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Harmonizing across datasets to improve the
transferability of drug combination prediction
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Yuanfang Guan 1,5✉

Combination treatment has multiple advantages over traditional monotherapy in clinics, thus

becoming a target of interest for many high-throughput screening (HTS) studies, which

enables the development of machine learning models predicting the response of new drug

combinations. However, most existing models have been tested only within a single study,

and these models cannot generalize across different datasets due to significantly variable

experimental settings. Here, we thoroughly assessed the transferability issue of single-study-

derived models on new datasets. More importantly, we propose a method to overcome the

experimental variability by harmonizing dose–response curves of different studies. Our

method improves the prediction performance of machine learning models by 184% and

1367% compared to the baseline models in intra-study and inter-study predictions, respec-

tively, and shows consistent improvement in multiple cross-validation settings. Our study

addresses the crucial question of the transferability in drug combination predictions, which is

fundamental for such models to be extrapolated to new drug combination discovery and

clinical applications that are de facto different datasets.
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Combining multiple therapeutic agents has become an
emerging strategy in cancer treatment. While the mono-
therapy approach is often standard of care, the combination

of multiple treatments has become inevitable as multiple comorbid
conditions occur in cancer patients1,2. Moreover, drug combina-
tions have shown advantages over monotherapy by overcoming
drug resistance, and increasing efficacy through synergistic
interactions3. To accelerate the development of new combination
therapies, a large number of studies on high-throughput screening
of drug combinations have been launched4–6, and thereafter have
been made comparable in large-scale databases such as
DrugComb7,8, DrugCombDB9, and SYNERGxDB10. These data-
bases provide abundant resources for training a powerful model to
predict new potent combination treatments. For example, multiple
machine learning tools have been developed, by hundreds of
international participants in the NCI-DREAM Drug Sensitivity and
Drug Synergy Challenge, and the AstraZeneca-Sanger Drug Com-
bination Prediction (AZ-DREAM) Challenge11,12.

However, most existing drug combination prediction models
have been trained and tested using the same datasets13–19. Cross-
dataset prediction still remains a significant challenge due to
experimental variability between independent studies20,21. For
example, when determining the drugs’ efficacy, different dosing
regimens are used. The O’Neil study used 5 × 5 dose–response
matrices to determine the drug combination response4, while the
ALMANAC drug combinations were tested by 4 × 4 or 6 × 4
dose–response matrices5. While different dosages may not have a
huge impact on summary monotherapy measurements, such as Hill
coefficient (slope of the dose–response curve), IC50 (dose at 50% of
maximum response), GRAoC (area over the dose–response curve),
and RI (relative inhibition normalized by positive control)22,23, they
may easily result in different interpolations of the dose–response
curves, thus are often not used as features by machine learning
models for cross-study drug combination prediction24.

Due to the above challenges from different experimental set-
tings, previous drug combination machine learning models only
considered the summary monotherapy measurements as their
dose–response features11,14. The complete dose–response curves
of monotherapies, which contain the full spectrum of pharma-
codynamics under different doses, cannot be fully captured by a
single summary metric25,26. Therefore, a method for harmonizing
different dose settings is crucial for cross-study drug combination
machine learning models.

In this study, we propose to explore drug combination prediction
across different studies with variable dose settings. In particular, we
develop a method to standardize the dose–response curves across
different studies. We show that such a method enables more effi-
cient utilization of pharmacodynamics profiles of monotherapies in
machine learning models, hence improving the prediction accuracy
when transferring to new datasets. Our modeling strategy is of
particular importance to solve the replicability issue of machine
learning for drug combination discovery.

Results
A framework of intra- and inter-study machine learning pre-
diction. Our goal is to test the capability of machine learning
models in predicting combination treatment response, not only
within a single study but also between different studies and on
unseen drug combinations. To achieve this goal, we first explore
the publicly available high-throughput screening datasets for anti-
cancer combination treatments, to build a gold standard for our
experiment. We explore the current latest version of the Drug-
Comb portal (https://drugcomb.org/), which contains the most
comprehensive publicly available drug combination high-
throughput screening datasets, including 24 independent

studies7,8. Among them, we select four major datasets: ALMA-
NAC, O’Neil, FORCINA, and Mathews, as they are of the biggest
sizes and therefore are commonly used in machine learning
prediction of combination responses13,18,19,24,27–29. These four
studies contain a total of 406,479 drug combination experiments,
9,163 drugs, and 92 cell lines, while the size, drug, and cell line
composition, as well as experimental settings, vary significantly
among them (Supplementary Table 1). Of the four datasets,
ALMANAC is the largest dataset with the most drug-cell line
combinations, and FORCINA has the largest number of drugs
screened. O’Neil has the best quality, where all the combinations
are tested with four replicates, whereas ALMANAC tested at most
three replicates for each combination and Mathews tested two
replicates for each combination. In contrast, the FORCINA
dataset contains no replicates.

We carried out a two-step cross-study validation (Fig. 1a).
First, we trained dataset-specific models and carried out intra-
study cross-validation. The cross-validation was set up so that the
training and testing sets in this step do not share the same
treatment-cell line combinations. Therefore, we aimed to test the
performance of machine learning models in predicting unseen
combination treatments within the same study. Next, during the
inter-study cross-validation step, we tested these dataset-specific
models on new individual datasets, which are denoted as “1 vs 1”
in Fig. 1a. Furthermore, to explore more versatile cross-study
scenarios, we designed a “3 vs 1” cross-validation strategy by
combining three of the four datasets as the training set and the
remaining one as the test set.

To analyze the potential of transferability, we determine the
overlap of the drugs, cancer cell lines, and treatment-cell line
combinations between the four studies (Fig. 1b). While drugs are
overlapped between all the studies, no overlap of cell lines exists
between FORCINA and Mathews with the other datasets, since
both FORCINA and Mathews include only one unique cancer cell
line. Overall, only 612 treatment-cell line combinations exist
between ALMANAC and O’Neil, providing reference data for
evaluating the performance of cross-dataset prediction.

Using the replicates within each dataset and the overlapping
treatment-cell line combinations between the datasets, we
analyzed the reproducibility of a drug combination sensitivity
score called CSS23, as well as multiple drug combination synergy
scores, including S, Bliss, HSA, Loewe, and ZIP23,30. The intra-
and inter-study reproducibility can be used as a benchmark for
the drug combination prediction model we built in the next step
(Supplementary Fig. 1). While no replicates existed in the
FORCINA dataset, the O'Neil dataset showed the best intra-study
replicability (0.93 Pearson’s r for CSS, 0.929 Pearson’s r for S,
0.778 for Bliss, 0.777 for HSA, 0.938 for Loewe, and 0.752 for
ZIP), possibly due to the relatively more abundant replicates in
this study. When testing the overlapping treatment-cell line
combinations between ALMANAC and O’Neil, as expected, all
the drug combination synergy scores showed significant drops of
replicability (0.2 Pearson’s r for S, 0.12 for Bliss, 0.18 for HSA,
0.25 for Loewe, and 0.09 for ZIP), while the CSS score still
maintained a higher correlation (0.342 Pearson’s r). The higher
reproducibility of the CSS score, both within and across the
studies, suggested that drug combination sensitivity is more
reproducible than synergy, which may justify why most of the
clinically approved drug combinations rely on their combinatorial
efficacy rather than synergy31,32

The above result highlights the challenges of predicting cross-
dataset drug combinations including (1) the scarcity of overlapped
compounds and cell lines between studies, and (2) the variability in
the assay and experimental settings, such as the total number and
ranges of doses. To combat these challenges, we propose a machine
learning model using the following features (Fig. 1c): (1) for both

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04783-5

2 COMMUNICATIONS BIOLOGY |           (2023) 6:397 | https://doi.org/10.1038/s42003-023-04783-5 | www.nature.com/commsbio

https://drugcomb.fimm.fi/
www.nature.com/commsbio


drugs, we use chemical structure-derived fingerprints, which can be
transferred to chemicals that may not be present in the training set;
(2) we use pharmacodynamic properties, such as monotherapy
efficacy scores and dose–response curves of the drugs. The
dose–response curves will be normalized; 3) we use the expression
of 273 essential cancer genes33 to represent the molecular states of
the cell lines. The above features will be fed into a lightGBM
boosting model, as it has shown higher efficiency than other tree-
based algorithms such as XGboost and Random Forest when
training on large datasets34. We will evaluate the accuracy of
predicting the six types of drug combination response scores (i.e.
CSS, S, Bliss, HSA, Loewe, and ZIP).

Combating inter-study variability by integrating monotherapy
efficacy and imputation of dose–response curves. We observe
that experimental settings differ not only between different stu-
dies, but also within the same study (Supplementary Table 1 and
Supplementary Fig. 2). For example, the dose–response matrix
ranges from 2 × 2 (FORCINA) to 10 × 10 (Mathews), and within
the O'Neil dataset, both 4 × 4 and 4 × 6 dose–response matrices

are used. Meanwhile, the dose ranges differ significantly within
and between studies (Supplementary Table 1). For example,
within the ALMANAC study, more than 40 different doses have
been used (Supplementary Fig. 2), and the maximum doses tested
for each drug are different due to their distinctive pharmacody-
namic properties4. Therefore, we precalculate the replicability of
monotherapy efficacy scores, in terms of IC50, RI, and the dis-
tribution statistics (maximum, minimum, mean, and median of
all inhibitions in the dose–response curves) within and between
different datasets (Supplementary Fig. 3). We notice that RI and
IC50 show comparable reproducibility within datasets, with
Pearson’s r of RI ranging from 0.363 (within Mathews) to 1
(within O’Neil), while Pearson’s r of IC50 ranges from 0.537
(within ALMANAC) to 1 (within O’Neil). However, the replic-
ability of IC50 is much lower than that of RI in the cross-dataset
analysis, (Pearson’s r = 0.084 for IC50 versus r = 0.451 for RI
between ALMANAC and O'Neil). Most dose–response curve
shape statistics show Pearson’s r better than or comparable with
IC50 and RI, either within or between studies, suggesting potential
in cross-study prediction (Supplementary Fig. 3).

Fig. 1 Overview of the framework on intra- and inter-study drug combination predictions. a The cross-validation strategy. We carry out the cross-
validation in two steps: intra-study, which is five-fold cross-validation carried out within a single dataset, where the training and test sets are split by drug
combination and cell lines, and inter-study, which is carried out between different datasets. The models used in the 1 vs. 1 inter-study cross-validations are
the models generated from the inter-study training step. For the 3 vs. 1 inter-study cross-validation, three of the four datasets are combined and used as the
training set to generate five models by five-fold cross-validation and then tested on the remaining dataset. b The overlapped information (drug, cell line,
and treatment-cell line combination) between the four datasets used in this study. c The schematic of model construction in this study. We use four
different data sources to generate the machine learning model used in this study. For drug-related features, we used chemical structure, monotherapy
efficacy score, and their corresponding dose–response relationship. For the treated cancer cell lines, we used the transcription levels of 293 cancer-related
genes. The constructed features are input into a lightGBM learner to generate models predicting the six different response metrics of the combination
treatment: CSS, which is the sensitivity score representing the efficacy of the combination, and five synergy scores (S, Bliss, HSA, Loewe, and ZIP)
representing the degree of interaction between the two drugs.
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We start exploring the drug combination response prediction
based on the monotherapy responses such as efficacy and
dose–response curves (M1–M12, Fig. 2, Supplementary Figs. 4–10,
and Supplementary Table 2–5). Three types of features based on
monotherapy responses are constructed, denoted as “monother-
apy_efficacy”, “drc_baseline”, and “drc_imputation”. “monother-
apy_efficacy” is summarized score of the curve (IC50 or RI) using

each of the two drugs independently on the treated cell lines, and
has often been used in previous benchmark models in drug
combination prediction challenges11,35,36. The other two features,
“drc_baseline”, and “drc_imputation”, are based on the exact
dose–response relationships (Fig. 2a). The dose–response curve
baseline model (M1) using the “drc_baseline” feature method is
equivalent to the method previously described by Zheng et. al. 8,

Fig. 2 Strategy to normalize the differences in inter-study experimental settings. a Demonstration of different dose–response curves (drc) feature
construction schemes. The drc baseline feature is defined as the direct concatenation of doses and corresponding responses, where the total number of
doses and responses will be padded by “-1” to the same length for different experimental settings. The drc imputation feature is the concatenation of
imputed responses by different interpolation methods (see Methods for details). The monotherapy efficacy feature is the IC50 and RI of both drugs on the
same cell line. b Schematics of inter-study interpolation normalization in experimental settings. For experimental settings A, B, and C, which are tested
using a different total number of doses, N1, N2, and N3, we pull out the largest number of doses across all the studies, denoted as Nmax. Then, the
dose–response information of each setting is interpolated to the same size as Nmax. c Performances are evaluated by Pearson’s r for all models, which are
models with different combinations of the three features. The top performance in each training set (top) and testing set (right) is denoted by “*”.
d Heatmap shows the results from paired t test between the performances of five models in intra- and inter-study cross-validation. The color in the
heatmap shows the performance ratios (PRs) of the average performances between each model pair.
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where the doses and corresponding responses are vectorized and
concatenated directly together. Since the total number of doses
varies significantly between different datasets, the “drc_baseline”
features were padded to the same length. For the “drc_imputa-
tion” feature, we interpolate all the dose–response curves to the
same length for all the datasets (Fig. 2b). We test linear, Lagrange,
4-parameter log-logistic regression (LL4) interpolation (M2–M4,
Supplementary Figs. 5 and 6). Among the three interpolation
methods, linear interpolation performs the best in the intra-study
cross-validation while LL4 performs the best in the inter-study
cross-validation. Furthermore, combining all three methods
shows better performances in both scenarios, and thus is used
in the final “imputation” model (M5, Supplementary Fig. 5b, d).
Also, since using IC50 and RI together are generally better than
them alone in the intra- and inter-study cross-validations, the
final monotherapy efficacy feature contains both measurements
(M7–M9, Supplementary Figs. 7, 8). Five models using different
combinations of the monotherapy response-based features
mentioned above, are shown in Fig. 2. We notice that M12,
which is a combination of all three types of monotherapy features,
performs slightly better in the intra-study cross-validation
(101–102% performance ratio compared to the other models),
while M5, which is the pure imputation model, performs the best
in the inter-study cross-validations (107–15% performance ratio
compared to the other models), and this advantage is especially
significant in the prediction of Bliss (112–113% performance ratio
compared to the other models) and Loewe scores (119–138%
performance ratio compared to the other models) (Supplemen-
tary Fig. 4). It is expected that M12 performs the best in the intra-
study validation since the un-imputed dose–response baseline
features contain the doses for dose–response evaluation. These
doses chosen for monotherapy response evaluation can be
significantly different (Supplementary Table 2), thus causing
biases in the cross-study prediction. However, the monotherapy
doses can still be effective for within-study prediction since it
contains unique experimental information for each drug. The
imputation method, on the other hand, indeed alleviates the
biases in the experimental settings and is more universally
transferable between different experimental settings, thus M5,
which only imputes dose–response information, outperforms all
other monotherapy-based models.

When comparing the monotherapy efficacy directly with
dose–response curve-based models, interestingly, the efficacy
model shows the best performance in inter-study prediction while
the worst in intra-study prediction (Supplementary Figs. 9, 10).
We notice that the efficacy model performs especially well when
trained or tested on the FORCINA dataset, which adopts a 2 × 2
dose–response matrix design (Supplementary Fig. 9a). We reckon
that the coarse dose–response relationship may not be as good as
the total efficacy in this case, as the imputation becomes
unreliable with only two doses.

The imputation methods improve the benchmarks model’s per-
formance in the cross-study prediction. Previously, the DrugComb
study provided a state-of-the-art model using the O’Neil dataset, by
integrating one-hot encoding of drugs and cell lines as well as drug
chemical fingerprints, drug doses, and cell line gene expressions in
the model construction8. In this study, we construct a benchmark
model based on their schemes, by encoding the chemical structure
properties and molecular profiles of drugs and cell lines in the fea-
ture set, and explore if the imputation method of the dose–response
curve can further improve the prediction accuracy across different
individual datasets (Fig. 3 and Supplementary Fig. 11).

We construct five models step-by-step, from the label
information (categorical encoding of both drugs and cell lines),

to adding the chemical structure of both drugs encoded by
molecular fingerprints and cell line cancer gene expression, to
adding monotherapy efficacy, and adding the dose–response
curve baseline feature and imputation feature, respectively. The
performances of all models are listed as M13–M20 (Supplemen-
tary Tables 2–5). And five models, including M13-16, and M20,
are listed for the main comparison (Fig. 3a).

We notice that, while the benchmark models with only
information directly from drugs and cell lines (M13 and M14)
still achieve decent performances around the experimental
reproducibility levels in intra-study cross-validation (Supplemen-
tary Table 2), neither of these models achieve better-than-random
performances in the cross-study predictions, due to a lack of
shared drugs and cell lines across different studies (Fig. 3b and
Supplementary Table 3). Incorporating pharmacological proper-
ties such as monotherapy activity on the same cell lines (M15)
improves both the intra-study and inter-study prediction
performances to 178% and 1299% compared to the reference
model (M13), showing the robustness of monotherapy efficacy
information between studies (Fig. 3c). Adding the monotherapy
baseline information (M6) further improves the inter-study
performance but not the intra-study, possibly due to the same
reason we mention in the previous section, that the baseline
information contains the dose settings, which is a dataset-exclusive
artifact. Furthermore, adding the imputed information (M20)
further improves the performances in both intra- and inter-study
cross-validation, to 184% in the intra-study cross-validation and
1367% in the inter-study validation (Fig. 3c). This improvement is
consistent in terms of all the drug combination sensitivity and
synergy scores, with 1187% in CSS, 2141% in Bliss, 949% in HSA,
2257% in Loewe, 723% in ZIP, and 2019% in S score, respectively
(Supplementary Fig. 11b). Notably the models achieve better
performances than experimental replicates within and between
studies (Supplementary Tables 2–5). We conclude that the
imputed dose–response curve contains orthogonal information
to the monotherapy efficacy, which can be effectively used to
improve the prediction of combination treatment response by
overcoming the variability between different experimental settings.

To understand which information plays the most important
role in the inter-study prediction, we carry out SHAP (SHapley
Additive exPlanations) analysis to visualize the contribution of
all the features in the best-performing model (M20, Fig. 3). As
expected, the dose–response curve derived feature shows
significant SHAP importance and remains the top feature for
all the drug combination response score predictions, while the
monotherapy efficacy score also shows significant importance
in the S score prediction (Supplementary Fig. 12). We then
analyze the contributions of the dose–response imputation
features specifically and noticed that the imputed responses at
the beginning and end of the curve show significant importance
in the prediction, suggesting that the minimum and the
maximum response of the monotherapies are informative for
predicting the drug combination response (Supplementary
Fig. 13).

To demonstrate the robustness of our models in broader inter-
dataset validation settings, we carry out 3 vs. 1 cross-validation
experiments based on the four datasets we use in this study (Fig. 4
and Supplementary Figs. 14–17). For each training and test setting,
we combine three datasets and use the combination as the training
set, then test the model on the remaining datasets. We expect that
using a multi-sourced training set can lead to improved model
performances, by including more types of drugs and cell lines in the
training instances. Thus, the training datasets can potentially
contain more transferable information to new datasets. As expected,
the optimal model in 1 vs. 1 inter-study cross-validation settings,
M20, which is the baseline model plus dose–response curve
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imputation feature, shows the same advantages compared to the
other models, with 910% performance compared to M1 and 1544%
performance compared to M2 (Fig. 4b).

Discussion
How to tackle the replicability in results between different studies
to draw meaningful conclusions has been a critical issue in drug
discovery37. During cancer treatment, resistance is frequently
developed against monotherapies, and a combination usage of
multiple drugs targeting parallel pathways is needed to overcome

this issue. While the application of high-throughput screening on
cancer cells accelerates the rational design of drug combinations
toward clinical trials35,38,39, the inconsistency between currently
available datasets has been a major concern, posing a challenge to
translate these in vitro studies into an in vivo setting20,40–43. As
the experimental replicability between independent combination
screening datasets can be quite low (0.089–0.342 Pearson’s r
between ALMANAC and O’Neil) (Supplementary Fig. 1), which
is much lower than that for monotherapy screening (0.194–0.683
R2)20, a robust machine learning strategy is urgently needed for
meaningful clinical applications.

Fig. 3 Normalized dose–response information improves the intra- and inter-study prediction performances of benchmark models. a Schematic of the
step-by-step feature construction strategy from the benchmark models (M13–M15) to the dose–response-curve-incorporated models (M16 and M20).
b Performances in all the training and testing scenarios for M1–M5. The best-performing models were denoted by “*” c Comparisons of performances of
M1–M5 from paired t test. The performance ratios (PRs) between model pairs are shown in different colors.
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Our study addresses the inter-study transferability issue in large-
scale screening. We identify a major cause of variability between
different studies, which is the experimental setting of drug dosage.
The total number of doses, and the dose ranges, can be significantly
different between studies, and even between replicates within single
studies (Supplementary Fig. 3). Based on the above observation, we
consider the dose–response relationship as part of the features in
our machine learning model for drug combination sensitivity and
synergy prediction and find out that such a modeling strategy
significantly improves the transferability of machine learning
models between datasets, with an accuracy that is comparable with
in-study replicabilities (Supplementary Tables 2–5).

Our study focuses on the transfer learning between in vitro
high-throughput drug combination screening studies44, however,
future work is needed to further improve the clinical translation
of drug combination predictions. For example, it remains
unknown whether the top drug combinations from the in vitro
studies are transferable to clinical treatment32, and whether the
response of monotherapy treatment can help infer clinically
efficacious combinations45,46 Furthermore, a mechanistic model
on signaling pathways is needed to validate that the predicted
drug combination biomarkers can be used for patient stratifica-
tion in clinical trials47,48. Future modeling of transferability
should be carried out between in vitro and preclinical studies,

Fig. 4 Comparison of performances before and after incorporating dose–response curve into the baseline model in inter-study predictions. Models
were trained using three datasets and then tested on the remaining dataset. The models refer to the same model definition in Fig. 3. a Performances of
machine learning models in the 3 vs 1 training-testing settings. For each comparison, the training set includes three studies shown on the top, while the test
set contains one study shown on the right. Top performances are marked by “*”. b The Pairwise comparison of performances of five models, showing the
performance ratios (PRs) and their p-values (paired t test).
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such as patient-derived ex-vivo and mouse models, as well as
multiple clinical trial meta-analyses44,49.

Methods
Data collection. Currently, DrugComb has been the largest public data portal for
in vitro high-throughput combination treatment screening studies. We selected the
four largest datasets (ALMANAC, O’Neil, FORCINA, and Mathews) from Drug-
Comb (https://drugcomb.org/) for the inter and cross-study analysis in this paper,
where the detailed comparisons for the four datasets are shown in Supplementary
Table 1.

DrugComb provides six metrics (CSS, S, Bliss, HSA, ZIP, Loewe) for the
responses of combination treatments, and two metrics (IC50 and RI (relative
inhibition)) for the response of single drug treatments. The details of the formula of
these metrics have been described in Zheng et al.8. Briefly, CSS analyzes the overall
drug efficacy for the combination treatment, while S, Bliss, HSA, ZIP, and Loewe
evaluate the synergy or the degree of interaction between the two drugs used in a
combination treatment. Besides the efficacy and synergy metrics for monotherapy/
combination therapy, DrugComb also provides the SMILES (Simplified molecular
input line entry system) format chemical structure of drugs, which is used for
structural encoding in this study.

The transcriptomic profiles of all the cancer cell lines used in this study were
obtained from CCLE (Cancer Cell Line Encyclopedia) (https://sites.broadinstitute.
org/ccle/datasets). We obtained 279 cancer-associated genes from the IMPACT
(Integrated Mutation Profiling of Actionable Cancer Targets) project33, 273 of
which were found to be overlapped with the CCLE transcriptomic profiles.
Therefore, these 273 genes were used for combination treatment response
prediction in this study.

Hyperparameters of machine learning models. We chose the lightGBM gradient
boosting model as the base learner used in the experiment. The hyperparameters of
the lightGBM models were set as follows:

param ¼ 0boosting type0 : 0gbdt0;
�

0objective0 : 0regression0;
0num leaves0 : 20;
0 max depth0 : 8;

0force col wise0 : 0true0;
0learning rate0 : 0:05;

0verbose0 : 0;
0n estimators0 : 1000;

0reg alpha0 : 2:0;
�

where the total number of leaves was set to 20 and the maximum depth was set to 8
to avoid overfitting on the training dataset. 'num_boost_round' was set as 500 for
boosting iterations.

Training and cross-validation of models within and between studies. For
cross-validation of the models, we carried out model training in the following steps:

1. intra-study training and cross-validation: in this step, we carried out five-
fold cross-validation for model training and testing. We split the training
dataset by combination treatment-cell line, therefore the model can be tested
on unseen examples to predict new combination treatment synergy and
efficacy. As a result, for each of the four datasets, five models were generated
by training on different combination treatment-cell line splits. Since the two
drugs in the combination should be considered equally, during the training
steps, the first and second drugs were switched and put in the training set
again to adjust for the possible bias by order of the two drugs.

2. 1 vs. 1 inter-study validation: in this step, no extra models need to be trained.
The models trained within each study from step (1) were used for prediction
in other datasets except for the training dataset. In this step, the final
prediction results from the five intra-study models generated from step (1)
are ensembled by averaging. The ensemble method can reduce the
prediction variance thus improving the stability of inter-study prediction
performance50.

3. 3 vs. 1 inter-study validation: To explore the generalization of 1 vs. 1 inter-
study validation in step (2), we tested the same feature settings on datasets
with different compositions. In this step, we combined 3 of the 4 datasets as
the training set and tested it on the remaining dataset. The training process
is still carried out by inter-study five-fold cross-validation as step (1) and
tested on the remaining dataset as step (2).

Feature preprocessing and construction. On the input data from the DrugComb
data portal (an example of input data is shown in Supplementary Table 6), we
applied the following types of information to generate an inter-study-transferable
model. The chemical and pharmacological properties of both drugs and the

biological characteristics of the treated cell lines were used to construct the
feature space.

Firstly, we defined a reference model by applying the following types of
information:

1. Categorical encoding of the names of both chemical agents in the treatment
(denoted as “drug_categorical”), and categorical encoding of the cancer cell
line (denoted as “cell_line_categorical”). Both features were implemented as
categorical features during the training of lightGBM models.

2. To provide information in terms of the drugs’ chemical properties, we
generate molecular fingerprints from the chemical structure of both
chemical agents (denoted as “chemical_structure”). 166 MACCS, 1024
Morgan, and 2048 RDK molecular fingerprints were generated based on the
SMILES format of the chemical structure of drugs, using openbabel and
rdkit modules from Python. The three types of fingerprints were
concatenated together directly for the chemical structure encoding.

3. To provide a meaningful biological background of the treated cell lines, we
used the gene expression levels of 273 cancer-associated genes obtained
from CCLE as the representation of the cell line features (denoted as
“cancer_gene_expression”). The gene expression levels for each cell line
were quantile normalized before implementation.

4. To provide pharmacological properties of the single drugs, we used two
efficacy metrics of each of the cancer drugs on the same cell line: IC50

(denoted as “monotherapy_ic50”) and RI (denoted as “monotherapy_ri”),
where IC50 represents the dose of the drug achieving 50% of the maximum
response, and RI is the normalized area under the log10-transformed
dose–response curve.

5. For more detailed pharmacological properties, and also to evaluate the
variability of experimental settings in different studies, we used the
information from the dose–response dose of the single drugs on the same
cell lines, which is also provided by the DrugComb datasets. We encoded
the dose–response curves using different methods as follows:

a. dose–response curve baseline encoding (denoted as “drc_baseline”): the
doses of and corresponding responses were flattened as a vector and
concatenated together. Since in different experiments, the total number of
doses measured could be different, ranging from two to ten, the total
number of doses is padded to ten by -1 from the right. For example, for the
monotherapy MK-5108 tested on the ES2 cell line, the response was
measured at five different doses (μm): [0, 0.075, 0.225, 0.675, 2], and the
corresponding response is [0, -0.48, -0.47,4.32, 20.72], then both doses and
responses will be padded to [0,0.075,0.225,0.675,2,-1,-1,-1,-1,-1] and [0,-
0.48, -0.47,4.32, 20.72,-1,-1,-1,-1,-1], and concatenated together for
feature input.

b. dose–response curve imputation encoding (denoted as “drc_imputation”):
instead of directly taking dose–response curve information as the baseline
encoding, we normalized the dose-response relationship by interpolation
since the dose-response curves within and between different studies are
measured by significantly different dose numbers and ranges (Fig. S4), the
total number of responses on the curve can be different, introducing a
significant challenge for applying this information in inter-study validation.
Therefore, interpolating the dose–response curves to the same length can
help them to be interpreted at the same magnitude. While all dose–response
relationships were measured at logarithmic dose scales, the maximum
length of the dose–response curve ranges from 2-10. Therefore, all dose-
response curves are first log10-transformed and then interpolated to the
length of 10. We carried out the following commonly used interpolation
methods and tested the difference between them:

i. Linear interpolation (denoted as “drc_intp_linear”): we use the Numpy
Python package to generate the linear interpolated dose–response curve.
The linear interpolation is computed using the Eq. (1):

y ¼ y0 þ ðx � x0Þ
y1 � y0
x1 � x0

ð1Þ

where (x, y) is the coordinate for the interpolated point between (x0, y0) and
(x1, y1).

ii. Lagrange interpolation (denoted as “drc_intp_lagrange”): we used the Scipy
Python package to compute the Lagrange interpolation of the dose–response
curve. The formula for computing Lagrange interpolation is Eq. (2):

y ¼ PðxÞ ¼ ∑
n

j¼1
PjðxÞ ð2Þ

Where,

PjðxÞ ¼ yj
Yn

k¼1; k≠j

x � xk
xj � xk

n: total number of doses before interpolation.
iii. Four-parameter log-logistic (LL4) regression interpolation (denoted as

“drc_intp_4PL”): As dose–response curves are often fitted by a four-
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parameter logistic regression function in the standard analysis, we
implemented a Python version of the drc R package using the same
parameter implementation51. The LL4 interpolated curve is computed by
Eq. (3):

y ¼ bþ c� b
ð1þ expðaðlogðxÞ � logðIC50ÞÞÞÞ ð3Þ

where,

a ¼ yn�y1
xn�x1

;

b ¼ ymax;

c ¼ ymin;

d ¼ IC50:

In total, 20 different combinations of the above features are tested in this paper.
For details on all the models, please refer to Supplementary Table 5, and the
corresponding performances are summarized in Supplementary Tables 2-4.

Visualization of feature importance in machine learning models. To visualize
the feature importance during cross-study validation, we carried out SHAP
(SHapley Additive exPlanations) analysis, a game-theory-based AI visualization
method, on both individual features and grouped features, by taking the advantage
of the addictive nature of Shapley values52,53. The SHAP analysis is carried out and
plots are generated by using the python shap package54.

Statistical quantification and evaluation metrics. The model’s performances, as
well as the replicability of drug response measurements, are evaluated by Pearson’s
correlation coefficient (r). Pearson’s correlation coefficient is defined by Eq. (4):

r ¼ ∑ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðxi � �xÞ2∑ðyi � �yÞ2

q ð4Þ

Where x is the gold standard and y is the prediction value when evaluating the
machine learning model performances. When evaluating the intra- and inter-study
experimental replicability, we selected all possible paired permutations from the
replicate experiments with the same treatment-cell line combinations and com-
puted the Pearson’s r between the two replicates in these permutations. This step
demonstrates the variability of experiments and provides a reference for the upper
bound for the machine learning model prediction.

As the distribution of each dataset deviates significantly we didn’t use RMSE as
the main evaluation metric in this study. Since RMSE can be significantly decreased
by approaching the average values of all responses, but not as sensitive by
distinguishing higher and lower responses in the test dataset. Thus, the models
failed to generate meaningful predictions to differentiate combination experiments
with different responses that can have lower RMSE. This drawback can be
overcome by using a relativity-based metric, such as Pearson’s correlation
coefficient, instead.

The confidence of evaluation metrics, of the 95% confidence interval, is
generated by bootstrapping the predictions from the total datasets. We randomly
sampled the prediction results from the test set without replacement 100 times to
generate the 95% confidence interval.

Since all models were tested in different training and testing dataset
combinations, to evaluate the consistency of model performances in the intra- and
inter-study cross-validation, we carried out two-sided paired t tests to evaluate the
significance of differences between each pair of models, which are calculated as

t ¼ ∑dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð∑d2Þ�ð∑dÞ2

n�1

q ð5Þ

Where d is the difference between each pair and n is the sample size.and are
defined as below:

We also use the performance ratio (PR) to compare the average performances
of two different models:

PR ¼ x1
x2

ð6Þ

Where x1 is the average performance of the first model and x2 is the average
performance of the second model.

Both performance ratio (PR) and significance of the p-value of the paired t test
were used to show the magnitude of differences between the two models.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data analyzed in this study can be freely downloaded from DrugComb data portal:
https://drugcomb.fimm.fi/.

Code availability
The source code of the analysis and models are available on GitHub: https://github.com/
GuanLab/DrugComb-cross-study-prediction.
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