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ALAN is a computational approach that interprets
genomic findings in the context of tumor
ecosystems
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Gene behavior is governed by activity of other genes in an ecosystem as well as context-

specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we

developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior

purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include

co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that

function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR,

HOXB13, and FOXA1). We found differential and complex ALAN networks associated with

the proto-oncogene MYC as prostate tumors develop and become metastatic, between

different cancer types, and within cancer subtypes. We discovered that resistant genes in

prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling

pathways. Altogether, ALAN represents an informatics approach for developing gene sig-

natures, identifying gene targets, and interpreting mechanisms of progression or therapy

resistance.
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Knowledge of gene behavior has aided scientific discovery in
deciphering various diseases including those of cancerous
origin1. For instance, the development and progression of

many cancers are associated with functional loss of tumor sup-
pressor genes such as TP53 or functional gains of oncogenes such
as MYC2. Further, specific forms of gene dysregulation events are
utilized as clinical predictive biomarkers or precision therapy
targets in both solid and liquid tumors, including genes such as
ERBB23, EGFR4, and BCR-ABL5. High levels of Androgen
Receptor Variant 7 (AR-V7) in prostate cancer, a splice variant of
AR that lacks the ligand binding domain, is associated with
resistance to AR-targeted therapies (ARTs)6. Many cancers
including breast, ovarian, and prostate with mutations in BRCA1/
2 are clinically actionable due to their response to PARP
inhibitors7,8. In each of these instances, however, some patients
exhibit unpredictable therapeutic responses. Further interpreta-
tion of the gene networks with consideration of disease specificity
or patient response may identify genomic features that could be
purposed to predict response or outcomes with greater accuracy.

Consortium efforts have accrued DNA (genomics) data based
on efforts including The Cancer Genome Atlas (TCGA) and
AACR GENIE9, RNA (transcriptomics) data have been accrued
based on efforts including TCGA, Stand Up 2 Cancer (SU2C)10,
and Genotype-Tissue Expression (GTEx) Project11. Proteomic/
phosphoprotein data can be found in data portals including the in
silico human Surfaceome12 and the Human Protein Atlas13.
Lastly, epigenomic data and metabolomic databases include
Cistrome-GO14 and the Consortium of Metabolomics Studies
(COMETS)15. These datasets can be evaluated using various
informatics solutions to resolve how gene behavior is associated
with clinical phenotypes. This has led to routine use of gene
panels in molecular diagnostic assays to enhance patient sub-
typing, outcome prediction, treatment recommendations, and
other diagnostic elements to understand tumor behavior16–18.
This includes the Prosigna panel PAM50 which is used for breast
cancer subtyping19. While classifier approaches to patient strati-
fication are meaningful to distinguish subtypes, they are limited
because DNA-based panels don’t encompass relationships
between genes. Examination of gene networks using tran-
scriptomic or even proteomic data will contextualize the complex
features of gene behavior, which can be purposed to aid in
treatment decisions or for the development of therapies.

Many computational approaches have been developed to
understand and interrogate gene behavior based on abundance-
level data from transcriptomic or proteomic approaches. Corre-
lation approaches identify similar patterns of gene expression
across patients between gene pairs. This method does not con-
sider expression values outside of the gene pair of interest.
Hierarchical clustering approaches group genes based on simi-
larities. These outputs establish distances between two genes
based on the expression values of the gene pair in relation to all
other genes. Enrichment approaches such as Gene Set Enrich-
ment Analysis (GSEA)20, identify the enrichment of functionally
related gene sets when comparing two biological states. This
approach relies on static definitions of biological pathways. In
certain cases, there are true differences in a signaling pathway
when a gene is active in different tissues or disease states, and this
activity would be better measured through nonconventional or
modified gene sets. Lastly, artificial intelligence and machine
learning (AI/ML) are used to study gene behavior in many ways.
These algorithms often stratify genes into classes21–23, in which
genes that fall into each class behave similarly. In the case of AI/
ML, the grouping of the genes may not be transparent to a
biologist, and the outcomes are influenced by the user-defined
architecture of the specific model. Altogether, an approach that
considers the global gene expression patterns, as well as context

cues, could work with all such tools and enhance understanding
of gene behavior through genomic datasets.

While current informatics tools classify signaling pathways and
biomarkers, understanding of gene behavior is an entirely distinct
scientific objective that requires a tool that evaluates the biological
activities of the same gene in multiple contexts. ALAN networks
represent a mechanism to measure how one gene behaves. For a
gene, the ALAN gene network encompasses information of the
varying degrees of how a gene is related to all other genes based
on expression data across many patient samples. To further
account for differences in gene behavior governed by all other
genes, cell types, microenvironments, disease stages, and the
treatment status of patients, we must consider the relationships of
gene networks of multiple or even all genes within ALAN eco-
systems. In this study to address this limitation, we have devel-
oped an informatics tool to study gene ecosystems and all
underlying gene networks within any context. We named this
computational pipeline the Algorithm for Linking Activity Net-
works (ALAN). The Algorithm for Linking Activity Networks
(ALAN) is an algorithm that identifies and compares the behavior
of genes. ALAN users must first identify the relevant clinical
context, the associated omic datasets, as well as the genes of
interest. ALAN is then used to compare the behavior of genes of
interest based on the context of the input data. Using ALAN, we
identified cancer resistance mechanisms and observed changes in
gene behavior in tumors that progressed towards advanced
disease.

Results
Development of an Algorithm to Link Activity Networks
(ALAN). We developed ALAN as an algorithm to identify and
compare the behavior of genes (Fig. 1). Presuming the input
assumptions are met, ALAN can be used to examine patient data
from many sample types, including both bulk and single-cell as
well as many technologies, such as RNA sequencing or Mass
Spectrometry. These outputs generally yield abundance profiles in
distinct units (TPM, FPKM, RSEM, protein intensity or abun-
dance etc.) but many public datasets have already undergone
preprocessing, including log transformation or normalization.
The first step of the ALAN algorithm uses a ranked-based asso-
ciation method to generate ALAN profiles which are contained
within ALAN Output – Matrix 1. In this matrix, the correlation
coefficient represents the similarity between gene expression
patterns across all patients for two genes. The correlation coef-
ficients for a single gene against every other gene represents an
ALAN profile. The second step of the ALAN algorithm uses a
linear-based association method to generate ALAN gene net-
works which are contained within ALAN Output – Matrix 2. In
this matrix, the correlation coefficient represents the similarity
between the behavior of one gene with respect to all other genes
detected in the dataset. Genes with highly similar networks as
indicated by correlation score of above 0.7 share an ALAN gene
ecosystem. We thus sought to use these gene ecosystems to
analyze patient data from the perspective of cancer progression
and therapy resistance.

ALAN outputs predict critical AR activity in mCRPC. The
Androgen Receptor (AR) is critical for the development of
prostate cancer (PC) and remains a critical target in both meta-
static prostate cancer (mPC) and metastatic castration-resistant
prostate cancer (mCRPC). Current standard-of-care agents for
mCRPC inhibit the synthesis of AR ligands or signaling of AR.
While these AR-inhibiting therapies (ART) are initially effective,
a subset of patients inevitably develop resistance to these thera-
pies. AR mutations, amplification, or overexpression remain
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prevalent in patients that develop resistance to multiple therapies,
which reinforce that AR functions remain critical in advanced
cancers6,10,24–27. To examine the gene networks in prostate
cancer, we accrued data from 946 individuals in which whole
transcriptome sequencing (WTS) was conducted on normal tis-
sue, primary cancer, and metastatic tissue. The data were
obtained through the Genotype-Tissue Expression (GTEx)
project11, The Cancer Genome Atlas (TCGA), and Stand Up to
Cancer 2019 (SU2C 2019)10. We also confirmed such interactions
in protein abundance data from primary prostate cancer
patients28.

We first tested the functionality of ALAN outputs by
examining if AR would expectedly exhibit similar behavior as
known co-factors. To benchmark the similarity of AR and its co-
factors, we also compared these ALAN outputs to genes that are
recurrently co-amplified with AR, even in primary prostate
cancers. To identify co-amplified genes, in a cohort of 492
primary prostate cancer tumors, we found that AR resided in a

focal amplicon on Xq12 with 9 additional genes based on GISTIC
2.0 outputs29,30 (Fig. 2a). In mCRPCs10, we examined the ALAN
outputs to compare gene behavior of AR, its co-factors FOXA1,
HOXB13, GRHL2, NCOA2, to 8 other genes in Xq12 that were
detected in the mCRPC transcriptome (Fig. 2b). This reveals that
while AR, HOXB13, and FOXA1 had similar gene behavior as
defined by aggregate expression patterns across the transcrip-
tome, this behavior was dissimilar to other genes located within
the AR focal amplicon and suggests that they are functionally
dissimilar to AR in mCRPC. To explore additional intrachromo-
somal interactions with AR, we categorized the chromosomal
location of all 2244 genes within the ALAN AR network
signature. Of all the genes in the ALAN AR network signature,
only 3.8% were located on the X chromosome. However, the
ALAN AR network signature contained the co-factors FOXA1
(14q21) and HOXB13 (17q21), the proto-oncogene MYC (8q24),
and coactivator NCOA2 (8q13) (Fig. 2c). In this regard, ALAN
predicted known interactions with AR in mCRPC including
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Fig. 1 Data inputs, outputs, and their visual depictions when using the Algorithm for Linking Activity Network (ALAN). Applying the Algorithm for
Linking Activity Networks (ALAN). Workflow depicting the ALAN algorithm which includes input matrix, matrix generation, user-generated depictions of
ALAN data matrices and key terms. Theoretical Connectivity of ALAN. Individual genes are depicted as circles with their respective names (A, B, C, and
D). The strength of the correlation between two genes is represented by the thickness of the line. In ALAN Profiles, Profile A (blue) and Profile C (grey)
depicted for genes A and C, where the strength of the correlation between the expression patterns of genes (A-A, A-B, A-C, A-D, or C-A, C-B, C-C, C-D)
across all samples is represented by the thickness of the line. ALAN Profiles are derived from gene expression correlations, represented by solid lines,
across all pairs of genes. In ALAN Network, Network A (blue) and Network C (grey) are depicted for genes A and C, where the strength of the correlation
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association with transcription factors HOXB1331,32, FOXA131,32,
and the proto-oncogene MYC33–35. ALAN outputs were robust
compared to pairwise Spearman or Pearson’s correlations
(Supplementary Table 1). Our results indicate that the behaviors
of genes identifiable by ALAN are powered to identify

intrachromosomal relationships between genes as a factor of
gene behavior in mCRPC patients.

We further explored the networks of these genes in mCRPC by
examining the similarities of their ALAN network signatures
(Fig. 2d). As depicted in the Venn diagram, AR shared 95% of the
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genes in its 2244 ALAN network signature with FOXA1 and
HOXB13, whereas 74% of the 866 genes in the MYC ALAN
network signature were shared with AR, FOXA1, and HOXB13.
This indicates that these genes not only have similar gene profiles
(Fig. 2b), but also have similar gene networks (Fig. 2d) indicating
that they reside in the same gene ecosystem in mCRPC. Our
results support the hypothesis that ALAN was able to identify
these previously known and essential critical gene networks in
mCRPC through transcriptomic data. To support these results,
we have also examined the AR and FOXA1 interactions through
protein abundance data derived from prostate cancer biopsies28.
As compared to a pairwise Spearman correlation of AR and
FOXA1 protein expression levels (Supplementary Figure 1b),
ALAN identified that AR and FOXA1 are in a same ALAN
ecosystem (Supplementary Figure 1b). This indicated that ALAN
can be utilized to compare gene behavior through protein data as
well as transcriptomic data.

We also designed the ALAN outputs to be integrated directly
into current genomic analytical tools, such as Gene Set
Enrichment Analysis (GSEA)20. To evaluate the AR ALAN
profile through conventional means, we conducted GSEA
analyses on ALAN outputs from the mCRPC samples (Fig. 2e).
Of the fifty hallmark gene sets from MSigDB36, we found that, as
hypothesized, the ALAN AR profile was associated with the
Androgen response signature (NES= 3.04, FDR= 0) and two
MYC Hallmark gene sets (MYC Targets V1 and V2, NES= 3.48,
3.18, FDR= 0, 0). Additionally, we found that the AR ALAN
network was de-enriched of signatures, such as epithelial-to-
mesenchymal transition (EMT, NES=−2.58, FDR= 0), which
has been recently identified as an upregulated signaling pathway
in mCRPC patients that have developed resistance to ART37,38.
While the AR ALAN profile is enriched of pathways involving
MYC and androgen signaling, it is de-enriched of pathways
associated with metastasis and therapeutic resistance, such as
EMT. This suggests that ALAN is identifying AR signaling and
therapeutic resistance as potentially separate mechanisms. These
observations bolster the biological findings and display both the
value and ease of integrating ALAN outputs with current
informatics analyses (Fig. 2E).

ALAN mapping of MYC activity in prostate tumor progression
and subtypes of breast cancer. Previous literature has indicated
that AR and MYC become co-regulators in prostate cancer, but
only as a function of disease progression33–35. We thus expected
that AR and MYC would have convergent signaling in prostate
cancer and mCRPC, but to lesser degrees in normal prostate
tissue. Upon analyzing AR and MYC in each clinical setting, the
ALAN outputs robustly supported this biological relationship and
nominated AR and MYC in the same ALAN ecosystem in
mCRPC (Fig. 3a, Supplementary Table 2). Notably, pairwise
Spearman’s or Pearson’s correlations of AR and MYC expression
levels yielded limited significance when ALAN outputs were
robust. These results demonstrate that ALAN outputs, which
accounts for relationships of a gene with all others, reflect a
cancer stage-specific functional relationship between AR and
MYC. To further this analysis, we compared the ALAN gene
networks of AR, FOXA1, and MYC using the AR ALAN network
signature. As prostate tissue progressed from normal, to primary,
to mCRPC, we observed a gradient of increasing signature scores
between MYC and the AR ALAN network signature with the
greatest association in mCRPC. This data indicates that while
these genes share an ecosystem in mCRPC, ALAN directly
visualizes these changes in networks as an evolution of gene
behavior (Fig. 3b). Altogether, these ALAN analyses allowed us to
observe global changes in networks and ecosystems for the same

genes across tissue with expectedly distinct histopathological
behavior.

While our initial observations examined the behavior of proto-
oncogene MYC across various stages of prostate cancer, we
sought to examine the behavior of MYC in other cancer types,
including melanoma, lung, ovarian, pancreatic, and breast. To
investigate whether MYC exhibited distinct behavior in these
additional cancer types, we utilized ALAN to examine the MYC
network signature in each context. Transcription data was
obtained from The Cancer Genome Atlas (TCGA) on samples
of melanoma, lung, ovarian, and pancreatic cancer and the five
PAM50 molecular subtypes of breast cancer (Basal, ER2, Luminal
A, Luminal B, normal-like). Each signature was built using the
top 500 genes associated with MYC in that cancer type or cancer
subtype. Interestingly, across the four cancer types, only 3.35% of
genes are shared by at least one other cancer type (Fig. 3c). In the
cross-subtype comparison of breast cancers, 82.6% of all genes
across the five ALAN MYC network signatures were unique to
one subtype and only 2.8% of genes (69 total including MYC)
were shared by at least three subtypes (Fig. 3d). Of those 69 genes,
three of them, EIF3E, MLLT6 and MYC, are indicated as cancer-
causing genes by The Sanger Institute39. Given these distinct
ALAN outputs of the MYC ALAN network signatures across
multiple cancers and within cancer subtypes, we used GSEA to
determine if the ALAN network signature was enriched of MYC
activity. Despite having remarkably distinct ALAN networks, the
MYC_UP.V1_UP gene signature shows high enrichment with all
cancers and all 5 subtypes of breast cancer, except pancreatic
(Fig. 3e). These results indicate that ALAN is able to disambiguate
the genes that exhibit similar behavior as MYC across multiple
cancers and within subtypes and these ALAN gene networks were
enriched of Hallmark MYC activity. This highlights the utility of
ALAN in finding nuance differences of an oncogene when it is
active across different cancer types and cancer subtypes.

Identification of genes and pathways that predict resistance
through ALAN. In addition to examining reported interactions,
we sought to elucidate critical biology by aggregating the con-
sistent interactive patterns of multiple ALAN gene networks, or
their ALAN gene ecosystems. We particularly examined the gene
ecosystems of AR and co-factors (HOXB13, FOXA1) as well as
several genes that regulated enzalutamide resistance including
CDK640, FGFR1/241, ETV542,43, LEF144, CREB545. The other
genes that share an ecosystem with these two groups of genes
were identified by a correlation coefficient above 0.7 in ALAN
Output – Matrix 2 across all genes in the group. Upon examining
the Enzalutamide Resistance ALAN Ecosystem (ERAE, genes =
1287) and the AR and Co-factors ALAN Ecosystem (ACAE,
genes = 2143), we observed the genes within each ecosystem co-
segregated but that the two ALAN ecosystems were divergent and
had 0 overlapping genes (Fig. 4a and b). To determine the sig-
nificance of this result, we have conducted a hypergeometric test,
using a normal approximation to the hypergeometric distribu-
tion. This result of zero overlapping genes given these two groups
is highly significant (p value < 0.0001) indicating that this result
was not due to chance. The expected number of overlapping
genes based on chance is 144 given these two groups. Lastly,
ALAN considered these genes to behave similarly, while pairwise
Spearman or Pearson’s correlations often yielded insignificant
comparisons (Supplementary Table 3).

We also examined if the ERAE genes could reflect the clinical
response in an individual mCRPC patient towards treatment
progression (Fig. 4c). We examined scRNA seq data obtained
from paired biopsy samples from one patient pre-enzalutamide
treatment and post-therapy resistance46. Due to the sparse nature
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is indicated (n) and error bars represent mean with 95% confidence interval of the ALAN network signature score. c The overlap between MYC ALAN
network signatures across four distinct cancer types in TCGA (Melanoma, Lung, Pancreatic and Ovarian) are visualized using a Venn diagram. d The
overlap betweenMYC ALAN network signatures across five subtypes of breast cancer (Basal, Her2, LumA, LumB, and Normal) are visualized using a Venn
diagram. e GSEA enrichment analysis with NES and FDR statistics of the MYC_UP.V1_UP gene set and the MYC ALAN Network from four distinct cancer
types (Melanoma, Lung, Pancreatic and Ovarian) and five subtypes of breast cancer (Basal, Her2, LumA, LumB, Normal-like) from TCGA.
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of scRNAseq data, not all genes that were sequenced had
detectable count values. Therefore, we first scored all genes that
were detected in both paired biopsies from the ERAE (392 genes)
and found a statistically significant increase across the tumor cells
from the enzalutamide-resistant biopsy (Fig. 4d). We subse-
quently noted that 15 of the 392 genes demonstrated the most
robust statistical significance (p value < 0.0001) in this patient

post treatment (Fig. 4e). This result demonstrates that ALAN is
powered to generate unique gene signatures and potentially gene
panels based on clinical response and resistance status. Additional
studies are required to validate these findings in additional
patients.

To further interrogate the biology associated with the ACAE
and ERAEs in mCRPC patients, we performed GSEA and found

a c Scoring off Signatures in Singlle
Cells from Paired Biopsy

Pre
Treatment

Post
Resistance

En
za

lu
ta
m
id
e

Genes from
ERAE Enriched
Pre-Treatment

Genes from
ERAE Enriched
Post Resistance

Gene 1
Gene 2

Gene 3

Gene 6
Gene 7

Gene 8

ACAEERAE

H
al
lm

ar
k
EM

T
O
nc

og
en

ic
LE

F1
Pr

os
ta
te

KR
A
S

d

e

f

Pre Treatment
(n=112)
Post

Enzalutamide
(n = 83)

Pre Treatment
(n=112)
Post

Enzalutamide
(n = 83)

bb

Fig. 4 ALAN identifies resistant gene signature distinct from AR and co-factors that is enriched post enzalutamide treatment and associated with
resistant oncogenic signatures. a The ALAN profile correlation value is plotted for each gene within the ERAE for the ALAN networks in blue (CDK6,
FGFR1, ETV5, CREB5, and LEF1) and orange (AR, HOXB13, and FOXA1). b The ALAN profile correlation value is plotted for each gene within the ACAE for the
ALAN networks in blue (CDK6, FGFR1, ETV5, CREB5, and LEF1) and orange (AR, HOXB13, and FOXA1). For a and b, error bars represent mean with 95%
confidence interval of the ALAN network signature score. cWorkflow depiction of using a unique ALAN gene ecosystem signature for scoring cells from an
individual patient with paired biopsies. d Scores are computed using the ERAE in all tumor cells that were pre-treatment (n= 112) or post-Enzalutamide
resistant (n= 83) in one mCRPC patient. 392 of 1288 genes were detected in the scRNA-seq data. The statistical significance (p-value) was computed
using a Student’s t-test. e Scores are depicted for all tumor cells from c using the 15 genes with the greatest expression increases in the postresistant
samples. For d and e, error bars represent mean with 95% confidence interval of the ERAE score. f Aggregate ERAE and ACAE are analyzed and depicted
through GSEA Enrichment Plots. Hallmark EMT, Oncogenic LEF1 and Prostate KRAS are shown with NES and FDR statistics.
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that gene signatures, including EMT, oncogenic LEF1, and several
tissue-associated KRAS signatures (NES= 3.26, 2.64, 2.57;
FDR= 0.0) were positively associated with the ERAE (Fig. 4f)10.
Conversely, the ACAE exhibited negative enrichment of these
same signatures. This result indicates that these two ALAN
ecosystems have highly opposing functions based on conven-
tional enrichment approaches, such as Gene Set Enrichment
Analysis20. Since the ACAE constitutes of genes that regulate AR
signaling, we also examined 83 genes that are representative of
AR signaling, AR Nelson Up47. The 83 genes belonging to the AR
Nelson pathway scored better than random in the ACAE
(Supplementary Figure 2b). Reciprocally, genes in the ERAE,
which have the opposing function, scored worse than random
selection (Supplementary Figure 2b). These oppositional ecosys-
tems further bolster our previous result (Fig. 2e) and indicates
that ALAN identifies these groups of genes, using both gene
networks and now gene ecosystems, as potentially separate
mechanisms in mCRPC patients. Overall, the two ALAN gene
ecosystems exhibited dichotomous relationships, as characterized
by their underlying gene networks and signaling pathways.

The resistance gene ecosystem nominates potential future
therapeutic targets. We also sought to further examine the ERAE
to predict alternative targets that could be used against mCRPCs
that develop resistance to ART. We prioritized surfacesome and
secretome proteins for future antibody (neutralizing, radio-
labeled, drug-conjugates) or immune-cell (Natural Killer, T-Cell
engagers, CAR-T cells) therapies. Upon integrating ERAE and
ACAE with proteins found in the Surfacesome12,13 (Fig. 5a) or
Secretome13 (Fig. 5b), we found these ecosystems again included
distinctly different proteins. To further illustrate the distinctive-
ness of the ERAE and ACAE, we depicted their relative degree of
association with each other and all other genes in mCRPC via
dimensional reduction on an x-y-plane through Uniform Mani-
fold Approximation and Projection (UMAP, Fig. 5c). Notably, we
identified RSPO2 within the ERAE. Previous studies have
demonstrated that mCRPCs harbor amplification or expression-
driving fusion events of RSPO2, which encodes a secreted WNT
signaling enhancer25. The RSPO2 network overall had a positive
ALAN network correlation with other enzalutamide-resistant
gene networks, including CDK6, LEF1 and FGFR1 (Fig. 5d, all p
value < 0.0001), while we observed an opposing ALAN network
correlation within the AR ALAN network (Fig. 5e, p value <
0.0001). This result indicates that RSPO2 is behaving more similar
to genes within the ERAE than genes within the ACAE in
mCRPC patients. We also confirmed the genomic observations of
previous studies in which RSPO2 is a recurrently amplified gene
with limited deletions in prostate cancers (Fig. 5f). Further, in
studies that sampled both primary and mCRPC patients, RSPO2
amplifications were observed at increased rates in the mCRPC
samples (Fig. 5g). Altogether, these findings indicate that ALAN
ecosystems can be utilized to identify more genes with similar
functional networks, and that this approach may yield targets that
are on the surface or are secreted in mCRPCs.

Discussion
The current scientific environment demands improved
informatics-based approaches to research gene behavior. Existing
tools utilize prior knowledge of signaling pathways and gene
interactions to define their algorithms. In laboratory or infor-
matics settings, we understand that gene behavior is regulated by
other genes, as well as contexts, including cell type, micro-
environment, treatment status, etc. However, no current tools
have been developed to directly address all these differential
regulatory features. In this study, we developed the Algorithm for

Linking Activity Networks (ALAN) as an algorithm to identify
and compare the behavior of genes. ALAN first constructs gene
ecosystems purely based on cohorts of patient data. ALAN out-
puts also include measurements of similarity between all possible
gene networks, which allows for direct comparisons of gene
behaviors in the same or distinct ecosystems. Since ALAN
recognizes genes with similar behavior across multiple stages of a
cancer, or even across distinct cell types, we demonstrate that
ALAN can be utilized to identify relationships that exist outside
of the static definition of gene pathways in cancer. We further
utilized ALAN to construct gene ecosystems that promote
therapy-resistant prostate cancer which identified sets of pro-
mising gene targets and signatures. The demonstration of these
utilities indicate ALAN represents a mechanism to model cell
signaling, protein-protein interactions, or gene behavior.

On a technical level, ALAN is compatible with many existing
data types and platforms that include pipelines and pathway
enrichment tools. While we have demonstrated that RNA and
protein abundance level data can be utilized as ALAN input
matrices, upstream pre-processing steps are relevant in mini-
mizing technical artifacts. To this degree, users must still incor-
porate such tools towards generating the ALAN input matrix
prior to implementation. Due to the rank-based conversion in its
initial analyses, ALAN is agnostic to the shape of the data’s dis-
tribution. If the two assumptions of the input matrix are met,
then no further data transformation is required to run the ALAN
algorithm (e.g., log transformation or normalization). As a result
of this feature, ALAN circumvents the need for raw sequencing
files such as BAM or FASTQ, which may not be readily available.
Therefore, ALAN yields user-friendly intermediate and final
output matrix files in tabular formats for users to subsequently
review, interpret, and illustrate key findings with full customiz-
ability. Galaxy is one workflow manager in which users can
identify gene-profiles, druggable targets, and relevant mutations
in cancer48. ALAN can be incorporated into current Galaxy
workflows after the generation of mapped expression profiles.
The pairing of a traditional workflow that both analyzes raw
sequencing data and consolidates relevant cancer information
with ALAN’s networking approach can ultimately deepen our
understanding of how context-specific gene behavior can be
applied to cancer treatment.

We have demonstrated that ALAN identifies genes with similar
behaviors based on the expression patterns of all genes. We found
that certain genes nominated by ALAN would not have been
considered statistically significant if pairwise expression correla-
tion approaches were utilized. Enrichment approaches, such as
GSEA20 can be applied to detect if a curated gene set is over-
represented. We demonstrated that the ALAN gene networks are
adaptable and nominate different genes when studying different
cancer types and cancer subtypes. While GSEA is appropriate in
determining if a known pathway is active, ALAN provides the
users a tool that can nominate genes that behave similarly only in
certain cancer types. This has utility when a user has interest in
finding groups of genes that contribute to a signaling pathway in
an unknown context, or in defining a pathway in which a gene set
has not been devised. As an example, upon comparing signaling
as functions of prostate cancer development, it was clear that
some gene networks are consistently similar (i.e. AR and FOXA1)
whereas others are highly dependent on the ecosystem (i.e.MYC).
In situations where a disease biology is poorly understood, ALAN
may be used to develop custom gene signatures for biomarkers
that have critical clinical functions within that disease context.

Hierarchical clustering methods like ward.D249 and hier-
archical tree-cutting tools, such as cutreeDynamic50 use metrics
of gene similarity to assign genes into distinct groups. The
expression patterns of all genes contribute to the clustering and
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the outputs of clustering approaches are cluster labels for each
element (gene). ALAN outputs do not inherently identify clusters
of genes, but instead measure the similarity of all possible gene
pairs based on numerical values. This provides an advantage to
users that wish to visualize the relationship between a few specific
genes. Users should consider the distinct utility of these parallel
approaches as these functions may complement one another. As

one example, a user may utilize ALAN to depict why certain
genes are in the same or separate gene clusters.

AI/ML tools are now available to study gene behavior with
respect to outcomes. These tools classify genes based on specific
features21–23. Here, ALAN outputs can be applied on the same
datasets to determine if genes that fall in the same class do in fact
exhibit similar gene behavior. In our prior study, we developed
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P-NET to leverage cancer genomic data in order to predict critical
classifiers that are potential biomarkers or even precision targets
in metastatic prostate cancers21. The architecture of this neural
networking consisted of a multi-layered hierarchical network
structure of genes where their interaction was inferred based on
3007 curated biological pathways. Given that we were studying
distinct states of prostate cancer (primary and metastatic), it is
possible that these preconceived pathways do not reflect the true
relationship of genes within primary and metastatic prostate
cancers. In cases like P-NET, we can utilize ALAN to construct
the hidden layers. While we propose that the use of ALAN may
enhance AI/ML tools in studying gene behavior, it remains to be
determined how these approaches can be integrated and how this
will impact the results. Regardless, while numerous approaches
can be used to compare gene behavior, strategies, including
laboratory-based approaches are ultimately required to validate
true biological functions.

Broadly, using ALAN to study gene networks may deepen
understanding of how genes behave in distinct ecosystems,
including different subtypes and prior exposure to therapeutics.
In the molecular subtyping of breast cancer19,51, expression-
based approaches are applied to examine genes involving hor-
mone sensitivity. Through observation of ESR1, ESR2, and PGR
in Fig. 3 using ALAN, we have demonstrated that each gene has
a distinct networking pattern across all subtypes of breast
cancer. Given that positive expression of these genes is asso-
ciated with more than one subtype, the ALAN result suggests
that absolute expression patterns are not always indicative of
the same phenomenon. Further investigation into how these
differential gene networking patterns contribute to overall
mechanisms within specific subtypes of breast cancer could
enhance our understanding of subtype-specific gene behavior.
Particularly, several RNA-based gene signatures have been
developed as diagnostic or prognostic biomarkers to stratify
prostate cancer patient outcomes. In tumor samples, these
signatures inform the degree of AR activity (NEPC52, AR
Nelson47), enzalutamide resistance46, or overall disease risk17.
However, the gene list used in signatures were curated through
recurrent laboratory findings or regression-based models. While
they are without doubt co-expressed genes in specific settings,
there may be limited understanding of the behavior of each
gene within signatures. In addition, by virtue of applying the
signature, we adapt the assumption that interrelationships of
the genes within each signature persists in all contexts. The
utilities of ALAN allow rapid modeling of gene programs that
naturally occur in distinct contexts based on data that often
already exists. This expands the development of context-specific
signatures that may have improved predictive power for ther-
apeutic response, survival, or other outcomes.

Investigating gene networks using ALAN networks may
improve the detection of signal activation of genes in distinct
ecosystems. This is critical towards the purposing or repurposing
of cancer therapeutics and enhances investigations of therapeutic

sensitivity and patient prognosis. In biomarker studies, BRCA1/2
dysregulations are used to stratify patients for the use of PARP
inhibitors, but a subset of patients do not respond to this targeted
treatment53. One can examine differential interactions within
ALAN BRCA1/2 networks in the ecosystems that consist of either
responsive or non-responsive patients. In studying tumorigenesis
and patient prognosis, users can leverage ALAN to study why
losses or mutations in genes like P53 contribute to tumorigenesis
or poor survival in a cancer type or tissue-specific manner. Since
ALAN allows for the investigation of the same gene in multiple
ecosystems, there is also value in conducting analyses on other
genes that are not oncogenes or tumor suppressors but have
pleiotropic phenotypes, including chromatin and epigenomic
modifiers, transcription factors, and immunoglobulins.

In summary, we created ALAN to be used as a computational
tool that both creates and interprets gene networks in the context
of gene ecosystems while maintaining the input data architecture.
Given the data, ALAN can be leveraged to aid the development of
precision biomarkers and to purpose or current therapeutics to
additional patient populations.

Methods
The ALAN algorithm accepts input m × n matrices with m molecular IDs (rows)
and n sample IDs (columns), where each cell contains a measurement of any
molecular abundance, such as gene expression or protein abundance. The input
data must be in a format that allows for direct comparison between samples. The
ALAN algorithm next serially conducts two statistical correlation operations in
which all intermediate matrices are exported for quantitative comparisons and
visual assessment. For the first correlation, a rank-based Spearman’s correlation is
performed between every pair of columns (molecular IDs) which generates the first
correlation matrix, Matrix 1. This Spearman’s Correlation alone measures the
correlation of expression patterns of gene A to gene B across all samples. These
relational profiles are further compared while building the second correlation
matrix by performing a Pearson’s correlation between every pair of columns
(relational profiles) of Matrix 1 to generate Matrix 2. For ALAN, the Pearson’s
Correlation on top of the Spearman’s correlation assesses the relationship between
gene A and gene B based on their correlative relationship with all other genes. This
additional correlation, as compared to a single correlation, is what we utilized when
comparing the behavior of genes in the specified patient samples. The current
ALAN algorithm is ran on the Minnesota Supercomputing Institute’s (MSI) High-
Performance Computing (HPC) Nodes at the University of Minnesota.

ALAN. The Algorithm for Linking Activity Networks (ALAN) is an algorithm that
identifies and compares the behavior of genes. ALAN users must first identify the
relevant omic datasets as well as the genes of interest. In this manuscript, we
utilized ALAN outputs to compare the behavior of genes of interest within the
context of the input data. We have focused on a few specific types of gene behavior,
including co-regulators of a signaling pathway, protein-protein interactions, or any
set of genes that function similarly.

ALAN profile. An ALAN gene profile results from the ALAN Output – Matrix 1.
For each gene, this represents the expression pattern of one gene compared to
another gene with respect to all patients. Comparisons between ALAN profiles are
used to generate ALAN networks in ALAN Output - Matrix 2.

ALAN network. An ALAN gene network results from the ALAN Output - Matrix
2. For each gene, this represents the behavior of one gene with respect to all other
genes detected in the dataset. Throughout the manuscript, we have compared the
behavior of two or more genes by directly comparing their ALAN gene networks.

Fig. 5 ALAN nominates secreted protein RSPO2 as potential resistant gene via association with ERAE in advanced prostate tissue. a The gene overlap
of ERAE (blue) and ACAE (orange) with the Surfaceome are depicted using Venn Diagrams where the number of genes in each group (n) and the number
of overlapping genes are depicted. b The gene overlap of ERAE (blue) and ACAE (orange) with the Secretome are depicted using Venn Diagrams where
the number of genes in each group (n) and the number of overlapping genes are depicted. c UMAP plot depicting ALAN gene ecosystems in which specific
gene networks of known biological activity are highlighted. Both the ERAE (blue) and ACAE (orange) are shown as well as the nominated resistant gene
RSPO2 (light blue). d The ALAN network correlation of the RSPO2 network with ALAN networks for CDK6 (blue), FGFR (light blue), and LEF1 (purple) is
depicted using ALAN cloud plots with linear regression statistics shown. e The ALAN network correlation of the RSPO2 network with the AR (red) ALAN
network is depicted using ALAN cloud plots with linear regression statistics shown. f Alteration frequency of RSPO2 amplifications and homozygous
deletions in various prostate cancer (PCA) datasets. g Comparison of RSPO2 amplification frequency in primary PCA vs mCRPC patients in MSK2010,
DFCI/MSKCC 2018, and GENIE 9.1 datasets.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04795-1

10 COMMUNICATIONS BIOLOGY |           (2023) 6:417 | https://doi.org/10.1038/s42003-023-04795-1 | www.nature.com/commsbio

www.nature.com/commsbio


ALAN ecosystem. An ALAN ecosystem encompasses a set of genes with similar
gene behavior as based on the ALAN Output – Matrix 2. In this manuscript, we
have defined the ALAN ecosystem based on pairs of genes with an ALAN gene
profile correlation above 0.7.

ALAN inputs from cancer whole transcriptome sequencing and protein
abundance data. We included mapped expression profiles of the following studies
as published on cBioPortal (log-transformed and z-score normalized): SU2C/PCF
2019 Metastatic Prostate Adenocarcinoma (n= 208)10, TCGA Prostate Adeno-
carcinoma (n= 493), TCGA Breast Invasive Carcinoma (Basal n= 171, Luminal A
(LumA) n= 499, Luminal B (LumB) n= 197, Her2 n= 78, and Normal n= 36),
TCGA Ovarian Serous Cystadenocarcinoma (n= 300), TCGA Skin Cutaneous
Melanoma (n= 443), TCGA Pancreatic Adenocarcinoma (n= 177), TCGA Lung
Adenocarcinoma (n= 510). Transcription data from normal prostate tissue sam-
ples (n= 245) was obtained from the GTEx portal11. Protein abundance data from
primary prostate tissue samples (n= 76) was also included28. The expression level
data from these cohorts were analyzed through the ALAN algorithm.

Individual patient analysis and scoring. We identified one mCRPC patient from
a prior study in which single cell RNA-sequencing was performed on paired
biopsies from both before and after enzalutamide treatment46. Of the data, we
examined transcripts per million (TPM) for genes in ALAN ecosystems and scored
them in all tumor cells by summing the z-scores of the TPM values and scaling the
aggregate sums from 0-100.

Gene set enrichment analysis (GSEA). We conducted pre-ranked GSEA to
depict enrichment of ALAN outputs using Hallmark gene sets and C6 oncogenic
signatures to obtain net enrichment score (NES) based on FDR of 0.020. The
ranked list of genes with ALAN scores were obtained from either Matrix 1 or 2.

GISTIC 2.0 calling of the AR focal amplicon. We identified focal amplifications
in 493 primary prostate adenocarcinomas from the TCGA Pan Cancer (http://
firebrowse.org/) study to identify the genomic regions that harbor frequent
amplifications in prostate cancer (PCA) including that of Xq1229,30.

HUGO (HGNC) mapping of chromosomal locations. We utilized the HGNC
Multi-Symbol Checker to identify the chromosomal locations of the 2244 genes in
the AR network signature in the SU2C 2019 mCRPC study10,54.

Consolidation of surfaceome and secretome. To create the list of surface pro-
teins consolidated into the Surfaceome we integrated datasets from the Cell Surface
Protein Atlas12, which includes 1492 protein IDs and the Human Protein Atlas13,
which includes 5318 protein IDs, for a total of 5890 cell surface proteins. The list of
1678 secreted proteins used to define the Secretome was obtained from the Human
Protein Atlas13.

Statistics and reproducibility. Pairwise gene correlation coefficients (Spearman
and Pearson’s), p-values, and adjusted p-value statistics were calculated using R
4.2.2 (R Core Team; 2022), the stats (v4.2.2; R Core Team; 2022), the Tidyverse
(v1.3.2; Wickham; 2019), and the Hmsic (v4.7-2; Harrell Jr F; 2022) packages.

Inclusion and ethics. All data included in this study was derived from public
resources and these resources are provided in the manuscript. Ethical approval
from the source datasets included can be found in the respective sources.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datasets derived from public resources. These resources are provided within the article
and as follows. (1) The SU2C/PCF data are available at www.cbioportal.org (log
transformed and z-score normalized) and in Dataset S1 of the original manuscript.
https://doi.org/10.1073/pnas.1902651116 (2019)10. (2) The TCGA data (Prostate
Adenocarcinoma, Breast Invasive Carcinoma, Ovarian Serous Cystadenocarcinoma, Skin
Cutaneous Melanoma, Pancreatic Adenocarcinoma, and Lung Adenocarcinoma) are
available at www.cbioportal.org (log transformed and z-score normalized) and at https://
portal.gdc.cancer.gov/. (3) The GTEx data are available through the GTEx portal (www.
gtexportal.org). https://doi.org/10.3390/jpm5010022 (2015)11. (4) For the single-cell
sequencing (scRNA-seq) dataset, scRNA-seq expression data are available in
Supplementary Data of the original manuscript with cellular annotations located in
Supplementary Tables 1-6. Raw sequence data generated in this study are being deposited
in dbGaP (accession phs001988.v1.p1). https://doi.org/10.1038/s41591-021-01244-6
(2021)46. (5) The protein abundance data from primary prostate tissue samples used in

Supplementary Figure 1a are available in Supplementary Information Table S2 of the
original manuscript. https://doi.org/10.1016/j.ccell.2019.02.005 (2019)28. The data used
to generate the figures in this manuscript are available in Supplementary Data 1.

Code availability
The basic ALAN operation source code has been deposited in a Zenodo Digital
Repository https://doi.org/10.5281/zenodo.7770301 (2023)55.
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