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Predictive network analysis identifies JMJD6 and
other potential key drivers in Alzheimer’s disease
Julie P. Merchant 1,13,14, Kuixi Zhu2,14, Marc Y. R. Henrion 3,4, Syed S. A. Zaidi 2, Branden Lau2,5,
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Despite decades of genetic studies on late-onset Alzheimer’s disease, the underlying mole-

cular mechanisms remain unclear. To better comprehend its complex etiology, we use an

integrative approach to build robust predictive (causal) network models using two large

human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type

gene expression and integrate clinical and pathologic traits, single nucleotide variation, and

deconvoluted gene expression for the construction of cell type-specific predictive network

models. Here, we focus on neuron-specific network models and prioritize 19 predicted key

drivers modulating Alzheimer’s pathology, which we then validate by knockdown in human

induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the

19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides,

most notably JMJD6. We also confirm our network structure by RNA sequencing in the

neurons following knockdown of each of the 10 targets, which additionally predicts that they

are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key

drivers of the Alzheimer’s-associated network state which may represent therapeutic targets

with relevance to both amyloid and tau pathology in Alzheimer’s disease.
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Late-onset Alzheimer’s disease (LOAD) is the leading cause of
dementia, which is characterized by progressive impair-
ments in memory, cognition, and executive functions, along

with behavioral and psychiatric symptoms including agitation,
aggression, mood disorders, and psychosis1. The hallmark fea-
tures of Alzheimer’s disease (AD) include pathological aggrega-
tion of extracellular plaques, composed of amyloid-β (Aβ)
peptides, and intracellular neurofibrillary tangles, composed of
hyperphosphorylated tau (p-tau) protein2, which lead to neuron
death. Genome-wide association studies have implicated over 30
loci associated with AD risk3–16. In previous studies, we and
others have shown that LOAD is a complex pathological process
involving an interactive network of pathways among multiple cell
types in the brain (neurons, microglia, astrocytes, etc.) influenced
by genetic variation, aging, and environmental factors17–20.
Implicated pathways include those involved in mitochondrial
metabolism, response to unfolded proteins, immune response,
phagocytosis, and synaptic transmission21–24. The complexity of
these multi-modal networks highlights the necessity to study
networks of molecular interactions by cell type and to identify cell
type-specific pathways and key drivers in AD. In this study, we
developed a multi-step pipeline using advanced computational
systems biology approaches to construct robust data-driven
neuron-specific network models of gene regulatory programs in
brain regions affected by LOAD. For these analyses, we utilized
whole-genome gene expression and whole-genome genotyping
data from two independent cohorts in the Accelerating Medicines
Partnership—Alzheimer’s Disease (AMP-AD) consortium: the
Mayo RNAseq Study (herein MAYO) and the Religious Orders
Study and Memory and Aging Project (herein ROSMAP).

We applied a deconvolution method to deconvolve bulk-tissue
RNA sequencing (RNAseq) data from post-mortem brain regions
and then derive the neuron-specific gene expression signal.
Although single-cell RNA sequencing (scRNAseq) studies,
including those from the recent Human Cell Atlas endeavor, have
greatly advanced our understanding of cellular heterogeneity and
the discovery of novel cell populations25–35 as well as spurred
developments of various computational analysis tools36, network
inference performance using scRNAseq data is still very poor.
Due to the high volume of missing gene expression measures and
the immaturity of current network methods dealing with these
missing data, inferred network models using scRNAseq data yield
a large amount of uncertainty37,38, thus limiting the application of
scRNAseq data in network inference. Alternatively, deconvolu-
tion of bulk-tissue RNAseq data has become increasingly popular
in recent years as a complementary solution to the missing values
in scRNAseq data39–51, based on the core assumption that gene
expression in bulk-tissue data is equal to the averaged gene
expression of each cell type weighted by its relative population in
the tissue. Deconvolution methods decompose bulk-tissue
RNAseq data into gene expression of individual cell types by
using cell type-specific biomarker genes to implicitly estimate
relative cell populations in the tissue. After deconvolution, the
variances of the deconvoluted gene expression of each cell type
become orthogonal to each other and can be analyzed
independently52.

To derive neuron-specific gene expression signals from the
bulk-tissue RNAseq data from the MAYO and ROSMAP cohorts,
we employed the population-specific expression analysis (PSEA)
method of deconvolution52. Whereas other popular deconvolu-
tion methods such as Cibersort43, dtangle40, DSA39, or NNLS53

can only estimate cell fraction in a bulk-tissue sample, the PSEA
method directly estimates cell type-specific residuals from bulk-
tissue RNAseq data. Here, we demonstrated the robustness of the
PSEA deconvolution method using random selection of neuronal
biomarkers derived from scRNAseq studies54–58.

After deconvolution, we applied a cutting-edge systems biology
approach23,59,60 to build causal network models of the neuronal
component of AD by integrating the deconvoluted neuron-
specific RNAseq data with the whole-genome genotype data from
the MAYO and ROSMAP datasets. Bayesian networks61 are a
long-standing form of statistical network modeling used to
reverse-engineer probabilistic causality among variables; with the
development of high-throughput sequencing technology, Baye-
sian networks have been widely used to infer causal gene reg-
ulatory networks in different diseases62–67. Recent studies have
applied Bayesian networks to infer molecular mechanisms and
key drivers in Alzheimer’s disease24,68. However, Bayesian net-
works have substantial limitations with respect to inferring
opposite causality given the symmetry of joint probability. Recent
work has demonstrated that bottom-up causality inference can
accurately distinguish true causality from opposite causality in
equivalent classes69. Our group has developed a computational
network model, called predictive network modeling, which inte-
grates conventional (top-down) Bayesian networks with bottom-
up causality inference in order to address the problem of opposite
causality inference in Bayesian network modeling. In this study,
we used our causal predictive network pipeline to incorporate
multi-scale omics data, including genotypes and transcriptomic
profiles, in the deconvoluted neuron-specific residuals of the
MAYO and ROSMAP datasets in order to build causal predictive
networks separately in both datasets.

We then agnostically identified neuron-specific gene regulatory
network models and key genetic drivers predicted to modulate
pathological Aβ and hyperphosphorylated tau accumulation in
AD. To evaluate and ensure the robustness of our results, we
performed the integrative analysis and key driver identification
independently in the two cohorts and cross-validated the results
at every step of the analysis. In total, we reconstructed 11 causal
network models combined across the two separate analyses and
predicted a total of 1563 potential key drivers modulating neu-
ronal network states and AD pathology under LOAD.

To experimentally validate our network prediction, we then
prioritized 19 targets which replicated across the two cohorts. We
used shRNA-mediated knockdown in human induced pluripotent
stem cell (iPSC)-derived neurons70–72 and measured levels of
Aβ38, Aβ40, and Aβ42 as well as tau and p231-tau. Among the 19
targets, we identified 10 targets which affected Aβ (JMJD6, NSF,
NUDT2, DCAF12, RBM4, YWHAZ, NDRG4, and STXBP1) and/
or tau/p-tau levels (JMJD6, FIBP, and ATP1B1). Finally, to further
validate our network models and to provide insights into network
connectivity, we measured the whole-genome RNA expression of
the iPSC-derived neurons after knocking down each of the 19
targets and compared the differential expression (DE) signature
of each target to its downstream structure in the networks. We
investigated pathways enriched by the gene knockdown DE sig-
natures to shed light on the molecular mechanisms associated
with LOAD, identifying the 10 validated targets as upstream
regulators of master regulatory proteins REST and VGF.

Results
An integrative systems biology approach for constructing
single cell-type regulatory networks of AD. We developed an
integrative network analysis pipeline to construct data-driven
neuron-specific predictive networks of AD (Fig. 1). The overall
strategy for elucidating the single cell-type gene network model
depicted in Fig. 1 centers on the objective, data-driven con-
struction of causal network models, which can be directly queried
to identify the network components causally associated with AD
as well as the master regulators (key drivers) of these AD-
associated components. This model also predicts the impact of
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the key drivers on the biological processes and pathology involved
in AD, moving us towards precision molecular models of disease.
We previously developed this network reconstruction algorithm,
i.e., predictive network, which statistically infers causal relation-
ships between DNA variation, gene expression, protein expres-
sion, and clinical features measured in hundreds of
individuals23,59,60.

The inputs required for our network analysis are the molecular
and clinical data generated in the MAYO and ROSMAP
populations, as well as first order relationships between these
data such as quantitative trait loci (QTLs) associated with the
molecular traits. These relationships are input as structure priors
to the network construction algorithm as a source of perturba-
tion, boosting the power to infer causal relationships at the

p=4.66E-242
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network level, as we and others have previously
shown21,23,24,60,73–80. To focus on the component of AD that is
intrinsically encoded in neurons, we identified the neuron-
specific expression component in each cohort by applying the
PSEA deconvolution algorithm52 to the MAYO and ROSMAP
transcriptomic datasets independently (Supplementary Fig. 1,
Step 1). We further focused on the molecular traits associated
with AD by identifying DE gene signatures—comprised of several
thousands of gene expression traits—between AD and cognitively
normal samples for each dataset (Supplementary Fig. 1, Step 2).
To identify correlated gene expression traits associated with AD,
we constructed gene co-expression networks for each dataset, and
from these networks we identified highly interconnected sets of
co-regulated genes (modules) that were significantly enriched for
AD gene signatures (the significant DE genes) as well as for
pathways previously implicated in AD (Supplementary Fig. 1,
Step 3). To obtain a final set of genes for input into the causal
network construction process for each dataset, we combined
genes in the co-expression network modules enriched for AD
signatures (Supplementary Fig. 1, Step 5—Module selection) and
performed the pathFinder algorithm60 to enrich the seeding gene
set by including genes upstream and downstream of this set from
a compiled pathway database (Supplementary Fig. 1, Step 5—
Seeding expansion). We note that during the expansion of
seeding genes, we only include additional genes from the
compiled pathway database as nodes in the network, and we
discard the disease non-specific edges so as not to bias the process
of data-driven network structure learning. The edges of the final
extended networks are solely inferred from AD-specific data in
each cohort.

With our input set of neuron-centered genes for the AD
network constructions defined, we mapped expression-QTLs
(eQTLs) for neuron-specific gene expression traits in each dataset
to incorporate the eQTLs as structure priors in the network
reconstructions, given that they provide a systematic perturbation
source that can boost the power to infer causal relationships
(Supplementary Fig. 1, Step 4)24,73,74,76–81. The input gene set
and eQTL data were then processed by an ensemble of causal
network inference methods, including Bayesian networks and our
recently developed top-down and bottom-up predictive
networks23,59,60,69, in order to construct probabilistic causal
network models of AD independently in the MAYO and
ROSMAP cohorts (Supplementary Fig. 1, Step 6). We next
applied a statistical algorithm to detect key driver genes in each
given network structure82 and to identify and prioritize master
regulators in the AD networks (Supplementary Fig. 1, Step 7).
These key drivers derived from the individual networks across
datasets were then pooled and prioritized based on ranking scores
of impact and robustness (see ‘Methods’), resulting in a final

group of 19 top-prioritized key drivers for which we performed
functional validation in a human iPSC-derived neuron system.
The entire analysis workflow for the independent datasets,
resulting in this final group of replicated targets, is illustrated in
Fig. 1.

MAYO and ROSMAP study populations and data processing.
Our causal network pipeline starts by integrating whole-genome
genotyping and RNAseq data generated from patients spanning
the complete spectrum of clinical and neuropathological traits in
AD. We used patient data from two separate cohorts within the
AMP-AD consortium: temporal cortex data from 266 subjects in
MAYO83–85 and dorsolateral prefrontal cortex data from
612 subjects in ROSMAP22,86–88 (Fig. 1a). We processed matched
genotype and RNAseq data separately in each dataset (Fig. 1,
Supplementary Fig. 1; see ‘Methods’).

Central nervous system (CNS) tissue consists of various cell
types, including neurons, glia, and endothelial cells. To discover
key network drivers specific to a single cell type in the CNS and
study their contribution to AD in that specific cell type, we
utilized verified single-cell marker genes to directly deconvolve
bulk-tissue gene expression data into cell type-specific gene
expression for the five major cell types in the CNS: neurons,
microglia, astrocytes, endothelial cells, and oligodendrocytes (see
‘Methods’). In this study, we focused on investigating the role of
neuronal cells in AD, as they are the primary cell type affected by
AD pathogenesis89–94. After normalizing the bulk-tissue RNAseq
data, we performed variance partition analysis (VPA)95 to
evaluate the contributions of cell type-specific markers as well
as demographic, clinical, and technical covariates (such as batch
effects) to the gene expression variance before performing any
covariate adjustment (Supplementary Fig. 2a, b). The cell type-
specific marker genes used for neurons, microglia, astrocytes,
endothelial cells, and oligodendrocytes were ENO296, CD6897,
GFAP98, CD3499, and OLIG2100–102, respectively, as previously
published having been obtained directly under the AD condition
at the protein level. The VPA results reflect the prominent effect
of CNS cell types on the variance of the brain RNAseq data. In
the MAYO dataset, the additional covariates used in the VPA
included exonic mapping rate, RNA integrity number, sequencing
batch, diagnosis, age at death, tissue source, APOE genotype, and
sex. In the ROSMAP dataset, we were able to include the same
covariates with the exception of tissue source and the addition of
age at first AD diagnosis, post-mortem interval, education, and
study (ROS or MAP).

We then performed covariate adjustment and deconvolution
using the PSEA method52 in each dataset, calculating gene
expression residuals using a linear regression model to adjust the
normalized bulk-tissue expression data with demographical and

Fig. 1 Integrative network analysis pipeline to construct data-driven neuron-specific predictive networks of AD and predict key drivers associated with
AD pathology. a Discovery datasets include whole-genome genotype and RNAseq data of temporal cortex from the MAYO cohort and dorsolateral
prefrontal cortex from the ROSMAP cohort in the AMP-AD consortium. Numbers in circles indicate the total number of subjects in each dataset with
quality-controlled matched genotype and RNAseq data used in this study, whereas numbers in the table indicate the number of individuals of each
phenotype used in the subsequent DE, co-expression module, and predictive network analyses. b Computational deconvolution of bulk-tissue RNAseq data
into 5 single cell-type RNAseq sets per cohort dataset, followed by DE analysis and weighted gene co-expression network analysis in each cohort’s neuron-
specific gene expression dataset. c mRNA expression and quantitative trait loci association analysis in each dataset provides a source of systematic
perturbation for network reconstructions. d Construction of neuron-specific predictive network models and identification of key drivers (master regulators)
from each dataset. e Prioritization of key driver targets from both datasets and experimental validation by shRNA-mediated gene knockdown in human
iPSC-derived neurons. Venn diagrams on panels b–e indicate cross-validation at each step of the bioinformatics analyses performed independently in
parallel for the MAYO and ROSMAP datasets, resulting in a single set of key driver targets. Statistical tests for each comparison are described in the text
where relevant. Parts of this figure utilize graphics from Servier Medical Art (smart.servier.com) provided by Servier, licensed under a Creative Commons
Attribution 3.0 Unported License. TCX temporal cortex, DLPFC dorsolateral prefrontal cortex, WGCNA weighted gene co-expression network analysis,
eQTL expression quantitative trait locus. See also Supplementary Fig. 1.
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technical covariates as well as the cell type-specific markers. Cell
type-specific gene expression, including the neuron-specific
component, was directly derived by adding the estimated variance
of each cell type to the residual (see ‘Methods’), avoiding the need
to first estimate the cell population from bulk tissue data, which
could induce approximation errors. We then repeated VPA in the
neuron-specific residuals of each dataset to demonstrate that our
deconvolution and covariate adjustment methods properly
capture the neuronal component while removing potential
confounds such as batch effect, age, and sex (Supplementary
Fig. 2c, d). Finally, to justify the use of single cell type-specific
markers for deconvolution by the PSEA method, we performed a
set of analyses comparing multiple cell type-specific biomarker
lists (derived from existing scRNAseq studies) to each other
(Supplementary Fig. 3a), to our AD residuals (Supplementary
Fig. 3b, c), and to the AMP-AD Agora list of potential therapeutic
targets in AD (Supplementary Fig. 3j, k), as well as a robustness
analysis demonstrating that our neuron-specific residual derived
from ENO2 expression represents a robust neuronal component
in the bulk-tissue RNAseq data when compared to random
selections of multi-gene neuronal biomarkers derived from these
scRNAseq datasets in AD (Supplementary Fig. 3b–i; see
‘Methods’).

Identifying AD-associated gene signatures in neurons and
mapping their eQTLs. To identify an AD-centered set of neu-
ronal gene expression traits, we performed DE analysis using the
deconvoluted neuron-specific expression residuals in the MAYO
and ROSMAP cohorts (see ‘Methods’). In comparing expression
data between AD and cognitively normal controls (MAYO: 79
AD, 76 control; ROSMAP: 212 AD, 194 control), there were
3674 significant DE neuron-specific genes in the MAYO dataset
(hereby MAYO-neuron) and 6626 neuron-specific DE genes in
the ROSMAP dataset (hereby ROSMAP-neuron) (Fig. 2a, b;
Supplementary Fig. 4; Supplementary Data 1). There were
2097 significant DE genes overlapping between the two datasets
(Fisher’s exact test, odds ratio= 3.9784, p-value= 4.66E-242),
thus cross-validating the neuron-specific DE signatures inde-
pendently derived from the two cohorts.

To examine the biological processes that are dysregulated in
AD cases versus controls as reflected in the DE signatures, we
performed pathway enrichment analysis on the MAYO-
neuron and ROSMAP-neuron gene sets using Human
ConsensusPathDB103–107. We identified 75 and 73 enriched
pathways in each dataset, respectively, with 7 pathways that were
significantly dysregulated in both datasets (Fig. 2c; Supplementary
Data 2, 13). These signatures were enriched for a number of
cellular/molecular pathways, including those involving
CDC42108–110, IRAK/IKK111–113, EGFR/PLCG114, GAD115,
Hippo116, and clock genes117,118, some of which have been
implicated and/or interrogated in AD previously. Additional
pathways of note implicated by a single cohort dataset with
known relevance to amyloid and/or tau pathology include those
related to NF-κB activation119,120 and N-cadherin
signaling121,122.

We further validated our neuron-specific DE signatures in AD,
which were derived from deconvoluted bulk-tissue RNAseq data,
by comparing our MAYO-neuron and ROSMAP-neuron DE
genes with the excitatory and inhibitory neuronal signatures
identified by a separate study that generated scRNAseq data from
the same ROSMAP cohort123. We employed the sampling-based
method described in ref. 123 and first compared the pair-wise
enrichment among the scRNAseq-derived DE gene signatures in
the ROSMAP dataset123 for excitatory neurons, inhibitory
neurons, astrocytes, oligodendrocytes, oligodendrocyte progenitor

cells, and microglial cells (Supplementary Data 3). Briefly, we
found that the excitatory neuron signature significantly overlaps
with inhibitory neurons, astrocytes, oligodendrocytes, and
oligodendrocyte progenitor cells (FDR= 1.24E-25, 2.26E-03,
2.69E-04, and 1.36E-02, respectively) but is not enriched for
microglia (FDR= 0.58). We also found that the inhibitory neuron
signature is significantly enriched for astrocytes (FDR= 3.83E-
02) and oligodendrocytes (FDR= 9.30E-07), but not oligoden-
drocyte progenitor cells (FDR= 1) or microglia (FDR= 1). The
significant overlap among scRNAseq-derived DE signatures of
different cell types highlights the intrinsic biological interactions
among different cell types in the AD brain. Next, we found a
similar pattern of enrichment between our MAYO-neuron and
ROSMAP-neuron DE signatures and scRNAseq-derived DE gene
signatures from ROSMAP123 (Supplementary Data 4), i.e. their
excitatory neuron signature (FDR= 3.41E-10 and 3.56E-17,
respectively) as well as their inhibitory neuron signature (FDR=
0.0285 and 0.00429, respectively), demonstrating significant
correlation between our deconvoluted neuron-specific DE
signatures and scRNAseq-derived neuronal signatures in AD.
The greater excitatory-neuronal enrichment among our decon-
voluted neuron-specific DE signatures is consistent with ref. 123

and similarly suggests that our deconvoluted RNAseq datasets
capture the aberrant increases in neuronal excitotoxicity asso-
ciated with AD in humans124. Thus, overall, despite the inherent
multi-cell type interactions revealed by these analyses, we argue
that our deconvoluted neuron-specific AD signatures are robust
and provide a complementary solution to single cell-type
transcriptomics analysis.

Another critical input for the construction of Bayesian network
and causal predictive network models are the eQTLs, leveraged as
a systematic source of perturbation to enhance causal inference
among molecular traits. This is an approach we and others have
demonstrated across a broad range of diseases and data
types24,69,73–77,79–81,125–138. We mapped cis-eQTLs by examining
the association of neuron-specific expression traits with genome-
wide genotypes18,139–141 assayed in the MAYO and ROSMAP
cohorts (see ‘Methods’). In the MAYO- and ROSMAP-neuron
sets, 3331 (16.8%) and 5059 (25.0%), respectively, of the residual
genes were significantly correlated with allele dosage (FDR < 0.01)
(Supplementary Data 5). Of the cis-eQTLs detected in each
cohort, 1569 genes were overlapping between the two sets (47% of
MAYO cis-eQTLs and 31% of ROSMAP cis-eQTLs, Fisher’s exact
test, p-value= 1.09E-209), providing further validation of the two
independent cohorts.

Neuronal co-expression networks associated with LOAD.
While DE analysis can reveal patterns of neuron-specific
expression associated with AD, the power of such analysis to
detect a small-to-moderate expression difference is low. To
complement the DE analyses in identifying the input gene set for
the causal network, we clustered the neuronal gene expression
traits into data-driven, coherent biological pathways by con-
structing co-expression networks, which have enhanced power to
identify co-regulated sets of genes (modules) that are likely to be
involved in common biological processes under LOAD. We
constructed co-expression networks on the AD patients within
each dataset after filtering out lowly expressed genes (see
‘Methods’), resulting in the MAYO-neuron co-expression net-
work consisting of 20 modules ranging in size from 30 to 6929
gene members and the ROSMAP-neuron co-expression network
consisting of 14 modules ranging from 34 to 6604 gene members
(Fig. 3a).

To evaluate the functional relevance of each cohort’s neuron-
specific modules to AD pathology, we performed enrichment
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analysis of each module for its AD-associated neuronal DE
signatures, known single-cell marker genes for the 5 major cell
types in the CNS57, and categories of AD traits available from its
respective cohort (Fig. 3a). From these enrichment results, we
identified neuron-specific modules associated with AD DE genes:
M1, M2, M10, M11, M15, and M16 from MAYO and M1, M5,
and M10 from ROSMAP. It is worth noting that similar to the DE
signatures (Supplementary Data 3), a small number of the
MAYO- and ROSMAP-neuron co-expression modules are
significantly enriched for astrocyte and oligodendrocyte biomar-
kers, highlighting the intrinsic cellular interactions between these
cell types in the AD brain.

To further characterize the biological processes involved in the
co-expression modules from each dataset, we performed pathway
enrichment analysis to identify overrepresented biological

processes within and across the modules (Fig. 3b; Supplementary
Data 6). Out of the selected AD-associated modules from the
MAYO- and ROSMAP-neuron co-expression networks, respec-
tively, we found 36 and 16 significantly enriched pathways based
on the Human ConsensusPathDB database, with 11 enriched
pathways overlapping between the two datasets (Fisher’s exact
test, odds ratio= 383.87, p-value= 5.41E-21; Supplementary
Data 14). In comparing all pairs of modules between the datasets,
we identified 17 module pairs with significant overlap of gene
members (Fig. 3c), demonstrating the robustness of the two
independent co-expression networks.

Ensemble of neuron-specific, causal gene regulatory networks
identifies pathological pathways and key drivers for neuronal
function in AD. The ultimate goal of this study was to identify

FDR<0.05 and abs(logFC)>0.5
FDR<0.05

FDR<0.05 and abs(logFC)>0.3
FDR<0.05

Fig. 2 Neuron-specific gene expression signatures in AD. DE analysis of deconvoluted neuron-specific residuals identifies a robust DE signature
associated with the difference between AD patients and cognitively normal controls. a, b All significantly up- and down-regulated genes for MAYO-neuron
(a) and ROSMAP-neuron (b). Significance was assessed by t-test with FDR < 0.05; thresholds of logFC shown in each volcano plot are for visualization
only. MAYO (n= 79 and 76 for AD and cognitively normal) and ROSMAP (n= 212 and 194 for AD and cognitively normal). Gene symbols are highlighted
in red text for the 19 key drivers later prioritized for experimental validation in vitro. See also Supplementary Fig. 4. c Pathway enrichment analysis on the
neuron-specific DE expression signatures using human ConsensusPathDB reveals dysregulated biological processes associated with AD. Significance was
assessed by Fisher’s exact test with p-value < 0.05. Source data for this panel is provided in Supplementary Data 13. Detailed statistical results of DE genes
and enriched pathways are summarized in Supplementary Data 1 and 2, respectively, and overlapped pathways are summarized in Supplementary Data 13.
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upstream master regulators (key drivers) of neuronal pathways
that contribute to AD. Following our DE, eQTL, and co-
expression network analyses, we built an ensemble of causal
network models—including standard Bayesian networks22,24 and
state-of-the-art predictive network models21,23,60—by integrating
the eQTLs and deconvoluted neuron-specific RNAseq residuals.

We first pooled all genes from the selected AD-associated
modules per dataset (six MAYO-neuron modules and three
ROSMAP-neuron modules, indicated in Fig. 3a) to create a
seeding set of genes for each cohort for input into the network
models. This resulted in 9361 seeding genes from the MAYO-
neuron co-expression network and 7530 seeding genes from the

1

0.8

0.6

0.4

0.2

Fig. 3 Neuron-specific co-expression analysis identifies robust gene modules enriched for biological processes associated with AD. a Neuron-specific
co-expression network analyses in the MAYO and ROSMAP cohorts identify gene modules associated with AD in each dataset. Module functions for each
dataset were characterized by significantly enriched biological processes, with bold text indicating neuron-specific modules selected for further analysis.
Each module was evaluated based on enrichment for neuron-specific DE genes, for scRNAseq derived neuron-specific biomarker genes, and for categories
of available AD traits (MAYO and ROSMAP diagnosis by ANOVA; BRAAK, CERAD, and MMSE by linear regression). We also evaluated enrichment for
scRNAseq-derived biomarker genes for microglia, astrocytes, endothelial cells, and oligodendrocytes to cross-validate that modules enriched for neuron-
DE genes were not enriched for other cell types. Significance was assessed by Fisher’s exact test with FDR < 0.05 (n= 30 to 6929 for MAYO and 34 to
6604 for ROSMAP). b Among the neuron-specific modules in the two datasets, pathway enrichment analysis identifies robust pathways associated with
AD which replicate in both cohorts. Source data is provided in Supplementary Data 2. c Cross-validation of neuron-specific co-expression modules
between MAYO and ROSMAP identifies pairs of modules with significantly overlapping gene members. Significance was assessed by Fisher’s exact test
with FDR < 0.05. See Supplementary Data 6 for further information on the biological processes significantly enriched in each module.
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ROSMAP-neuron co-expression network. We note an overlap of
4506 genes between the two seeding gene sets (48.1% of MAYO
and 59.8% of ROSMAP, Fisher’s exact test, odds ratio= 2.875, p-
value= 2.51E-157), indicating the reproducibility of these
analyses across the two independent datasets. To further improve
the robustness of our network models, we also expanded each set
of seeding genes by including their known upstream and
downstream genes in each cohort’s co-expression network,
extracted from signaling pathway databases using the pathFinder
algorithm60 (see ‘Methods’; note that we did not include the gene-
gene interactions as prior edge information for network
construction). Co-expression network modules are only sensitive
to linear relationships between pairs of genes, whereas non-linear
gene regulations will not be captured by co-expression analysis.
This expansion step thus includes genes in the same pathways as
the seeding genes which otherwise failed to be included in the
same module derived from the co-expression networks, resulting
in 14,683 expanded genes from MAYO-neuron, 13,681 expanded
genes from ROSMAP-neuron, and an overlap of 11,952 genes
between the two expanded gene sets (Fisher’s exact test, p-
value= 0). The use of both the seeding gene set and the expanded
gene set for analysis of the MAYO and ROSMAP datasets
therefore increases the power to build robust networks and to
discover high-confidence neuronal key drivers associated with
AD pathology.

We also incorporated cis-eQTL genes into each network as
structural priors. As cis-eQTLs causally affect the expression
levels of neighboring genes, they can serve as a source of
systematic perturbation to infer causal relationships among
genes23,59,60,81. Of the 3331 and 5059 unique cis-eQTL genes
identified in the MAYO- and ROSMAP-neuron datasets,
respectively, 687 and 1978 overlapped with the seeding gene set
and 2,162 and 2,998 overlapped with the expanded gene set. We
finally proceeded to build Bayesian networks and predictive
networks using the two sets of genes per dataset—i.e., 9361 seed-
ing and 14,683 expanded genes for the MAYO dataset and
7530 seeding and 13,681 expanded genes for the ROSMAP
dataset—and incorporating each dataset’s cis-eQTL genes as
structural priors.

Since structure learning is a heuristic and stochastic process, we
applied a wide range of cut-offs on the posterior probability of
edges to derive sets of robust Bayesian and predictive network
structures for each dataset. For the MAYO-neuron seeding gene
set, we built Bayesian networks and applied two posterior
probability cut-offs (0.4 and 0.5, see ‘Methods’) to get two
MAYO-neuron Bayesian networks (MAYO-Neuron-BayesNet-
Seed-1 and -2) which were comprised of 9111 and 9044 genes,
respectively. In addition, we built predictive networks with the
same two posterior probability cut-offs (0.4 and 0.5) to derive two
MAYO-neuron predictive networks (MAYO-Neuron-PredNet-
Seed-1 and -2), which also included 9111 and 9044 genes,
respectively. For the MAYO-neuron expanded gene set, we built
predictive networks and chose three posterior probability cut-offs
(0.5, 0.6, 0.7) to get three MAYO-neuron predictive network
models (MAYO-Neuron-PredNet-Expanded-1, -2, and -3), which
were comprised of 14,238, 13,926, and 13,365 genes, respectively.
For the ROSMAP-neuron seeding gene set, we built Bayesian
networks and applied two cut-offs (0.3 and 0.4) to derive two
Bayesian networks (ROSMAP-Neuron-BayesNet-Seed-1 and -2)
which consisted of 6786 and 6756 genes, respectively. For the
ROSMAP-neuron expanded gene set, we built two predictive
networks and chose two cut-offs (0.3 and 0.4) to build two
predictive networks (ROSMAP-Neuron-PredNet-Expanded-1
and -2) consisting of 12,147 and 12,074 genes, respectively. Thus,
in total from the MAYO and ROSMAP datasets, we derived 11
networks for the inference of a robust set of key drivers, using

several different network reconstruction methods, network gene
sets, and posterior cut-offs. We demonstrate 2 of the final 11
causal network models in Fig. 4a, b (MAYO-Neuron-PredNet-
Expanded-1 and ROSMAP-Neuron-PredNet-Expanded-1), and
the remaining 9 causal networks are shown in Supplementary
Fig. 5.

Identification and prioritization of neuronal key drivers reg-
ulating AD pathology. Having generated the causal predictive
networks from the MAYO-neuron and ROSMAP-neuron data-
sets, we applied key driver analysis82 to derive a list of key driver
genes from each network. Key driver analysis seeks to identify
genes in a causal network which modulate network states; in the
present analysis, we applied this analysis to identify genes causally
modulating the network states of our neuron-specific Bayesian
and predictive network models. In total, we identified 1563 key
driver genes across the 11 independent networks.

To prioritize key drivers for further investigation, we first
ranked the 1563 initial key driver targets according to two
separate measures: an impact score and a robustness score (see
‘Methods’). Briefly, the impact score is a predicted value
quantifying the regulatory impact of a given key driver on its
downstream effector genes associated with AD pathology.
Intuitively, the shorter a path from a key driver to its downstream
effectors in a network—with less other parental co-regulators
along the same path—the greater the impact of this target on its
effectors in that network. The robustness score is reflective of the
number of datasets (MAYO and/or ROSMAP), gene sets (seeding
and/or expanded), and network models (Bayesian and/or
predictive) by which a key driver is replicated. After ranking
the total 1563 neuron key drivers according to each score, we
focused on the top 50 key drivers in each ranked list (Fig. 4c, d;
Supplementary Data 15).

We then performed a series of steps to prioritize a final group
of key driver targets for in vitro experimentation out of the
ensemble of the top 50 ranked candidates for each score. We first
calculated the replication frequency across the two ranked lists
and identified 11 replicated targets, indicating robustness across
these two independent ranking scores, and 39 unique targets in
each ranked list (78 total). For the 11 replicated targets, we
removed any which ranked lower than 15 in both scores, resulting
in 7 top-ranked targets (ICA1, NSF, FSCN3, HP1BP3, DCAF12,
JMJD6, and SLC25A45) which were replicated in both lists and
ranked within the top 15 in one or both scores. Next, for the
remaining 78 unique targets, we first selected the top 3 unique
targets from each ranked list (CIRBP, NUDT2, and FIBP for
impact score; YWHAZ, NDRG4, and RHBDD2 for robustness
score). To further select targets from the remaining 36 neuron-
specific targets in each ranked list (72 total), we identified 4
targets (GABARAPL1, ATP1B1, ATP6V1A, and RAB3A) which
were previously nominated to the AMP-AD Agora list based on
separate data-driven network analysis using the bulk-tissue
RNAseq data in the MAYO and ROSMAP datasets with the
same approach as this study142. Finally, to balance our selection
strategy, we selected an additional 4 targets (RBM4, RAB9A,
FMNL2, and STXBP1) out of the lower-to-middle ranked top 50
unique targets based on the availability of proper constructs.

In summary, we prioritized a group of 19 targets for
experimental validation in vitro (Fig. 4c, d, highlighted in red)
by selecting the top-ranked replicated targets across the two
scores (we note that SLC25A45 and FSCN3 were excluded at this
stage due to lack of proper constructs), 6 top-ranked unique
targets (top 3 from each score), 4 targets overlapping with prior
data-driven nominations to the AMP-AD Agora list, and 4 lower-
to-middle ranked targets.
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Validation of AD-associated function of neuronal key drivers
by knockdown in human neurons. We next aimed to test the
functional consequences of perturbation of the top candidate
driver genes in human neurons. Healthy control human iPSCs
were differentiated to a neuronal fate using a modified version of
the well-established NGN2 differentiation protocol71, which

rapidly generates induced neurons (iNs) which are most similar
to layer 2/3 glutamatergic neurons of the cerebral cortext71,72,143.
By 2 weeks in culture, iNs are post-mitotic, electrically active, and
express a full array of synaptic markers71,143. In order to perturb
the expression of the top 19 candidate key driver genes, we
obtained sets of validated short hairpin RNA (shRNA) constructs
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packaged in lentivirus, with each set containing three constructs
against each selected gene. At day 17 of differentiation, iNs were
transduced with lentivirus encoding a single shRNA, alongside
control cells which either received empty virus or were not
transduced. Media were exchanged on all cells 18 h later. Five
days following transduction (day 22 of differentiation), condi-
tioned media were collected, and cells were lysed either to collect
RNA for RNAseq or to harvest protein for analyses of Aβ and p-
tau/tau, similar to our previous study of LOAD genome-wide
association study hits144. All Aβ and tau data were normalized to
total protein in the cell lysate per well, and all data for each
shRNA knockdown were additionally normalized to the average
of control conditions (empty vector and no transduction)
(Fig. 5a–g; Supplementary Data 16).

Aβ38, 40, and 42 levels were measured in conditioned media
from the transduced and control iNs using the Meso Scale
Discovery Triplex ELISA platform. Of the 19 genes tested,
knockdown of 11 genes had no significant effect on the levels of

any Aβ peptides measured nor the ratio of Aβ42 to Aβ40
(Fig. 5a–d). However, targeted knockdown of YWHAZ signifi-
cantly raised Aβ42 peptide levels, knockdown of DCAF12 and
YWHAZ increased Aβ38 levels, and knockdown of NSF and
NUDT2 significantly increased levels of all three Aβ peptides
measured (Aβ38, 40, and 42) (Fig. 5a–c). On the other hand,
knockdown of RBM4 significantly reduced levels of both Aβ42
and Aβ40 (Fig. 5a, b). Lastly, knockdown of NDRG4, STXBP1,
YWHAZ, and JMJD6 resulted in a significant elevation of the
putatively neurotoxic Aβ42 to 40 ratio145,146(Fig. 5d).
We also examined levels of tau species in the transduced and

control iN lysates using a Meso Scale Discovery ELISA measuring
both total tau and phospho-tau (Thr231). Knockdown of 16 of
the 19 candidate genes tested had no significant effect on the
levels of tau, p231-tau, or the neurotoxic ratio of p231-tau to tau
(Fig. 5e–g). However, targeted knockdown of JMJD6 significantly
decreased the levels of both p231-tau and tau (Fig. 5e, f). We also
note that knockdown of NSF approached significance of increased

Fig. 4 Neuron-specific causal network analyses identify molecular mechanisms and key driver targets associated with AD. a, b Two predictive
networks out of the final 11 neuron-specific causal Bayesian and predictive network models derived from the MAYO (a) and ROSMAP (b) seeding and
expanded gene sets. The MAYO and ROSMAP networks shown here were built from their respective expanded gene sets with posterior probability cut-
offs of 0.5 and 0.3, respectively. Close-up views show the 10 key driver targets which were validated in vitro (red) along with their neighboring downstream
subnetworks. See also Supplementary Fig. 5. c, d The top 50 out of 1563 total key driver targets ranked individually according to impact (c) and robustness
(d) scores across the 11 independent MAYO-neuron and ROSMAP-neuron Bayesian and predictive networks. Red text indicates prioritized key drivers;
yellow highlights those which were validated in vitro. Source data is provided in Supplementary Data 15.

Fig. 5 Human iPSC-derived neurons show altered Aβ species and tau/phospho-tau levels following shRNA-mediated knockdown of selected target
genes. a–c Secretion of Aβ42 (a), Aβ40 (b), and Aβ38 (c) was measured in conditioned media by ELISA, normalized to the average of controls (no
transduction and empty vector) as well as to total protein in the neuronal cell lysate. The ratio of Aβ40:42 was also calculated (d). e, f p231-tau (e) and
total tau (f) were measured in cell lysates by ELISA, normalized to the average of controls (no transduction and empty vector) as well as to total protein in
the cell lysate. The ratio of p231-tau to total tau was also calculated (g). For all panels, a black dashed line indicates the median for control conditions for
that measurement. For each gene knockdown condition, 3 shRNA constructs were used, each shRNA construct was used in duplicate wells, and each dot
represents data from one well. For each boxplot, the box contains the middle quartiles of the data and black bar denotes the median value, and the upper
and lower quartiles contain the maximum and minimum values and the remaining 50% of the data. Source data is provided in Supplementary Data 16. For
each measured parameter, we first performed a Welch’s ANOVA with unequal variance to detect significant differences across conditions, with an
additional non-parametric Kruskal-Wallis ANOVA to confirm the significance; p-values are indicated on each panel. We then used a Dunnett’s T3 multiple
comparisons test to compare each target shRNA to the control condition for each parameter; *adj-p < 0.05, **0.001 < adj-p < 0.05, ***0.0001 < adj-
p < 0.001, ****adj-p < 0.0001. (n= 5–29). h Circus plot summarizing the effects of the 10 key driver targets found to modulate levels of Aβ42, 40, 38,
Aβ42:40, tau, p231-tau and/or p231-tau:tau. Significance was assessed by -log10(Dunnett’s T3 adjusted p-value). Red indicates that knockdown of the
target significantly increased the given measurement value, whereas blue indicates that knockdown significantly decreased the value. Data frequency
distributions and detailed statistical results for this figure are provided in Supplementary Fig. 6 and Supplementary Data 7, respectively.
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levels of p231-tau (Fig. 5e; Dunnett’s T3 adjusted p-value=
0.075). Finally, knockdown of FIBP and JMJD6 resulted in
significant elevation of the p231-tau to tau ratio, while knock-
down of ATP1B1 significantly lowered this ratio (Fig. 5g).

Thus, we confirm modulation of AD endophenotypes in
human iNs following independent reduction of the expression of
10 different genes out of the top 19 predicted key driver targets
(Fig. 5h). Data frequency distributions and detailed statistical
results of Aβ and tau measurements are included in Supplemen-
tary Fig. 6 and Supplementary Data 7. We additionally analyzed
the overlap of these 10 targets with our DE and cis-eQTL analyses
in MAYO and ROSMAP (Supplementary Data 8 and 9,
respectively). As not all of the targets are significant DE or cis-
eQTL genes, we conclude that our network analysis adds a critical
value to the identification and prioritization of targets which
cannot be achieved by DE and eQTL analyses alone.

Validation of AD-associated networks and pathways by
RNAseq of human neurons following targeted gene knock-
down. To validate the network structure, we repeated shRNA-
mediated knockdown of each of the 19 target key drivers in
another set of cultured control iNs and subsequently measured
gene expression by RNAseq. For each of the 10 AD
endophenotype-modulating targets, we derived a DE signature
from the RNAseq data (Fig. 6a–j, Supplementary Data 10). Next,
we extracted the downstream (sub)network of each of those 10
targets from the MAYO- and ROSMAP-neuron networks and
evaluated the enrichment of the knockdown DE signature by the
downstream subnetworks for each target. We found that 8 out of
the 10 DE signatures were enriched by the downstream subnet-
works of their corresponding target (Fig. 6k), validating that our
network models capture a large portion of molecular processes
and pathways at the neuron level.
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Fig. 6 Gene expression changes following knockdown of the 10 validated targets in human iPSC-derived neurons. a–j RNAseq analysis showing
significantly up- and down-regulated DE genes after shRNA-mediated knockdown of each of the 10 validated targets. Significance was assessed using the
two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli with q-value < 0.05, indicated by the black dashed line. Red gene symbols indicate
any of the prioritized 19 target genes that were significantly affected. k Network validation by enrichment analysis of significant DE genes following shRNA
knockdown of the 10 validated targets in the 11 subnetwork networks. We compared the DE genes after knockdown of each target to the individual
downstream subnetwork of that target extracted from the 11 reconstructed networks. Significance was assessed by Fisher’s exact test with p < 0.05.
l Significant overlap in DE genes resulting from knockdown of each of the 10 validated targets in human iPSC-derived neurons. Significance was assessed by
Kruskal-Wallis ANOVA with Dunnett’s T3 multiple comparisons test with FDR < 0.05. Detailed results are summarized in Supplementary Data 10.
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We then further examined the gene expression changes
resulting from knockdown of the 10 validated targets. Following
JMJD6 knockdown, which significantly altered ratios of both Aβ
and tau in iNs, 656 genes were significantly upregulated and 419
genes significantly downregulated (Fig. 6a). Interestingly, among
those significantly upregulated genes were 3 of our other 19 key
driver candidates (NDRG4, ATP6V1A, and NSF), indicating that
their expression is affected by the reduction of JMJD6 in neurons.
Volcano plots in Fig. 6b–j highlight additional key driver
candidates whose expression was affected by knockdown of each
of the 9 other validated targets. Moreover, we found certain
common genes affected by the perturbation of multiple validated
targets: 6 genes (FGF11, GIT2, KLHL28, PLCB3, SEPSECS, and
SLC48A1) were affected by knockdown of NDRG4, STXBP1,
YWHAZ, and JMJD6, and 9 genes (SEPTIN3, ABR, AOC2,
CTFIP2, ZGTF2H1, MRPL17, NIIPSNAP1, RIMS4, and
TMEM246) were affected by perturbation of DCAF12, NSF, and
NUDT2. This observation indicates that there may be unique and
common molecular pathways among these validated AD
endophenotype-modulating targets; we illustrate the significant
overlap of DE genes after each target knockdown in Fig. 6l.

To investigate possible mechanisms underlying these observa-
tions, we extracted regulatory pathways among the 10 validated
targets in each of the 11 MAYO- and ROSMAP-neuron networks.
We found that these 10 targets tightly regulate each other, and,
interestingly, are all upstream regulators of the prominent
proteins REST and VGF (Fig. 7a, b). REST (restrictive element
1-silencing transcription factor) is a known master regulator of
neurogenesis via epigenetic mechanisms, apoptosis, and oxidative
stress;147,148 VGF (nerve growth factor inducible) is a recently
identified AD target whose overexpression in a mouse model
reversed AD phenotypes68. In particular, our networks identified
FIBP as a direct upstream regulator of VGF. Our findings thus
indicate that these 10 targets may modulate AD-related pathology
partially through REST and VGF pathways.

Finally, we performed pathway enrichment analysis (see
‘Methods’) on the DE signatures derived from the RNAseq data
in order to identify the unique and shared pathways affected by
the knockdown of the 10 AD endophenotype-modulating targets
(JMJD6, NSF, NUDT2, DCAF12, RBM4, YWHAZ, NDRG4,
STXBP1, FIBP and ATP1B1). We compared significant pathways
enriched by the DE signature of each of the targets and found that
1 pathway is shared by 9/10 targets, 4 pathways are shared by 8/
10 targets, 2 pathways are shared by 7/10 targets, 18 pathways are
shared by 6/10 targets, and 40 pathways are shared by 5/10 targets
(Fig. 7c). Comprehensive descriptions of all pathways affected by
these targets are included in Supplementary Data 11. Moreover,
we found an interesting association between JMJD6 (as well as
NUDT2 and NDRG4 among the 10 validated targets) and allele
dosage. These 3 key driver genes are significantly associated with
SNPs in their promoter regions (cis-eQTLs) in the MAYO and
ROSMAP cohorts, further indicating that these genes may be
actionable targets for AD therapeutic development.

Discussion
AD is the most common neurodegenerative disease in the
world, affecting millions of people worldwide. In the United
States alone, an estimated 5.8 million Americans are currently
living with AD dementia and this number is anticipated to
reach 13.8 million by 2025149. Previous studies of LOAD
pathogenesis using multi-omic data have identified numerous
targets21–24,68. However, although neurons are the principal cell
type affected by AD etiology, the molecular mechanisms and
therapeutic targets for AD revealed by these studies are not
specific to neurons due to a lack of large-scale scRNAseq data

on neurons in AD. Thus, a comprehensive characterization of
neuron-specific gene regulatory networks with association to
AD is crucial to provide insight into the underlying causes of
this disorder.

Here, we employed a self-developed computational systems
biology approach to model AD neuronal gene regulatory net-
works, with which we identified upstream regulators (key drivers)
in neurons that contribute to AD pathology. In our pipeline, we
employed PSEA to deconvolute RNAseq data from brain region-
specific tissue in the MAYO and ROSMAP cohorts into the five
major cell types in the CNS including neurons, microglia, astro-
cytes, endothelial cells, and oligodendrocytes. In this study, we
focused on the neuron-specific gene expression data and per-
formed basic bioinformatics analyses including DE analysis,
eQTL identification, co-expression module networks, and path-
way enrichment analysis, followed by construction of causal
network models and key driver gene identification.

From the network models, we identified a total of 1563 neu-
ronal key drivers which may represent potential therapeutic tar-
gets. We used an unbiased ranking approach to prioritize 19
predicted key drivers for in vitro experimentation and tested the
effects of their knockdown on the central components of the
pathological hallmarks of AD, Aβ peptides (Aβ38, Aβ40, Aβ42)
and phosphorylated tau protein, in a human iN system. We
validated 10 targets which affected Aβ (JMJD6, NSF, NUDT2,
DCAF12, RBM4, YWHAZ, NDRG4, and STXBP1) and/or tau/p-
tau levels (JMJD6, FIBP, and ATP1B1). Only YWHAZ has been
previously linked to AD through expression and mechanistic
studies150–154, while others have not yet been studied. Our
findings of alterations to the neurotoxic ratios of both Aβ42 to
Aβ40 and p231-tau to tau suggest therapeutic potential to both
early and later stages of disease considering known patterns of
pathology development in AD155.

Most interestingly, we identified that knockdown of JMJD6
(Jumonji Domain Containing 6, Arginine Demethylase and
Lysine Hydroxylase) significantly increased both Aβ42 to 40 and
p231-tau to tau ratios, suggesting therapeutic relevance to mul-
tiple stages of AD pathology. JMJD6 belongs to the JmjC domain-
containing family, catalyzes protein hydroxylation and histone
demethylation, and appears to interact with distinct molecular
pathways through epigenetic modifications of the genome156,157.
JMJD6 is expressed in many tissues throughout the body,
including the brain according to the Human Protein Atlas158, but
very little is known about its role in the brain or in neurode-
generative disease. However, based on its known role in epige-
netic regulation, it is expected that reduction of JMJD6 expression
may result in widespread changes in gene expression. Indeed,
consistent with this prediction, we observed expression changes
in a large number of genes following neuronal knockdown of
JMJD6, including alteration of the expression of 3 other key driver
targets of interest highlighted in this study (NDRG4, ATP6V1A,
and NSF).

We recognize that one caveat of our experimental system is
that neurons in a dish are not the same as neurons present in the
aged AD brain; however, neurons in vitro do represent a powerful
system for interrogating molecular connections between gene
expression and proteins relevant to AD (namely, Aβ and tau). We
recently showed that neurons derived from >50 different indivi-
duals show concordance between their levels of specific Aβ
peptides and p-tau species and levels of these same proteins
expressed in the brains of the same individuals72. Further, we
showed concordance between protein and RNA module expres-
sion between the iPSC-derived neurons and the brain tissue of the
same people. Taken together, these results suggest that in spite of
the reductionist nature of the system and the lack of aging,
molecular networks are captured within the cells in vitro that are
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reflected in changes in Aβ and tau. Here, we employ this same
experimental system to show that targeted reduction of JMJD6
levels in human neurons induces effects on Aβ ratios and tau
levels and phosphorylation.

Through our network models, we also discovered REST and
VGF as two shared downstream effectors of the 10 validated

targets, which may potentially explain the observed modulation
of AD pathology. REST is a known master regulator of neu-
rogenesis via epigenetic mechanisms, apoptosis, and oxidative
stress147,148 whose loss has been causally linked to Alzheimer’s
disease159,160. Additionally, recent studies have identified an
association between changes in the epigenome, such as DNA

10 validated targets
REST and VGF
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methylation and histone modification, with changes in cognitive
functions such as learning and memory161–170. Thus, dysregu-
lation of epigenetic mechanisms through modulation of the
targets may play a role in the pathogenesis of AD162,171. VGF is
also a target of interest which was recently found to partially
rescue memory impairment and neuropathology in 5xFAD
mice68. Overexpression of VGF increased activated BDNF
receptor levels as well as adult hippocampal neurogenesis,
which in turn regulated postsynaptic protein PSD-95 and
improved cognition in the 5xFAD mice68. Our pathway
enrichment analysis confirmed that all 10 key drivers and their
downstream genes in the network models were also significantly
enriched for a variety of convergent and unique downstream
cellular processes and functions which may explain additional
molecular mechanisms at play, including vesicle-mediated
membrane trafficking (common downstream of 8 targets);
axon guidance, intra-Golgi trafficking, and retrograde Golgi-to-
ER trafficking (common of 7 targets); and signaling pathways
for sphingolipids, prolactin, BDNF/NTRKs, EGF-EGFR, TNFα,
RHO GTPases, TP53, receptor tyrosine kinases (RTKs), and
ER-to-Golgi transport (common of 6 targets).

In summary, our innovative computational systems biology
approach using predictive network modeling has identified 10
targets which significantly modulate AD pathology via regulation
of a variety of downstream pathways. These processes involve a
wide spectrum of cellular pathways and possible mechanisms,
and our results offer insights into potential therapeutic targets for
drug discovery in AD.

Methods
Obtaining RNAseq and genome-wide genotype datasets. MAYO temporal
cortex RNAseq data (id: syn3163039) and genome-wide genotype data (id:
syn8650953) were downloaded from the AMP-AD knowledge portal hosted on
Synapse.org (doi:10.7303/syn2580853). The ROSMAP dorsolateral prefrontal cor-
tex RNAseq data (id: syn4164376), genotypes (id: syn3157325), and clinical cov-
ariates (id: syn3191087) were downloaded from Synapse.org using the
synapseClient R library172.

Study participants and ethical statements. The MAYO dataset includes
278 subjects: 84 with AD, 84 with progressive supranuclear palsy (PSP), 80 cog-
nitively normal controls, and 30 with pathologic aging83–85,173 (see Supplementary
Note 1 for more information on diagnostic criteria relevant to this study). All AD
and PSP subjects along with 65 control subjects were from the Mayo Clinic Brain
Bank; all pathologic aging and remaining control subjects were from the Banner
Sun Health Institute. The Mayo RNAseq Study was approved by the Mayo Clinic
Institutional Review Board. All human subjects or their next of kin provided
informed consent. All subjects were North American Caucasians. In this study, we
analyzed a total of 266 MAYO subjects with matched RNAseq and genome-wide
genotype data, including 79 AD subjects and 76 cognitively normal subjects. All
disease subjects had ages at death ≥60 years; a more relaxed age cutoff of ≥50 years
was applied for control subjects to achieve a sample size similar to that of the AD
subjects, but we note there were only two additional control subjects with age at
death below 60. We performed rigorous statistical testing to demonstrate that these
samples are well balanced with respect to age at death (p-value= 0.57) as well as
sex (p-value= 0.24) (Supplementary Fig. 7a, c).

The ROSMAP dataset includes the Religious Orders Study (ROS) and the
Memory and Aging Project (MAP)174, which are both longitudinal clinical-
pathologic cohort studies of aging and dementia run by the Rush Alzheimer’s

Disease Center in Chicago, IL. All participants enroll without known dementia and
agree with informed consent to annual clinical evaluation and brain donation. Each
sample is associated with a cognitive diagnosis of: not cognitively impaired, mild
cognitive impairment, or AD (see Supplementary Note 2 for more information on
diagnostic criteria). The ROS and MAP studies were each approved by an
Institutional Review Board of Rush University Medical Center. In this study, we
analyzed a total of 612 ROSMAP subjects with matched RNAseq and genome-wide
genotype data, including 212 AD subjects and 194 cognitively normal subjects.

MAYO RNAseq, data processing, and quality control. RNA extraction, library
preparation, and sequencing of the temporal cortex samples were conducted at the
Mayo Clinic Medical Genome Facility Genome Analysis Core, as previously
described175 (see also Supplementary Note 3 for more information). Only samples
with an RNA integrity number ≥5.0 were included in this study. Briefly, all samples
underwent 101 base-pair, paired-end sequencing on Illumina HiSeq2000 instru-
ments. Base-calling was performed using Illumina’s Real-Time Analysis 1.17.21.3.
FASTQ sequence reads were aligned to the human reference genome using TopHat
2.0.12176 and Bowtie 1.1.0177, and Subread 1.4.4 was used for gene counting178.
FastQC179 was used for quality control (QC) of raw sequence reads, and RSeQC180

was used for QC of mapped reads.
All MAYO RNAseq samples had percentage of mapped reads ≥85%. Raw read

counts were transformed to counts per million (CPM), log2 normalized, and
normalized using Conditional Quantile Normalization (CQN) via the
Bioconductor package181, accounting for sequencing depth (calculated as the sum
of reads mapped to genes), gene length, and GC content (calculated via
Repitools182 in the Bioconductor package). Genes with non-zero counts across all
samples were retained and principal component analysis was performed using the
prcomp function in R. Principal components 1 and 2 were plotted and no outliers
(>6 SD from mean) were identified.

ROSMAP RNAseq, data processing, and quality control. BAM files174 were
sorted using samtools183 and converted to FASTQ files using the SamToFastq
function184. RAPiD185 was used to generate a count matrix for the gene expression
data and a vcf file for each sample aligned to hg19 from the FASTQ files. Read
count expression data was normalized using log2 counts per million (CPM) and
the TMM method186 was implemented in edgeR187. Genes with over 1 CPM in at
least 30% of the experiments were retained. We then used precision weights as
implemented in the voom function from the limma188 R package to further nor-
malize the gene counts.

Regarding the ROSMAP cohort, it has been noted that the range of age at death
is broad but restricted to the older segment of the age distribution of the North
American population and that age and sex are important confounders when
performing any analyses of ROS and MAP data88. We observed this variance in the
age at death (p-value < 0.05) but found no significant difference in sex among the
ROSMAP subjects used in our analysis (p-value= 0.072) (Supplementary Fig. 7b,
d). To address the imbalanced age distribution, we later performed covariate
adjustment for age (together with other covariates, see section ‘Deconvolution of
RNAseq data into neuron-specific expression residuals’ below), and we confirmed
removal of the effects of age and other confounding variables by variance partition
analysis before and after covariate adjustment (Supplementary Fig. 2b, d).

Genome-wide genotype data and quality control. Whole-genome genotyping of
MAYO subjects was performed at the Mayo Clinic Medical Genome Facility
Genome Analysis Core using the Illumina Infinium HumanOmni2.5-8 Kit (see also
Supplementary Note 4 for more information). Whole genome genotype calls were
made using the auto-calling algorithm in Illumina’s BeadStudio 2.0 software, after
which they were converted into PLINK formats for analysis189. Samples were
removed if they had discordant sex, heterozygosity rates >3 SD from the mean, or
apparent relation. The dataset was filtered to include only autosomal SNPs and to
remove complex genomic regions regions (chr8:1-12,700,000; chr2:129,900,001-
136,800,000; chr17:40,900,001-44,900,000; and chr6:32,100,001-33,500,000). Link-
age disequilibrium was pruned using the SNPRelate (v1.4.2) package in R190,
implementing a linkage disequilibrium threshold of 0.15 and a sliding window of
1E-07 base pairs. Remaining SNPs and subjects were analyzed using

Fig. 7 Regulatory pathway analysis reveals unique and shared biological pathways between the validated targets in each network. a The downstream
members of each validated target were extracted from every network model, and edges from each downstream sub-network were pooled together into a
consensus subnetwork of the 10 validated targets (yellow nodes). The 10 targets tightly regulate each other and are upstream regulators of both REST and
VGF (green nodes). Blue, red, and purple edges, respectively, indicate the shortest paths from any of the 10 validated targets to REST, VGF, or both. Edge
thickness indicates the frequency of corresponding edges appearing across all the networks. b The shortest paths from each of the 10 targets to REST and
VGF were extracted from each network and pooled together into a hierarchical structure. The coloring of each target node annotates its representative
ConsensusPathDB pathways enriched by significant DE genes in the shRNA knockdown experiments. c The overall ConsensusPathDB pathways
significantly enriched by each of the 10 target genes (assessed by Fisher’s exact test with p-value < 0.05) were pooled and ranked in descending order by
the frequency of enrichment by any of the targets. Detailed statistical results and descriptions of all pathways affected by these targets are provided in
Supplementary Data 11.
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EIGENSOFT191 for population outliers. See Supplementary Note 5 for more details
regarding MAYO sample exclusion.

ROSMAP subject genotype data was processed using PLINK 2.0192. Positions
were converted from hg18 to hg19 (http://genome.ucsc.edu/cgi-bin/hgLiftOver) and
resulting genotype files were sorted using Picard184. Samples were removed using
PLINK 2.0 if they had variants with >2% missing values, minor allele frequency <1%,
Hardy-Weinberg equilibrium <10E-6, or inbreeding coefficient >0.15.

Genotype data imputation. 1000 Genomes Project193 data and IMPUTEv2194

were used to impute untyped variants. Imputed variants were removed if they
failed any of the previously listed quality control criteria or had information scores
<0.6. After imputation, we had 7,132,687 variants in MAYO and 9,333,139 variants
in ROSMAP.

Deconvolution of RNAseq data into neuron-specific expression residuals.
Residuals were obtained for each RNAseq dataset by adjusting for covariates using
the limma R package188. For MAYO, expression residuals were obtained by cor-
recting for the effects of technical confounding factors (i.e., sequencing batch),
sample-specific variables (RNA integrity number, exonic mapping rate, source of
tissue), and patient-specific covariates (sex, age at death, APOE genotype). For
ROSMAP, we adjusted for a slightly different set of covariates due to a greater
number of recorded measurements available: study (ROS or MAP), sequencing
batch, post-mortem interval, RNA integrity number, exonic mapping rate, sex,
educational attainment, APOE genotype, and age at death. For both MAYO and
ROSMAP data, we computed the exonic mapping rate using RNAseQC195.

We additionally adjusted for previously published single-gene biomarkers
derived at the protein level under AD for the five major cell types in the CNS:
neurons, ENO296; microglia, CD6897; endothelial cells, CD3499; astrocytes, GFAP98;
and oligodendrocytes, OLIG2100–102. To obtain expression residuals that mimic
expression patterns seen in neurons, for every gene, we added the ENO2 effects
estimated by the linear regression models back to the expression residuals.
Comparing the variance of normalized gene expression before and after covariate
adjustment, we confirmed removal of the effects from confounding variables
(Supplementary Fig. 2), allowing us to conclude that the residual results are
unbiased and robust against these adjusted covariates.

The final neuron-specific expression residual data available for further analysis
included 19,885 genes from 155 individuals in MAYO (79 AD, 76 cognitively
normal) and 20,276 genes from 406 individuals in ROSMAP (212 AD, 194
cognitively normal), with 18,408 genes common to both datasets (Fig. 1b, Fisher’s
exact test, p-value= 0); this is comparable to processed residuals of the same
cohorts on the AMP-AD knowledge portal (https://adknowledgeportal.synapse.
org).

Rationalization and validation of single-gene biomarkers for bulk-tissue
RNAseq deconvolution. Our rationale for using single-gene biomarkers over
multi-gene biomarkers derived from scRNAseq data was manifold. First, multi-
gene biomarkers derived from various scRNAseq studies in control human
brains54–58 (Supplementary Data 12) show no significant overlap among them-
selves, indicating a lack of robustness and consensus in these biomarkers derived
from scRNAseq studies (Supplementary Fig. 3a). Second, PCA analysis shows a
prominent overlap of scRNAseq biomarker expression across different cell types in
MAYO and ROSMAP AD data, indicating that the majority of scRNAseq-derived
biomarker gene expression is convoluted and reflecting potential interactions
between different cell types under the AD condition (Supplementary Fig. 3b, c;
Supplementary Data 12). Furthermore, there is significant overlap between
scRNAseq-derived biomarkers and AD therapeutic targets in the AMP-AD Agora
list142 (Supplementary Fig. 3j, k). This overlap is more significant than randomly
selected genes from the background overlapping with the Agora list, indicating that
scRNAseq-derived biomarkers may play a role in AD pathology. For these reasons,
all or a random subset of scRNAseq-derived cell type biomarkers are not ideal for
adjusting the bulk-tissue gene expression variance by PSEA.

By contrast, our single-gene biomarkers are derived directly at the protein level
under AD conditions and have been validated by other groups83,96–102. They show
no overlap with AD therapeutic targets in the Agora list, thus making them good
candidates for PSEA. Furthermore, our neuron-specific residual derived from the
single-gene biomarker ENO2 is significantly correlated with pseudo neuron-specific
residuals derived from a randomly selected subset of scRNAseq biomarkers
(Supplementary Fig. 3h, i; Supplementary Note 6), indicating that our neuron-
specific residual represents a robust neuronal component in the bulk-tissue
RNAseq data for neuron-specific therapeutic target discovery in LOAD.

Computational analyses of neuron-specific gene expression data. eQTL ana-
lysis was performed using the R package MatrixEQTL v2.1.1196 using quality-
controlled genotypes and normalized and covariate-adjusted cell type-specific
expression residuals. cis-eQTL analysis considered markers within 1Mb of the
transcription start site of each gene. False discovery rates (FDR) were computed
using the Benjamini–Hochberg procedure197.

DE analysis to interrogate the cell type-specific residual expression data for
genes differentially expressed between AD cases and healthy controls was

performed using linear models implemented in the limma R package188.
Significance was assessed using FDR < 0.05. We note that the log-fold change
thresholds in Fig. 2a, b are for visualization only and were not used in the analysis
in any way.

For pathway enrichment analyses, we downloaded pathways from
ConsensusPathDataBase105. For each given set of genes, we performed enrichment
analysis of each pathway over the set by Fisher’s exact test with p < 0.05.

Co-expression networks were constructed using the coexpp R package198. A soft
thresholding parameter value of 6.5 was used to power the expression correlations.
Seeding gene lists for the predictive networks were obtained by selecting genes in
co-expression modules that were statistically enriched (FDR < 0.05) for DE genes
or neuronal cell markers57.

To perform key driver analysis, we used the KDA R package82 (version 0.1,
available at http://research.mssm.edu/multiscalenetwork/Resources.html). The
package first defines a background sub-network by looking for a neighborhood
k-step away from each node in the target gene list in the network. Then, stemming
from each node in this sub-network, it assesses the enrichment in its k-step (k
varies from 1 to K) downstream neighborhood for the target gene list. In this
analysis, we used K= 6. Prioritization of key drivers for subsequent assessment was
determined by ranking their impact score and robustness score (described in
Supplementary Notes 7 and 8, respectively).

Predictive network modeling was performed according to detailed methods
described in our recent publications23,59,60,199,200 as well as methodology patent
US11068799B2.

For pathway analysis, we used the PathFinder method60 which is based on the
classical Depth-First Search algorithm201. The goal of PathFinder is to expand the
initial target gene set by including genes in the background network located in the
paths connecting input genes. Since the background network could contain
directed and undirected edges, we transformed the undirected edges into two edges
with the same two end nodes but different directions. We did not allow these two
edges to form a loop and simultaneously appear in one path. The Depth-First
Search algorithm starts from one input gene and stops if the length of path it
explores reaches K or if the path arrives at a node without a valid child node.
Whenever any of the stop criteria above was satisfied, we checked whether the path
contained at least two input genes. If not, the path was discarded. Otherwise,
among all the input genes in the path, we determined the target gene with the
maximum distance to the starting input gene, and all the nodes between this gene
and the starting input gene were then included in the seeding gene list for the
network. In practice, we ran Depth-First Search for each input gene and combined
the results to obtain the final network seeding gene list.

iPSC maintenance and induced neuron differentiation. The human control iPSC
line YZ1 was obtained from the University of Connecticut Stem Cell Core facility
and was maintained in StemFlex Medium (Thermo Fisher Scientific, Waltham,
MA). Induced neurons (iNs) were generated as described71,72,143, with minor
modifications. Briefly, iPSCs were plated in mTeSR1 media (STEMCELL Tech-
nologies, Vancouver, Canada) at a density of 95 K cells/cm2 on Matrigel-coated
plates (Corning Inc., Corning, NY) for viral transduction. Media was changed from
StemFlex to mTeSR1 as we found better transduction viability with mTeSR1. Viral
plasmids were obtained from Addgene (plasmids #19780, 52047, 30130; Water-
town, MA). FUdeltaGW-rtTA was a gift from Konrad Hochedlinger (Addgene
plasmid #19780), and Tet-O-FUW-EGFP (Addgene plasmid #30130) and pTet-O-
Ngn2-puro (Addgene plasmid #52047) were gifts from Marius Wernig. Lenti-
viruses were obtained from ALSTEM (Richmond, CA) with ultra-high titers and
used at the following concentrations: pTet-O-NGN2-puro: 0.1 μl/50 K cells; Tet-O-
FUW-eGFP: 0.05 μl/50 K cells; Fudelta GW-rtTA: 0.11 μl/50 K cells. Transduced
cells were dissociated with Accutase (Gibco, Thermo Fisher Scientific) and plated
onto Matrigel-coated plates at 50 K cells/cm2 in mTeSR1 (day 0). On day 1, media
was changed to KSR media with doxycycline (2 μg/ml, Sigma-Aldrich, St. Louis,
MO). Doxycycline was maintained in the media for the remainder of the differ-
entiation. On day 2, media was changed to 1:1 KSR:N2B media with puromycin
(5 μg/ml, Gibco). On day 3, media was changed to N2B media with 1:100
B27 supplement and puromycin (10 μg/ml). Puromycin was maintained at this
concentration in the media for the remainder of the differentiation. From day 4
onwards, cells were cultured in NBM media with 1:50 B27 and BDNF, GDNF,
CNTF (10 ng/ml each, PeproTech, Rocky Hill, NJ), plus doxycycline and pur-
omycin as described. iNs were not co-cultured with human or primary rodent
astrocytes in this study. See Supplementary Note 9 for media formulations.

Lentiviral transduction of induced neurons. At day 17 of differentiation, neurons
were transduced with lentiviruses encoding shRNA constructs against selected
targets (Broad Institute, Cambridge, MA), as described in ref. 22. For each round of
experiments, two controls were included: a lentivirus expressing the pLKO vector
without an shRNA (empty) or else not transduced (fresh media only). iNs were
transduced with a 1:1 ratio of media to lentivirus. Following ~18 h of incubation,
media containing virus was removed and replaced with fresh media, and cells were
incubated for an additional 96 h. On day 22 of differentiation, conditioned media
was then collected and stored at −20 °C for Aβ analyses, and cells were lysed either
for RNA purification or protein harvest. Gene knockdowns were confirmed
by qPCR.
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Aβ ELISA. Aβ present in the conditioned media was measured by the 6E10 Aβ
Peptide Panel Multiplex ELISA (Meso Scale Discovery, Rockville, MD) following
manufacturer instructions. Briefly, conditioned media from transduced cells were
incubated in pre-blocked wells along with detection antibody solution. Plates were
read using an MSD SECTOR Imager 2400 and resulting peptide concentrations
were normalized to total protein in the cell lysate per well measured using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Data for each shRNA
knockdown were additionally normalized to the average of control conditions for
each parameter measured. To then compare each target shRNA to the control
condition for each parameter, Dunnett’s T3 tests for multiple comparisons were
performed in Prism 9.0.

Tau ELISA. Protein was extracted from iNs by lysis in NP-40 lysis buffer (1% NP40,
0.5M EDTA, 5M NaCl, 1M Tris) containing cOmplete protease inhibitors and
phosSTOP (Roche, Penzberg, Germany). Lysates were analyzed using the Multi-Spot
Phospho (Thr 231)/Total Tau ELISA (Meso Scale Discovery) following manufacturer
instructions. Briefly, lysates were incubated in pre-blocked wells for 1 hr prior to
detection antibody application for 1 hr. Plates were read using an MSD SECTOR
Imager 2400 and resulting concentrations were again normalized to total protein in
the cell lysate per well (Pierce BCA Protein Assay Kit) and data for each shRNA
knockdown were normalized to the average of control concentrations for each
parameter. To then compare each target shRNA to the control condition for each
parameter, Dunnett’s T3 tests for multiple comparisons were performed in Prism 9.0.

RNA sequencing of induced neurons. For iNs, at least 250 ng of total RNA input
was oligo(dT) purified using the PureLink RNA Mini Kit (Invitrogen), then
double-stranded cDNA was synthesized using SuperScript III Reverse Tran-
scriptase (Invitrogen) with random hexamers. RNA integrity number >9 was
confirmed using the Agilent 4200 TapeStation system (Agilent Technologies).
RNAseq on the shRNA-treated iNs was performed by Functional Genomics Core
at the University of Arizona at a depth of 30 million single-end reads (100 bp long).
The RNAseq data (GSE228156) was QCed and processed with the same steps as
outlined in the Methods section “ROSMAP RNAseq, data processing, and quality
control”.

Statistics and reproducibility. All statistical analyses were performed in R
Foundation for Statistical Computing, version 3.2.3, unless otherwise noted.
Genotyping and RNAseq data was pre-processed and normalized (range of
N= 266 for MAYO and N= 612 for ROSMAP). The normalized gene expression
counts were then corrected for covariates as described in ‘Methods’. The residual
values were then used to perform DE, co-expression module, and network analysis.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study are available on the AMP-AD knowledge portal
hosted on Synapse.org (doi:10.7303/syn2580853) with the following accessions: MAYO
temporal cortex RNAseq data (syn3163039), MAYO genome-wide genotype data
(syn8650953), ROSMAP DLPFC RNAseq data (syn4164376), ROSMAP genotypes
(syn3157325), and ROSMAP clinical covariates (syn3191087). Requests for ROSMAP
data can also be made at www.radc.rush.edu/. The RNAseq data generated from target
knockdown experiments can be downloaded from GEO (GSE228156). Source data
underlying Figs. 2–5 are presented in Supplementary Data 13–16, respectively.

Code availability
The code for network construction can be obtained at labs.icahn.mssm.edu/zhulab/
software/. The software Co-expp for co-expression module construction can be obtained
from bitbucket at https://bitbucket.org/multiscale/coexpp/src/master/. The network
software can be obtained from https://labs.icahn.mssm.edu/zhulab/?s=rimbanet.
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