTL
dynamics varied among the three tendencies, which might reflect
the response patterns under different tasks with distinct famil-
iarity. For sensorimotor areas, repetition-driven reduction in
neural activity in M1 is related to motion sequence learning53–55

and enhanced physiological signal patterns in response to repe-
ated experience may be related to sequence-specific procedural
memory consolidation processes56. The dominating dynamics of
the ipsilateral sensorimotor area to the performance hand was
opposite that of the contralateral sensorimotor area. These results
indicate that the ipsilateral sensorimotor area might be related
comparatively to procedural memory retrieval, whereas the con-
tralateral sensorimotor area might be comparatively associated
with motion execution. Intriguingly, the sensorimotor ROI ipsi-
lateral to the performance hand selected by VRE is contradictory
to known functional anatomy. A study found that anisomycin
injection disrupted the performance of internally generated
sequential movements by interfering with the information storage
in M157,58. As previous studies have shown, posterior neocortical
components in conjunction with the posterior hippocampus
(pHPC) determine the local, spatio-perceptual aspects of the

Fig. 8 Dynamics plots of five clusters across all subjects for the T_U (upper-left plots), U_T (bottom-left plots), and U_U conditions (upper-right
plots). The three axes in the waterfall plots are defined as follows: Volume 0 on the x axis denotes the motion performance run onset, the first eight
volumes were collected during the first block, and the second eight volumes were collected during the second block; the y axis signifies the relevance index
(RI); and the points on the z axis signify the subject IDs, indicating that the result was analyzed from an individual subject’s VRE model.
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experience59. Our results identify possible working patterns of
related visual regions related to motion performance after offline
learning. The MTL responded differently during the T_T con-
dition in subjects from the DG and No_DG groups. This result
may reveal brain response characteristics during the retrieval
tasks with different familiarities with existing memory content for
individuals with distinct offline learning abilities.

In summary, some cognitive functions express themselves in
different brain representations with similar operations, such as
the higher-visual areas localizer task. In contrast, other cognitive
functions manifest themselves in similar brain regions with dis-
tinct operations, such as memory retrieval tasks after offline
learning. Identifying the stimulus-responsive regions and the
working patterns by assessing the classification-contribution
dynamics of brainwide features is the main focus of this
research. Using the batch-feature-input algorithm based on the
variational Bayesian (VB) framework, VRE prevents overfitting
based on individual datasets. Nevertheless, the application of
hierarchical clustering to identify the dominating dynamics in a
selected voxel cluster is a coarse-scale process, and these dom-
inating dynamics may be segmented into more elaborating ten-
dencies, which we plan to investigate in the future. We believe
that the voxels that are incompatible with the dominating trend of
their cluster cannot be simply regarded as noise. Consequently,
we plan to design another postprocessing strategy to explain the
neuroanatomical organization of cognitive function on more fine-
grained biological scales, such as between subregions of the
hippocampus.

For high temporal resolution in pattern analysis, we can apply
the VRE to fMRI and electroencephalography (EEG), magne-
toencephalography (MEG), or near-infrared spectroscopy (NIRS)
data concurrently to mine more high spatiotemporal-resolution
details related to various cognitive functions, which might pro-
vide new indicators for medical diagnoses, particularly for high-
level cognition-related diseases. Moreover, the VRE can be
applied to construct a customized medical therapeutic model
based on individual data due to the controllable voxel quantity
analyzed simultaneously, by substituting the linear algorithm in
the classification model proposed in this paper with other
sophisticated machine learning algorithms.

Methods
Localizer for higher-visual areas. To localize the higher-visual object-selective
regions, the experiment gathering 3 Tesla fMRI data was implemented when the
15 subjects (mean age 29.4 years, 6 females) viewed 144 pictures from six different
categories: human faces, human bodies without heads, small objects, houses, out-
door scenes, and phase scrambled images. The subjects were required to perform
four block-design runs, each with two 16 s blocks per category (eight volumes were
collected during one block). The two blocks of one category were presented
separately in a run, with 16 unique images presented (16 images were presented for
900 ms each, separated by an interval of 100 ms) in each block. For details, please
refer to ref. 17. A total of 384 fMRI volumes from 48 blocks for every subject were
divided into a training data matrix (80%) and a test data matrix (20%).

Memory retrieval after offline learning. The objective of this experiment was to
investigate brain responses related to memory retrieval after offline learning. Fif-
teen healthy subjects (mean age ± std= 25.7 ± 4.4 years, five females) participated
in this experiment. All experiments were implemented on 2 consecutive days with a
block paradigm. The subjects were trained with a particular five-element finger
sequence the day prior to the fMRI experiment with their nondominant (left) hand,
and performed the same sequence and the mirror-reversed sequence with their left
and right hands afterward while undergoing an fMRI scan.

The subjects needed to perform the task with three continuous runs consisting
of two blocks (eight volumes were collected, and the motion sequence was repeated
eight times during one block), each on one condition in the fMRI experiment.
Specifically, the subjects performed four tasks, including the trained hand
performing the trained sequence (T_T), the trained hand performing the untrained
sequence (T_U), the untrained hand performing the trained sequence (U_T) and
the untrained hand performing the untrained sequence (U_U), with an identical
auditory-paced performance rate after an 18-h posttraining break (including at
least 6 h of proper sleep). Only the T_T condition was trained on the first day.

Three tests to estimate the delayed gains (DGs) in speed and accuracy were
performed during the two consecutive days: pretraining test, posttraining test, and
overnight test after scanning. The subjects were required to perform the specified
motion sequence during the test block as fast and as accurately as possible. Compared
with the pretraining test score, the posttraining gains and overnight DGs of every
subject were quantified as a percentage (pretraining= 100%). The DGs are defined as
the performance improvement in speed and accuracy expressed by the overnight test
compared with the posttraining test score. By comparing the overnight test score with
the posttraining test score, significant offline learning occurred during the 18-hour
posttraining break for the T_T condition. See ref. 18 for details.

To prevent the reconsolidation from possibly occurring during the scanning
period, an additional 15 healthy subjects in the control group were required to
learn the same finger sequence on the first day and conduct the same behavior tests
as the fMRI group. Compared with the overnight test score of the control group, no
significant improvement was observed for the fMRI group. In sum, no
reconsolidation occurred during the scanning period.

VRE algorithm framework. In this section, we first introduce the structure of the
VRE, as shown in Fig. 9. Here, the orange part is performed only once at the
beginning, Feature Selection (in orange to blue gradient background) of the first
computation iteration is implemented once at the beginning, three parts in blue
constituting one computation iteration (iteration, in short) denoted in Fig. 1a are
conducted iteratively, and the green part signifying the stimulus-responsive regions
extraction after the last computation iteration is finally performed. To prevent
probable overfitting due to high-dimensionality and minor-dataset characteristics
of the fMRI data, we develop the batch-feature-input trick to reduce the dimen-
sionality in a single computation iteration.

Our objective is to linearly relate the BOLD responses to the stimulus
conditions with the least number of informative features. Among the features of the
whole-brain, we need to distinguish informative features from other alternatives.
When constructing the linear classification model in every computation iteration,
we assume an intrinsic distribution function for every weight related to a specific
feature-stimulus condition. Thus, reasonable classification accuracy can be
achieved as long as the weights are fitted in their respective distribution functions.
Obtaining the exact weight distribution functions for every weight is an extremely
intractable problem; however, we can determine a series of methods to
approximate the distribution functions for every weight. Stochastic
approximations, such as the Markov chain Monte Carlo (MCMC) method, are
theoretically suitable for this problem but impractical due to the high
computational resource consumption for iteratively inferring each weight. Thus, we
propose a VRE strategy based on the variational Bayesian (VB) framework, which
is a deterministic approximation algorithm. Regarding algorithm practice, two
parallel linear layers are arranged in the classification model to approximate the
parameters of the intrinsic distribution function for the weights mentioned above
(Gaussian distribution in this research, mean and variance parameters need to be
approximated from the two layers). By the application of the two parallel layers, we
designed two adversarial strategies indicated in Fig. 10. Specifically, one strategy
involved the loss function, and another strategy was implemented in the Feature
Evaluation stage. As a result of the two adversarial strategies, the features that are
poorly relevant to the specific condition can be distinguished and are not calculated
in the following iterations by setting the corresponding Selection Array elements of
these features to zero.

It should be noted that iteration and epoch are two different concepts in this
paper. An intact computation iteration is composed of three stages: Feature
Selection, Model Training and Test, and Feature Evaluation. In addition, the model
needs to be trained for at least 1000 epochs. We need to adjust the three sets of
distribution parameters shown in Fig. 10b to guarantee the model convergence
with the least number of informative features in every computation iteration. In the
following section, all parts of the VRE algorithm framework are introduced
sequentially, as depicted in Fig. 9.

Data preprocessing. First, we should clarify that data from different runs are not
preprocessed simultaneously in the case of probable cross-contamination. The
Statistical Parametric Mapping 12 (SPM12, Wellcome Department of Imaging
Neuroscience, University College London, London, UK) software package with
MATLAB (MathWorks, Natick, Ma) was employed for data preprocessing. Among
a series of data from one run, the functional data are first realigned to the first
functional volume to assess the effect of head motion and then coregistered to T1-
weighted high-resolution anatomical images. During the normalization stage, the
coregistered volumes are interpolated into a new volume consisting of
3 × 3 × 3 mm3 voxels to match the standard T1 template image defined by the
Montreal National Institute (MNI).

After SPM processing, the data need to be further processed to eliminate the
baseline signal. First, according to the temporal sequence obtained across the
experiment, the volumes collected during the resting stage are averaged and built to
serve the baseline signal of the corresponding run. Second, the baseline signal is
subtracted from every volume collected during the stimulus period to minimize the
probable effects of noise. Finally, the overall voxels from a single volume are
normalized to the standard Gaussian distribution. Furthermore, all normalized
matrices are reshaped into data arrays and then stacked into a matrix with M rows
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Fig. 9 VRE analysis procedures. Data Preprocessing (orange background), Feature Selection of the first computation iteration (orange to blue gradient
background), and computation iterations consisting of three parts (blue background, Feature Selection, Model Training and Test, and Feature Evaluation) to
evaluate the whole-brain features’ validity one by one, and Feature Identification for Every Condition (the green part, performed when the Position Array of
two consecutive computation iterations are same as each other). � signifies the Hadamard product. � signifies the concatenation operation. � denotes the
matrix product.
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(for M volumes) and N columns (N voxels per volume), as shown in the data
preprocessing stage of Fig. 9.

The goal of the preprocessing step is to verify the feasibility and enhance the
resolution of the data, whereas that of the postprocessing stage is to eliminate the
interference from noise and enable preliminary normalization of the features.
Finally, we reshaped the neuroimaging data from matrices to arrays because we
only wanted to study the correlation among voxels or cortical regions (voxel
clusters) instead of the spatial relationship among cortical regions and the temporal
relationship among time points. In sum, we transform all fMRI data for an
individual to a matrix with the Num_i row representing the N features of all
dimensions collected from the corresponding volume and the Num_j column
representing the different M Num_j features from M different volumes.

Feature selection. The three stages of an intact computation iteration are intro-
duced in the following three parts: Feature Selection, Model Training and Test, and
Feature Evaluation. In the Feature Selection stage, the features awaiting the validity
evaluation need to be selected from the overall dimension. Before a more explicit
introduction, we need to clarify two dimensions, the overall dimension comprised
of all features in the whole-brain and the local dimension comprised of the features
analyzed in the next computation iteration. The Position Array is proposed to
locate the positions of features across the overall dimension.

To prevent overfitting, we restricted the feature quantity in one iteration by the
application of a batch-feature-input trick, as shown in Fig. 1a. Given the computational
efficiency, we set a maximum number of features to be computed concurrently in one
computation iteration (max_fea), which is the default feature quantity if the number of
features not computed previously is sufficient for compensation.

As an important part of the position array, the Sub-Position Array estimated in
previous iterations with sparsity is composed of “one” elements and “zero”
elements. Here, “one” elements denote both the informative feature positions
assessed through the completed iterations (the green elements depicted in Fig. 9)
and those needed to compensate for max_fea (the yellow elements depicted in
Fig. 9) to signify the positions of features computed for the next iteration.
Correspondingly, “zero” elements consist of the positions of unproductive features
assessed through the completed iterations (the magenta elements depicted in
Fig. 9).

Accordingly, the Position Array of Time_i Feature Selection is composed of the
Sub-Position Array ζ i evaluated in Time_(i-1) Feature Evaluation designed to
locate the positions of features across local dimension; and the concatenated zeros
part, the Supplementary Array (where � signifies the concatenation operation in
Fig. 9), the elements of which denote the features awaiting computation in future
iterations (the purple elements in Fig. 9). Here, the local dimension of the Sub-
Position Array can be transformed into the overall dimension of Position Array.

Regarding the Time_1 Feature Selection depicted in the orange to blue gradient
background of Fig. 9, the Position Array is composed of the Sub-Position Array ζ1
with “one” elements in shape [1*n] denoting the default features quantity equaling
to max_fea and the Supplementary Array with “zero” elements in shape [1*(N-n)].

After construction of the Position Array, the next step is to divide the data
matrix obtained from the Data Preprocessing stage into two data matrices
according to a specified proportion (80/20% in this paper) with no overlap. The

major matrix (Training Data Matrix) is used for model training, and the minor
matrix (Test Data Matrix) is used for model generality testing. Then, the feature
batches used in the next iteration are the Hadamard products of these two data
matrices and the Position Array mentioned above (� signifies the Hadamard
product). As Fig. 9 depicts, the features needed in the next iteration are composed
of the productive features assessed through the completed iterations and the
complementary features compensated to meet max_fea.

Model training and test. In this part, the second stage of an intact computation
iteration, Model Training and Test, is introduced. Unlike conventional feature
selection models, VRE is required to construct multiple models to match the batch-
feature-input trick. As a result of the variable dimension for the feature batch
selected by the Feature Selection stage (the number of features n computed
simultaneously is either equal to max_fea when the number of features not com-
puted previously is sufficient for compensation or the number of informative
features assessed across the finished iterations), a customized new model with two
parallel linear classification layers is established to match the dimension. Feature
Evaluation, which is performed in the last stage of an iteration, is regarded as valid
only if the model can achieve convergence (above-chance classification accuracy is
obtained). To guarantee convergence, every model needs to be trained for at least
1000 epochs and tested every 200 epochs; the training epoch increases by 1000
epochs until the maximum (maximum epoch= 3000) if convergence is not
achieved after the convergence evaluation implemented every 1000 epochs.
Otherwise, the iteration is suspended, and the feature quantity is increased for the
next iteration if the model is not convergent after 3000 epochs, given that the
informative features are not sufficient for convergence. The first adversarial strategy
expressed by the two parallel linear layers is introduced from the theoretical and
algorithmic directions as described below.

After Feature Selection, features with n dimensions are selected from the Data
Matrix for the Time_i Model Training and Test stage, as shown in Fig. 9. The
Training Data Matrix, XTrain with dimensions m � n, the rows of which signify the
n-dimensional feature vectors selected from one volume, and YTrain with
dimensions m � C, is the corresponding C-dimensional (C categories in sum) one-
hot true labels for the m training vectors. Correspondingly, XTest is the Test Data
Matrix with dimensions ðM �mÞ � n, and YTest is the corresponding label matrix
with dimensions ðM �mÞ � C. As shown under the dashed line in the Model
Training and Test stage of Fig. 9, test data are manipulated to assess the
convergence of the model after 200 training epochs.

y ¼ X � w þ b ð1Þ
To establish a linear classifier, a fully connected layer (� denotes the matrix

product, w and b are the weight matrix and bias respectively, in Eq. (1)) between
input data X (XTrain or XTest) and predicted label y (yTrain or yTest) are constructed.
The native Bayesian approach assumes variable continuity and independence of the
approximated model. Given m training samples and labelsfðX1;Y1Þ; � � � ; ðXm;YmÞg
in our model, the true joint posterior distribution for the weight vector,wTrue, is
expressed in Eq. (2).

PðwTruejXTrain;YTrainÞ ¼
Yc
i¼1

Yn
j¼1

p ωðiÞ
True jjXTrain;YTrain

� �
ð2Þ

QðwjXTrain; yTrainÞ ¼
Yc
i¼1

Yn
j¼1

q ωðiÞ
j jXTrain; yTrain

� �
ð3Þ

Nonetheless, the solution of the true joint posterior
probabilityPðwTruejXTrain;YTrainÞ is extremely intractable. To approximate the true
joint posterior probability expressed in Eq.(2), the VB approach assumes a
constructed posterior distribution QðwjXTrain; yTrainÞ, as depicted in Eq. (3), where
yTrain is the predicted labels for training dataXTrain. Equation (4) is the Bayesian
formula in our model. Equation (5) is the centered isotropic multivariate normal
joint Gaussian prior distribution of w, the noninformative prior distribution of
which is a Gaussian distribution with two hyperparameters, the mean-prior �μ and
the variance-prior σ2 (�μ ¼ 0, σ2 ¼ 1 for simplicity in this paper), which is
adjustable if there is prior knowledge about the two hyperparameters.

PðwTruejXTrain;YTrainÞ ¼
PðyTrainjXTrain;wÞ
PðYTrainjXTrainÞ

� PðwÞ ð4Þ

PðwÞ ¼
Yc
i¼1

Yn
j¼1

p ωðiÞ
j

� �
� Nð0; IÞ; pðωi

jÞ � N μ; σ2
� �

ð5Þ

DKL½QðwjXTrain; yTrainÞjjPðwTruejXTrain;YTrainÞ	
¼ log½PðYTrainjXTrainÞ	 þ DKL½QðwjXTrain; yTrainÞjjPðwÞ	

þ Ew�Q wjXTrain ;yTrainð Þðlog½ðPðyTrainjXTrain;wÞÞ�1	Þ
ð6Þ

Kullback–Leibler (KL) divergence is introduced to assess the similarity between
the two posterior distributions mentioned above, as shown in Eq. (6). Moreover,
the KL divergence result is the prototype of the loss function after substitution of
the Bayesian formula (Eq. (4)) for the true posterior distribution in Eq. (6), as
shown on the right-hand side of Eq. (6). The KL divergence on the left-hand side is

Fig. 10 Two key adversarial strategies. a The first adversarial strategy is
manifested in the loss function, in which the first part on the right-hand side
is the Kullback–Leibler divergence between the constructed posterior
distribution QðwjXTrain; yTrainÞ and the noninformative prior distributionPðwÞ,
and the other part on the right-hand side is a distance (the Euclidean
distance in our research) between the predicted labels y and true labels Y.
b The second adversarial strategy with the original (default) distribution
(red line) for every weight to signify the constructed posterior distribution
which is encouraged to be regularized to a prior distribution (black line)
across model training, adversarial to the direction denoted by norm
distribution (blue line) applied to evaluate the feature validity after model
convergence.
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determined by DKL½QðwjXTrain; yTrainÞjjPðwÞ	, the KL divergence of the constructed
posterior distribution QðwjXTrain; yTrainÞ from the joint prior distribution PðwÞ in
the second part of the right-hand side; and the expectation of
log ½PðyTrainjXTrain;wÞ	�1 with respect to w � QðwjXTrain; yTrainÞ in the last part of
the right-hand side. When the data and true labels are provided, the first part
log½PðYTrainjXTrainÞ	 on the right-hand side of Eq. (6) is a constant.

To minimize the KL divergence signified in Eq. (6), we must identify an
appropriate constructed posterior distribution. Briefly, the loss function (Eq. (7))
consists of two parts: the second part of Eq. (6), shown in the summation of KL
divergence of the constructed posterior from the prior for individual weight ω due
to the independence among variables, inspiring the constructed posterior
distribution close to the prior; and the last part of Eq. (6) encouraging predicted
labels yTrain close to true labels YTrain as far as possible w.r.t yTrain �
PðyTrainjXTrain;wÞ (the first part of Eq. (6) is omitted in the loss function), which
can be transformed into a distance (the Euclidean distance in this paper) to
estimate the similarity between the predicted labels and true labels. To minimize
the loss, however, the two parts of Eq. (7) must be minimized concurrently while
presenting with adversarial behaviors in their variations, which is the first
adversarial strategy shown in the loss function of Fig. 10a.

FlossðwÞ ’ DKL½QðwjXTrain; yTrainÞjjPðwÞ	 þ dðY; yÞ

¼ 1
2
∑
c

i¼1
∑
n

j¼1
log

σðiÞ2j

σðiÞ2j

þ
σðiÞ2j þ μðiÞj � μðiÞj

� �2
� �

σðiÞ2j

� 1

2
664

3
775þ dðY; yÞ

ð7Þ

yTrain ¼ yμ þ θ � ffiffiffiffiffiffi
yσ2

p ¼ ðXTrain � μþ bμÞ þ θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXTrain � σ2 þ bσ2 Þ

p
ð8Þ

In algorithm practice, the mean layer and variance layer shown in Fig. 9, are
both constructed with a fully connected layer each to confirm the values of μ and
σ2 for every ω, so that the predicted label yTrain in Eq. (8) is the sum of the mean
results yμ and square root of the variance results yσ2 . Explicitly, the mean layer
assesses the relevance between weights and specific experimental conditions given
the multivariate effect when the robustness of the mean layer is assessed by the
corresponding noise interferences implemented by the variance layer. Given the
differentiability of two layers when stochastic gradient descent (SGD) is utilized in
computation, a reparameterization trick is applied with a Gaussian matrix of the
same shape as yμ and yσ2 . Here, elements θ � Nð0; 1Þ and � signifies the
Hadamard product in Eq. (8). By introducing a reparameterization matrix, we can
fulfil the sampling for weight w from the constructed Gaussian distribution
Nðμ; σ2Þ, and then sample the actual yTrain from its distribution to estimate the
distance from true labels YTrain denoted by the second part on the right-hand side
of Eq. (7).

Feature evaluation. Feature Evaluation, the last stage of an intact computation
iteration, is designed to distinguish the productive features from the feature batch
according to the model parameters confirmed by the Model Training and
Test stage.

The mean layer weights matrix and variance layer weights matrix of the linear
model describe the constructed posterior distributions for the independent weights,
ω½i; j	 � Nðμ½i; j	; σ2½i; j	Þ, where μ½i; j	 is the element in position ½i; j	 of the mean
layer weights matrix with dimension n*C. As noted in the Feature Evaluation part
of Fig. 9, every column of the weights matrix is related to one single stimulus
condition. We set the mean_norm bμ and variance_norm bσ2 as the informative
Feature Evaluation norm.

First, all features are required to be evaluated one by one. Explicitly, the actual
position of the Selection Matrix ρi½i; j	 is set to zero if the corresponding μ½i; j	≤bμ
and σ2½i; j	≤bσ2. Second, the Selection Matrix is averaged across columns to obtain
the Selection Array λi . Third, the elements in the Sparsity Selection Array γi are set
to zero (the magenta elements shown in Fig. 9) when the corresponding elements
of Selection Array λi are equal to zero and one otherwise (the green elements
shown in Fig. 9). In general, the features whose weights related to all conditions are
intensively distributed around meaningless points are eliminated in the following
computation iterations. Here, γi is the Sparsity Position Array characterizing the
evaluation results for the feature batch analyzed in the Time_i Model Training and
Test stage, which needs to be transformed into the Backfilled Array τi with
dimensions ½K � 1	 (K ¼ nþ g, where g is the number of unproductive feature
positions assessed in the previous iterations), signifying the feature positions
among the completed data dimensionality according to the Position Array used in
the Time_i Feature Selection stage. Finally, the Time_(i+ 1) Sub-Position Array
ζ iþ1 with dimensions ½L � 1	 (L ¼ nþ g þ l, where l equals the number of
unproductive feature positions assessed in the Time_i Feature Evaluation stage) is
constructed from τi by setting the new position to 1 for the features compensated
to meet max_fea. Collectively, the Time_(i+ 1) Sub-Position Array ζ iþ1 is
composed of these parts: the positions of productive elements assessed in the
Time_i Feature Evaluation stage (the green elements depicted in Fig. 9), the
positions of compensated elements (the yellow elements depicted in Fig. 9), and the
zero parts, including the positions of elements estimated in the Time_i Feature

Evaluation stage and the elements estimated in previous iterations (the magenta
elements depicted in Fig. 9).

The second adversarial strategy denoted in Fig. 10b is implied in the Feature
Evaluation stage. The original distribution Nð~μ; ~σ2Þ is the default value of the
constructed posteriors for w (QðwjXTrain; yTrainÞ in Eq. (3)) shown in the red line of
Fig. 10(b). The prior distribution Nðμ; σ2Þ (PðwÞ in Eq. (5)) shown in the black line
of Fig. 10b, is a key part of the first adversarial strategy described in the Model
Training and Test stage. The norm distribution Nðbμ;bσ2Þ is the quantified feature
evaluation norm and is signified in the blue line of Fig. 10b. The values of the three
distributions meet the relationship described below.

μ< ~μ<bμ bσ2 < ~σ2 < σ2

The first adversarial strategy equally encourages the predicted labels yTrain to be
similar to the true labels YTrain and constructed posterior for w to be closed to the
prior distribution in the Model Training and Test stage. In practice, the majority of
ω exhibit distributions that are closed to the prior distribution, whereas only a
minority of ω exhibit distributions that are concentrated on some significant points
after the Model Training and Test stage. The second adversarial strategy is
designed to ultimately select the informative features concentrated at significant
points, with the assistance of a contradictory relationship between the norm
distribution direction and the prior distribution direction.

A complete computation iteration consists of the Feature Selection, Model
Training and Test, and Feature Evaluation stages as depicted in blue in Fig. 9. At
the last part of a computation iteration, the Sub-Position Array needed in the next
iteration is settled. The number of iterations to achieve whole model convergence is
determined with the feature compensation efficiency for the new iteration. In
particular, the number of features n computed simultaneously is either equal to
max_fea when the number of features not computed previously is sufficient for
compensation or the number of informative features assessed across the finished
iterations.

Feature identification for every condition. After the overall features are com-
puted once, the informative features continue to be assessed by the computation
iterations until the Position Array of a new iteration is the same as that of the last
iteration (or the Position Array and Sparsity Selection Array of one computation
iteration are same as each other) to select the least number of productive features
needed to guarantee the model convergence, as denoted in Fig. 9. Furthermore,
every column in the Sparsity Selection Matrix of the last computation iteration
denotes the disparate selected features related to specific experimental conditions
(one of the C classes), which can be reshaped into the same shape as that of the
input volume and overlaid on a standard template to study the spatial distribution
characteristics.

The classification task is performed by two parallel, fully connected layers. The
key efficacy in the VRE design is the strategy for discriminating the informative
voxels from a very large number of irrelevant alternatives. Actually, the VRE allows
an exact evaluation of the features one by one using the batch-feature-input trick,
by which the feature number analyzed simultaneously is reduced to a proper range
to substantially prevent overfitting on a comparatively minor dataset.

Relevance index. Here, we propose a new index, the Relevance index (RI), to
evaluate the classification contribution of every feature for discriminating the
correct category from others (classification specificity for the correct category
compared to other alternatives).

RIX
i

c�1 ¼
xi wi

μ 1 � wi
μ c

� �
yμ 1 � bm 1

� �
� yμ c � bm c

� � �
yμ 1 � yμ c

y�1 � yc

þ xi wi
σ2 1 � wi

σ2 c

� �
y2σ2 1 � bv 1

� �� y2σ2 c � bv c

� � � yσ2 1 � θx
i

1 � yσ2 c � θx
i

c

y�1 � yc

ð9Þ

RIx
i ¼ ðRIxi1 þ � � � þ RIx

i

c�1 þ � � �RIxiC�1Þ=C � 1 ð10Þ
As Fig. 1(b) shows, we gather the predicted result of an N-dimensional volume

belonging to Class_1 implemented by the two parallel layers after the computation
finish. Therefore, the predicted result of this Class_1 volume is a C-dimensional
vector, the first element of which is the maximum element among the overall
elements. Then, the sub-relevance index is the proportion voxel_i xi comprises in
the difference between the predicted result element of the correct category (the first
element y�1 of the predicted label in Fig. 1b) and that of one of the other alternatives
(another element yc of the predicted label in Fig. 1b), as shown in Eq. (9). On the
right-hand side of Eq. (9), the first part signifies the ratio of the difference between
y�1 and yc caused by feature xi in the mean layer, whereas the second part denotes
the same ratio caused by feature xi in the variance layer. Here, yμ 1 is the predicted
label element of category_1 from the mean layer, bm 1 is the bias element of
category_1 from the mean layer, and wi

μ 1 is the weights of feature xi related to

category_1 in the mean layer. For the featurexi, the two parts on the right-hand
side in Eq. (9) are the contributions from the mean layer and variance layer for
correct classification, and the mean of the (C-1) sub-relevance indices is the RI of
this voxel, as depicted in Eq. (10). By temporally arranging the RIs of one feature
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analyzed from volumes collected consecutively (related to one condition), the
cognitive state dynamic of the voxel is obtained. Additionally, the RI of all voxels
constitutes the cognitive state matrix of this volume, and the cognitive state
dynamics regarding a certain cognitive function are composed of the state matrices
analyzed from continuous volumes collected during task performance.

Collectively, we can further study the relevance index clustering positions (the
sum of the RIs of the whole-brain selected voxels is equal to 1; the RI of one
selected voxel cluster is the summation of the RIs of the voxels within it.) across the
whole-brain to describe the category-specific distribution of a certain cognitive
state by overlaying the cognitive state matrix on a standard template; and
investigate the cognitive state dynamics of single voxels related to different
condition in the temporal domain.

Leave-20%-volume-out cross-validation. The accuracy of classification performance
is typically evaluated using cross-validation, which can be conducted iteratively so
that every sample in the dataset can be chosen as test data or training data, yielding an
overall measure of classification accuracy. For every volume, a cognitive state matrix
consisting of the RIs of all voxels selected by the VRE is obtained. In the case of state
imbalance due to different training/test dataset segmentations, every volume has an
opportunity to be a part of the training or test dataset based on the hypothesis that
every volume in a block might signify a different cognitive state. For example, eight
volumes are collected during a stimulus block, yielding 28 different datasets
(C2

8 ¼ 28), which is also the number of VRE models that need to be constructed for a
classification task if the training/test segmentation proportion equals 80%/20%.
Finally, the cognitive state dynamic for a single voxel is themean of different cognitive
state dynamics analyzed by disparate models on their corresponding datasets.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are available in the figshare repository
(https://figshare.com/articles/dataset/VRE_01_Data/22203127). All other data were
available from the corresponding author on reasonable request.

Code availability
The custom codes that support the findings of this study are available from the
corresponding author or first author upon reasonable request.
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