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Mapping the functional interactions at the
tumor-immune checkpoint interface
Behnaz Bozorgui 1✉, Elisabeth K. Kong2, Augustin Luna3,4 & Anil Korkut 1✉

The interactions between tumor intrinsic processes and immune checkpoints can mediate

immune evasion by cancer cells and responses to immunotherapy. It is, however, challenging

to identify functional interactions due to the prohibitively complex molecular landscape of the

tumor-immune interfaces. We address this challenge with a statistical analysis framework,

immuno-oncology gene interaction maps (ImogiMap). ImogiMap quantifies and statistically

validates tumor-immune checkpoint interactions based on their co-associations with

immune-associated phenotypes. The outcome is a catalog of tumor-immune checkpoint

interaction maps for diverse immune-associated phenotypes. Applications of ImogiMap

recapitulate the interaction of SERPINB9 and immune checkpoints with interferon gamma

(IFNγ) expression. Our analyses suggest that CD86-CD70 and CD274-CD70 immunor-

egulatory interactions are significantly associated with IFNγ expression in uterine corpus

endometrial carcinoma and basal-like breast cancer, respectively. The open-source ImogiMap

software and user-friendly web application will enable future applications of ImogiMap. Such

applications may guide the discovery of previously unknown tumor-immune interactions and

immunotherapy targets.
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Genomically-targeted therapies and immunotherapies have
led to improved patient survival in diverse cancer types1.
Combination therapies that target oncogenic processes

and immune evasion may induce more durable responses or even
curative effects in select cancer types2. It is, however, highly
challenging to implement precision therapies involving immu-
notherapies due to the complexity of the molecular landscape of
response predictors.

Identification of biologically relevant tumor-immune interac-
tions that mediate immune evasion by cancer cells may facilitate
the discovery of therapeutic targets. For example, the expression
of SERPINB9, a potential drug target and a member of the T-cell
dysfunction signature genes, is upregulated in tumor cells by
interferon gamma (IFNγ, encoded by the IFNG gene) in the
tumor microenvironment3,4. High expression of SERPINB9
confers resistance to CTLA4 checkpoint inhibition and therefore
justifies the therapeutic benefit of co-targeting SERPINB9 and
CTLA4. In another example of tumor-immune interactions, DNA
repair deficiencies can mediate increased vulnerability to immune
checkpoint inhibition through the accumulation of mutation
loads leading to neoantigens or activation of the STING-
pathway5,6. Despite such findings, the interactions at the
tumor-immune interface, which may inform effective therapies
and immune states are relatively unexplored.

The efficacy of immunotherapy agents may depend on diverse
molecular and cellular factors including immune infiltration and cell
types within the tumor niche, mutational load and tumor foreign-
ness, tumor differentiation states (e.g., epithelial vs. mesenchymal),
presence of immune checkpoints, and sensitivity to immune effec-
tors (e.g., IFNγ)7. It is time and resource-consuming to search and
identify combinatorial tumor-immune interactions through cell
biology studies. Infiltration of tumor niches by immune cells usually
leads to the enrichment of a large number of coexisting and likely
redundant immune checkpoints which obscures the discovery of
immune evasion drivers and the selection of immunotherapy targets.
Therefore, a naïve analysis of immune checkpoint expression and
immune cell identities is partially predictive if not totally futile for the
identification of therapeutically actionable drivers of immune
evasion8,9. It is also critical to identify the tumor-immune interac-
tions that are relevant across large patient cohorts to justify future
drug development and clinical testing efforts. At least partly due to
the noted challenges, the clinically approved immune checkpoint
therapies have remained limited to anti-PD-L1/PD1 and anti-
CTLA4 as well as the anti-LAG3, which was recently approved for
the treatment of melanoma patients10.

Single cell sequencing technologies are useful in decoding the
heterogeneity of tumor-immune interactions, yet usually limited
in sample volumes (e.g., number of samples, number of cells per
sample, depth of sequencing). Due to the small sample volumes,
building single cell data-driven models with high statistical and
predictive power remains a hard problem11. Similarly, emerging
technologies for spatially resolved omics profiling are highly
promising yet suffer from limited sample volume as well as
proteomic and transcriptomic coverage12,13. Therefore, compu-
tational methods that can infer tumor-immune interactions from
bulk RNA expression data is highly desired and could be useful to
identify precision immunotherapies tailored to molecular profiles
of tumors of cancer patients. Existing tools such as TIMER and
CIBERSORT have been very effective in deciphering the immune
signatures in tumors as well as exploring interactions between
immune features and the expression of individual genes14,15.
There are, however, no available bioinformatics tools with rig-
orous statistical validation to investigate the combinatorial
tumor-immune interactions that drive immune phenotypes.

Here, we introduce Immuno-oncology gene interaction Maps
(ImogiMap), a bioinformatics method, tool, and web application

to automate combinatorial searches for interactions between
tumor-associated and immune checkpoint processes. The method
generates statistically validated interactions between oncogenic
events and immune checkpoints that are co-associated with likely
predictors of immunotherapy responses. We have developed the
ImogiMap based on the rationale that immune checkpoints that
associate with both tumor-related processes and immune phe-
notypes are more likely to be drivers of immune evasion and
therapeutic targets compared to the alternatives without such co-
associations. Applications in uterine corpus endometrial carci-
noma and basal-like breast cancers (TNBC) nominated tumor-
immune interactions, that co-associate with interferon gamma
(IFNγ), the key cytokine and effector of antitumor immunity16.
The R-package (https://github.com/korkutlab/imogimap) and the
web interface (https://bioinformatics.mdanderson.org/apps/
imogimap/) may enable rapid adoption of the technology by
translational and basic researchers. The method may guide the
identification of critical immune checkpoints and inform ther-
apeutic targets within tumors that manifest the tumor-immune
interactions.

Results
Immuno-oncology gene interaction maps (ImogiMap). Imogi-
Map enables statistical and network analysis of combinatorial
interactions between Immune checkpoint (ICP) genes, tumor-
associated process (TAP) genes, and immune-associated pheno-
types (IAPs) (Fig. 1a). TAP genes may be any set of user-defined
genes that are expressed in tumor ecosystems (likely but not
necessarily within the tumor cells) and with functions involving
hallmarks of cancer (e.g., proliferation, apoptosis, DNA repair,
tumor metabolism, immune evasion)17. TAP genes include but
are not necessarily limited to previously defined oncogenes and
tumor suppressor genes. ICPs are therapeutically actionable
immune checkpoints, for which targeting strategies are in clinical
use or trials18. The ICP list is provided within ImogiMap and can
be updated by the users (Supplementary Table 1). We define IAPs
as any quantifiable immune-associated event that can potentially
modulate tumor immunity and responses to immunotherapy. In
our framework, IAP levels serve as a metric to infer the poten-
tially functional ICP-TAP interactions. Here, we have focused on
enrichment of immune cell types that may have differential
impact on immune regulation as well as immune cell infiltration
(leukocyte fraction)19, tumor mutation burden20, epithelial-
mesenchymal transition (EMT) status21, vascularization22,
T-cell inflammation signature23, and IFNγ expression16 (Sup-
plementary Tables 2 and 3). Indeed, the choice of IAP depends on
disease cohort, therapy type, and the oncogenic processes. Imo-
giMap is flexible and end users can use the platform to incor-
porate any quantifiable IAP with evidence of immune-tumor
interactions. The outcome of the analysis is connections between
TAPs and ICPs that guide selection of possible modulators of
immune phenotypes, prognostic markers, and drug targets in the
context of therapy response predictors (i.e., IAPs).

The minimally required input to ImogiMap is the mRNA
expression data for ICP and TAP genes, and data (e.g., RNA-seq,
histological) that quantify IAPs from matched samples. ImogiMap
quantifies the tumor-immune interactions with a combined action
score between TAP and ICP genes based on their co-association
with the IAP of interest. The combined action scores are
reminiscent of the synergy scores that are commonly used to
define drug-drug interactions based on phenotypic impact of
drugs24. To calculate the combined action score, the patient cohort
is stratified into four sub-cohorts (low–low, high–low, low–high,
high–high) based on TAP and ICP gene co-expression levels.
Combined action scores are then quantified based on the IAP levels
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within the sub-cohorts. Alternatively, the mutation status can be
entered to define stratifications (e.g., T53-mutated vs. TP53
wildtype). A high combined action score, which is a non-additive
deviation of the IAP levels within any one of the sub-cohorts with
respect to other sub-cohorts, indicates an interaction between the
TAP and the ICP (see “Methods” and Fig. 1). Combined action
scores can be calculated using either a highest single agent (HSA)
effect24 or a more stringent independence model25 (Eqs. (5) and
(6), both of which are available as options within the ImogiMap
R-package and web interface (Fig. 1b). A phenotype may be
associated with overexpression or loss of expression (complete or
partial) of a TAP or ICP gene. As a result, the non-additive
deviations in IAP levels may be observed in any of the four
stratified sub-cohorts enabling flexible analyses and interpretations
(see Fig. 1 and “Methods”).

Statistical evaluation and network models of tumor-immune
interactions. To filter out potential false predictions, each inter-
action is statistically evaluated for robustness, statistical significance,

and specificity. The robustness metric evaluates the stability of the
interactions against moderate changes in the exact data configura-
tion. To assess the robustness, we compute the combined action
scores using datasets of partial cohorts (default: 70% coverage,
Nsampling= 1000) that are randomly sampled from the complete
cohort. The interaction robustness is quantified as the normalized
root mean square deviation of the scores computed from the
complete patient cohort vs. partial cohorts. The statistical sig-
nificance is determined with a Wilcoxon signed-rank test that
compares the IAP measurements across the patient sub-cohorts.
The null hypothesis for significance is that the median IAP in a
“target” sub-cohort and at least one of the remaining three sub-
cohorts are sampled from an identical population (see Fig. 1 and
“Methods” for details). The interaction specificity is quantified by
calculating the p values of the combined action scores against a null
distribution of scores for non-specific interactions. The null
hypothesis for specificity evaluation is that the combined action
score between a pair of TAP and ICP genes is equal to the mean
scores of either TAP or ICP against a set of randomly selected genes.
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Fig. 1 Overview of Imogimap. a Immune-associated phenotype (IAP) levels and mRNA expression values are the inputs to ImogiMap. Based on the
variation in IAP levels across patients, the algorithm calculates combined action scores between tumor-associated processes (TAP) that may constitute a
functional gene signature and therapeutically actionable immune checkpoint (ICP) genes. For each TAP-ICP gene pair, the patient cohort is stratified into
four sub-cohorts (LL, LH, HL, HH), and IAP levels are measured within each sub-cohort. A baseline sub-cohort (marked blue) and a target group (marked
red) are determined based on four null assumptions on the relationship of the two genes with the IAP (both activating, both deactivating, and one
activating while the other deactivating) (see “Methods”). A combined action score under each assumption is calculated and their maximum is reported as
the combinatorial association of the TAP-ICP pair with the IAP. For each IAP, a network of gene interactions from specific, robust, and significant
interactions is constructed to reflect combinatorial relations between TAPs and ICPs in the context of an IAP. b ImogiMap web interface enables queries for
oncogenes, immune checkpoints, and immune phenotypes for each 33 cancer types. The outputs are an immune-tumor interactions table with statistical
validations (significance, specificity, robustness), network models of tumor-immune checkpoint interactions, and statistical significance analysis across
patient cohorts for each interacting pair.
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The null distribution of non-specific interactions is built as com-
bined action scores between each of the genes of interest (TAP and
ICP) and randomly sampled genes (N= 1000) for a particular IAP.
When all statistical validation steps are utilized, the resulting p
values for significance and specificity can be corrected for multiple
hypothesis testing using the Benjamini-Hochberg method. A robust
combined action score (not sensitive to moderate changes in data)
with high significance (low p value from a Wilcoxon signed-rank
test) and high specificity (low p value against a null model of non-
specific interactions) indicates a potentially functional interaction
between tumor and immune genes for the IAP of interest.

Through integration of the significant, specific, and robust
interactions, a collection of network models is constructed to map
the associations of tumor-associated and immune checkpoints in
the context of diverse immune phenotypes (Supplementary
Fig. 1). We also incorporate the receptor-ligand interaction
information based on the annotations in the CellPhoneDB
database26. Each network model maps multi-faceted interactions
between tumor and immune processes as well as ICP receptor-
ligand interactions that associate with a significant change in a
particular IAP. The collection of maps for diverse phenotypes
presents a comprehensive atlas for comparative analysis among
several IAPs. We also compare survival of patients whose tumors
differentially express the interacting TAP and ICP genes to
provide additional evidence on oncogenic relevance of pheno-
typic impacts. The resulting atlas informs on immune pheno-
types, patient survival, and through interpretation of the maps,
selection of potential immunotherapy options within patient
cohorts carrying the tumor-immune interactions.

T-cell dysfunction and immune checkpoint interactions in
endometrial carcinoma. To validate our tool in a biologically
relevant context, we explored the interactions between T-cell
dysfunction signature genes and ICPs at the tumor-immune
interface. The T-cell dysfunction signature has been previously
reported as a potential biomarker to predict response to immu-
notherapy in select cancer types including Uterine Corpus
Endometrial Carcinoma (UCEC) and breast cancer3. Specifically,
SERPINB9 which is part of the T-cell dysfunction signature stood
up as a driver of immune checkpoint inhibitor resistance and is
induced in response to IFNγ secretion. Here, we used 26 core
T-cell dysfunction signature genes (Supplementary Tables 4 and
5) as the TAP for evaluations against 29 ICP genes in ImogiMap
(Supplementary Table 1) in UCEC. To extend our analysis to
receptor-ligand pairs, we used the CellPhoneDB database to
include additional 23 genes that correspond to receptors or
ligands of the previously defined ICPs and T-cell dysfunction
genes (Supplementary Table 6). We focused on the IFNG gene
expression whose gene product, IFNγ protein, and downstream
signaling elements are critical for both antitumor immunity and
immunotherapy responses23,27. The IFNγ protein has dual anti-
and pro-tumor roles as it has cytotoxic effects on tumor cells
through IFNγ receptor and yet induces expression of pro-tumor,
immune suppressive checkpoints such as PD-L128.

We identified the significant, specific, and robust interactions
that co-associate with IFNG gene expression using the RNA
expression profiles of tumors from UCEC patients (source: TCGA)
(Fig. 2a–c and Supplementary Fig. 2). Our analysis recapitulated
the SERPINB9 as one of the top five T-cell dysfunction signature
genes carrying strong interactions with ICPs and associations with
non-linear increases in IFNγ expression, as previously reported3

(Fig. 2d, e). Together with SERPINB9, we find XCL1, a gene
encoding the chemokine secreted by activated CD8+ T-cells and
natural killer cells29, and CD5, a gene for T-Cell receptor (TCR)
established as a regulator of TCR and B-Cell Receptor (BCR)

signaling30, to be most frequently associated with IFNγ levels
through interactions with ICP genes.

Encouraged by these results, we explored other interactions
within the network models of tumor-immune interactions in
UCEC (Fig. 2d). We evaluated the association of each interacting
gene pair in the networks with patient survival as assessed by p
values from a log-rank statistical test. Among the 23 direct
interactions, the co-expression of the CD70 and CD86 pair stood
out as most associated with improved progression-free survival in
UCEC patients (Fig. 2f, g). CD86 and CD70 are immune co-
stimulatory proteins that are expressed in diverse immune cell
types including activated lymphocytes and antigen-presenting
cells31,32. Through interactions with their receptors (CTLA4,
CD28, and CD27), both molecules promote T-cell activation and
immune responses18,31,32.

Next, we asked whether the interaction between CD70 and
CD86 is due to a co-expression in or co-association with identical
immune cell types. Although both immune regulators are
associated with overall immune infiltration (R= 0.55 and 0.64
for CD70 and CD86, respectively) as expected, we asked whether
they are differentially associated with specific immune cell types. In
the absence of comprehensive single cell omics data, we calculated
the partial correlations between CD70 and CD86 genes with diverse
immune cell type fractions based on CIBERSORT analysis of RNA
expression profiles of tumors from endometrial cancer patients.
This is an indirect measure of how each receptor engages with
different immune cell types and does not provide definitive proof of
their expression sites. We preferred the partial correlation metric as
it enables elimination of confounding factors from other random
variables while quantifying the direct association between two
entities. CD86 is linked with macrophage fractions (both M1 and
M2) as well as with regulatory T-cells and activated CD4+memory
T-cells, while CD70 is linked with regulatory T-cells and CD8+
T-cells (Supplementary Table 7). The partial correlation patterns
for the two ICPs suggest differential associations with immune cell
types and possible expression patterns in overlapping (likely in
regulatory T-cells) but mostly distinct cell types including
macrophages, CD4+ memory T-cells, and CD8+ T-cells. The
nonuniform associations of CD70 and CD86 expression with
different immune cell types suggest the interaction between the two
immune stimulators is not an artifact of a uniformly affecting
intrinsic tumor impurity manifested as immune infiltration or
extrinsic impurity that may arise from sample collection (see ref. 33

for a detailed discussion of tumor impurity). This argument is also
supported by our statistical validations that demonstrated a robust,
specific, and significant interaction between the CD70 and CD86
compared to other immune checkpoints.

The specific (Q value < 0.1), robust (-log(R) > 0), significant
(Q alue < 0.1), and high-ranked combined action scores suggest
that expression of CD86 and CD70 co-associate with increased
levels of IFNγ in tumors of UCEC patients (Fig. 2f). Moreover, we
have observed that co-expression of CD70 and CD86 is associated
with improved patient survival (Fig. 2g). The association with
both IFNγ responses and patient survival suggests functional
immune co-stimulatory roles for the CD86 and CD70 receptors
in overlapping contexts within tumors of UCEC patients. Further
studies, however, are needed to identify which CD86 and CD70
expression configurations and co-targeting strategies including
agonists of both receptors as well as the addition of a third agent
(e.g., an immune checkpoint inhibitor) may be tractable in the
pre-clinical and clinical settings.

T-cell dysfunction and immune checkpoint interactions in
basal-like breast cancer. Through application of ImogiMap on
RNA expression data from the TCGA basal-like breast cancer
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cohort (N= 172 patients) (TCGA, 2012), among 44 T-cell dys-
function signature, 29 immune checkpoints, and additional 20
genes that correspond to receptors or ligands of ICPs in Cell-
PhoneDB database, we identified the significant, specific, and
robust interactions that co-associate with IFNG gene expression
(Fig. 3a–c and Supplementary Fig. 3, Supplementary Tables 1
and 5). We observed 18 statistically validated interactions
(Fig. 3d) including the CD70 and CD274 pair which ranked
among the top five pairs with the highest combined action scores.
A negative interaction between high expression of CD70 and low
expression of PVR is also noted. Other interacting pairs in the top
five are CSF1R:CYFIP2, HDAC2:CYFIP2, and HDAC2:MAL.

As the inhibitors of PD-L1, which is encoded by the CD274
gene, are already in clinical use and the gene product of CD70 is
another potentially interesting immunotherapy target, we focused
on the CD274:CD70 interaction in the context of IFNγ expression
in breast cancer. We addressed whether the interaction between
CD70 and CD274 may be due to co-expression patterns in
identical cell types. We used two sets of single cell RNA
sequencing data11,34 to evaluate the mutual exclusivity of gene
expressions in the breast cancer tumor microenvironment. We
used imputed data from 45,000 immune cells from eight breast
carcinoma patients11, and identified 600 cells that are CD70+ or
CD274+ (Fig. 3e). The single cell RNA sequence analysis suggests
that CD70 and CD274 are not co-expressed in identical immune

cell types. CD70 is expressed in the CD8+ T-cells and B-cells
while CD274 has higher expression in Mast cells, CD4+ T-cells,
and macrophages compared to CD70 (Fig. 3). In addition, CD274
expression is higher in macrophages while CD70 is more
abundant in regulatory T-cells (Fig. 3e). Both genes are expressed
in similar degrees in CD4+ memory T cells. This is consistent
with the partial correlation calculations using bulk RNA
expression data (source: Breast Cancer TCGA) in which
expression of CD274 is linked to the presence of activated and
resting CD4+ memory T-cells, M1 macrophages as well as
neutrophils, and expression of CD70 is correlated with activated
CD4+ memory T-cells and regulatory T-cells (Supplementary
Table 8). In a separate analysis, we used raw RNA-seq data from
around 9000 cells originating from 5 TNBC patients34 and
identified around 440 cells that were CD70+ or CD274+ (Fig. 3f)
and confirmed lack of extensive co-expression in identical cells.
Our single cell gene expression analysis suggests that CD274 and
CD70 are not expressed in identical cells. The analysis, however,
does not provide a direct measure of the average expression of
each checkpoint in cell types as we analyzed only the cells
expressing one of the checkpoints (CD274, CD70) and did not
account for total number of cells within each cell type. Our
observations showed that CD70 and CD274 are co-associated
with IFNγ expression and are predominantly expressed in
different immune cell types within the tumor microenvironment.
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Fig. 2 Interactions of T-cell dysfunction signature genes with immune checkpoints in uterine corpus endometrial carcinoma (UCEC). ImogiMap-based
assessment of combinatorial interactions for T-cell dysfunction signature genes in UCEC, and therapeutically actionable ICPs, based on their associations
with the IFNG gene expression. The analysis is based on RNA expression data from tumors of 370 patients. a Combined action score robustness. A
normalized root mean square deviation (RMSD) is calculated for each combined action score through random sampling (1000x) of sub-cohorts with 70%
coverage of the complete cohort. Scores with high robustness, �log Rð Þ>0 (red horizontal line) are selected for further analysis (see “Methods”).
b Statistical significance of combined action scores. An FDR (Benjamini-Hochberg (BH) method) corrected Q-value based on the Wilcoxon signed-rank
test is calculated for robust scores. Scores with Q Significance <0:1 are selected for further analysis. c A BH-corrected Q-value for specificity is calculated for
each robust and significant interaction (see “Methods”). Scores with Q Specificity <0:1 are selected for further analysis. d The graphical network representing
robust, significant, and specific combinatorial associations with IFNγ levels (represented by IFNG gene expression). Red (Blue) edges represent
upregulation (downregulation) of IFNG. Dark red (Dark blue) vertices identify overexpression (low-expression) of ICP genes and orange (blue) vertices
identify overexpression (low-expression) of T-cell dysfunction signature genes. e Levels of IFNG gene expression in TCGA UCEC samples, stratified based
on SERPINB9 and CTLA4 levels. p values from Wilcoxon signed-rank test indicate the statistical significance of differences in IFNγ levels within the
stratified sub-cohorts. f Levels of IFNG gene expression in TCGA UCEC samples, stratified based on CD86 and CD70 levels. g Kaplan–Meier survival curve
for UCEC patients stratified by low/high expression of CD70 and CD86.
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Discussion
The ImogiMap statistical framework aims to extract the func-
tional immune checkpoints that engage with the tumor ecosys-
tems and modulate the tumor and immune characteristics. We
have implemented an integrated approach based on the stratifi-
cation of patient groups, calculation of a combined action score
that quantifies the co-associations of ICP and TAP genes followed
by comprehensive statistical validation and network representa-
tion. We have also provided an R-package and web interface to
facilitate future applications of ImogiMap.

Diverse methods for inference of biological interactions (e.g.,
signaling interactions, oncogenic co-alterations, and immune
relations) have been implemented by our and other groups, a few
examples being pairwise or partial correlations, database-driven
informatics approaches, regression models, ordinary differential
equations, stochastic gradient descent for predictive machine
learning models and more recently deep learning
approaches35–40. These methods provide varying advantages such
as quantitative predictions of responses to previously untested
perturbations in individual samples or building interaction
models that are less affected by confounding factors. The Imo-
giMap scheme provides a unique set of advantages. First, Imo-
giMap can be applied with sparse data as it relies on the
calculation of pairwise scores for immune and tumor processes.
This is an important feature as sparse data is common in trans-
lational and clinical settings, limiting the implementation of
sophisticated machine learning methods. Second, the method
does not require rich drug perturbation response or temporal

data. Although the use of perturbational and temporal constraints
may better enable detection of likely causal interactions, the
baseline datasets are still able to capture statistically validated
associations. Third, the stratification of patients may enable the
selection of relevant patient sub-cohorts based on the co-
associations of immune checkpoints and tumor-related events.
Such stratification and patient sub-cohort selection may be highly
useful in precision oncology applications while partial correla-
tion- or regression-based methods do not immediately lead to a
feasible strategy for patient selection. The relatively simple
implementation of ImogiMap also enables the incorporation of
versatile combined action scores as well as statistical validation
schemes. In conclusion, the ImogiMap method is a simple, ver-
satile, and yet informative method for quantitative characteriza-
tion and statistical validation of the higher-order interactions
between oncogenic and immune events.

The flexibility and statistical rigor of the ImogiMap algorithm
may enable generation of hypotheses for the discovery of pre-
viously unreported physical or functional interactions. Our cur-
rent implementation is optimized for immune interactions partly
due to the immediate need in the field. ImogiMap, however, is not
necessarily limited to tumor-immune interactions, and with its
flexibility, it enables different modes of discovery. First, the
algorithm can be applied to identify diverse mediators that may
together impact a given phenotype (predict interacting genes that
associate with a particular phenotype). Execution of ImogiMap
with a large gene set against a phenotype of interest may generate
a list of interactions that are significantly co-associated with the
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Fig. 3 Interactions of T-cell dysfunction signature genes with immune checkpoints in breast cancer. ImogiMap-based assessment of combinatorial
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therapeutically actionable ICPs, based on their associations with the IFNG expression. a Combined action score robustness metric. A normalized root mean
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target phenotype. Second, the algorithm can be used to discover
novel interaction partners of a gene, whose impact on a given
phenotype is already known (discovery of additional regulators of
a phenotype with already known mediators). In this case, the
ImogiMap can be executed for a pre-defined gene against a large
set of candidate genes and the outcomes may guide selection of
interactions that mediate a particular phenotype. A major chal-
lenge in ImogiMap is selection of likely functional events based
on co-associations, which do not dictate causation. This is par-
ticularly challenging when baseline, correlative data is used from
large patient cohorts as in the case of TCGA datasets. A potential
solution to select likely causal interactions is to use time series
and perturbation response data. The sequence of expression vs.
phenotypic events in time or differential response to perturba-
tions may provide the constraints to establish causality and
directionality of interactions. Indeed, the incorporation of such
data into ImogiMap is straightforward with minimal design dif-
ferences. Experimental validation of the predictions, however, is
essential to claim a novel discovery regardless of the underlying
data modality as well as time and perturbation schemes.

Various immune-oncology bioinformatics and deconvolution
algorithms such as CIBERSORT and Kassandra have enabled the
estimation of the immune decomposition of tumor ecosystems
with increasing accuracy41,42. However, such methods do not
capture the higher-level interactions between immune and tumor
compartments. As a strong and highly popular tool, TIMER and
its web interface provide a way to analysis of immune-tumor
interactions14. The TIMER algorithm and web interface enable
researchers to explore the immune composition of tumor
microenvironments through the use of established immune
deconvolution algorithms and compute the correlations between
oncogenic alterations with immune cell fractions and phenotypic
outcomes (e.g., survival). ImogiMap provides a series of advan-
tages over the existing computational approaches. First, the
ImogiMap is a statistically rigorous algorithm beyond correlation
analyses for the detection of oncogenic alterations and immune
checkpoints with an emphasis on therapeutically actionable
immune processes. Second, the stratification of patient cohorts
based on the co-expression patterns enables not only the detec-
tion of interactions but also the establishment of a framework for
patient selection in precision oncology applications. Third, the
method captures tumor-immune interactions in the context of
diverse immune-associated phenotypes such as immune infiltra-
tion, immune cell types, IFNγ expression, or inflammation sig-
natures. Fourth, the method incorporates receptor-ligand
interactions to assess the tumor-immune interface. Finally, the
ImogiMap is highly flexible and enables incorporation of new
oncogenic alteration types, immune checkpoints as well as
phenotypes.

Our findings suggest that ImogiMap generates hypotheses on
(and confirms previously reported) relations between tumor-
associated processes and immune regulation at a scale not
accessible easily by experimental methods. ImogiMap may help
basic and translational researchers to discover novel immune-
tumor interactions and potential vulnerabilities to combination
therapies that target the immune-tumor interactions. The out-
comes of ImogiMap analyses may improve the repertoire of
actionable ICP targets, and identify patient cohorts that may
respond to combination therapies based on their molecular
signatures.

Methods
Immune checkpoints (ICPs) and immune-associated phenotypes (IAPs).
Genes for 14 actionable ICPs as well as 15 additional genes of corresponding
ligands or receptors are included (Supplementary Table 1) based on a literature
search and recommendations by the CRI clinical accelerator team18,43–47. Users

have the option to input their own curated list of ICPs based on custom mRNA
expression data, proteomics, or quantitative histologic assessments (e.g., IHC
staining and quantification with relevant markers). In the absence of user-provided
data, ImogiMap uses API functions in the curatedTCGAData package (Bio-
conductor), to access TCGA mRNA data. ImogiMap includes a list of 29 immune-
associated phenotypes (Supplementary Tables 2 and 3). Levels of vascularization,
EMT, T-cell inflamed, and IFNG RNA expression are each calculated using their
corresponding signature gene lists16,21–23. Each phenotype score is quantified as
the mean of z-values of log-scaled mRNA expression levels of the genes in the
phenotype signature. For TCGA-based analysis, precalculated values of immune
cell infiltration and fractions of immune cell types (Supplementary Table 3) are
implemented based on DNA methylation18 and CIBERSORT48 assessments,
respectively. Quantification methods, sources, and signature genes for immune
phenotypes are listed in Supplementary Table 2. Users have the option to include
their own IAP values based on custom (omics or histology) data or TCGA data.

IAP normalization and scaling. The measurements of IAPs are rescaled and
normalized using a logistic sigmoidal function. The scaling facilitates comparisons
of phenotypes and resulting combined action scores across different phenotypes.
The rescaling is formulated to transform IAPs to a range of [0,1]. Three separate
rescaling functions are formulated based on the initial range of IAP values across
samples:

xscaledi;IAP ¼

xi;IAP; 8 IAP 3 8xi;IAP 2 ½0; 1�
tanh

xi;IAP
σxIAP

� �
þ1

2 ; 8 IAP 3 8xi;IAP 2 ½�1;1�
tanhðxi;IAPσxIAP

Þ; 8 IAP 3 8xi;IAP 2 ½0;1�

8>>>><
>>>>:

ð1Þ

where i is the sample index, IAP denotes a particular immune-associated pheno-
type, xi,IAP is the readout of the phenotype for sample i, σX,IAP is the standard
deviation of readouts for IAP over all samples. The resulting xi,AIPscaled has a
dynamic range of [0,1] for any IAP and therefore cross-comparisons of metrics
(e.g., combined action scores) calculated from scaled IAP values are possible. To
demonstrate how the mathematical transformations affect phenotypes, the dis-
tribution of phenotypes before and after normalization is depicted in Supple-
mentary Fig. 4.

Calculation of gene pair combined action scores on IAPs. The combined action
scores between the immune checkpoint and tumor-associated genes are calculated
based on the non-linear deviation of the observed IAPs from the expected values
for the condition that two genes are independently associated with the IAP. To
measure combined action scores that quantify tumor-immune interactions, sam-
ples are first stratified into four groups based on median expression levels of two
genes, as explained in the main text (i.e., “LL”, “LH”, “HL”, “HH”). First, to
calculate a combined action score between two genes, a “baseline” sub-cohort and a
target sub-cohort, which carry the presumably least and most co-associated IAP
level respectively, are selected among the LL, LH, HL, or HH sub-cohorts. In the
absence of a priori assumption on a relationship between the expression of single
genes and IAP levels (i.e., IAP-activating vs. IAP-deactivating genes), we analyze all
possible configurations such that either the two genes may be activating/deacti-
vating or have opposing relations with the IAP. For each configuration, the relevant
baseline and target sub-cohorts with contrasting gene expression levels are iden-
tified and a combined action score is calculated as explained below. The config-
uration which results in the highest combined action score is selected as the metric
for the potential combinatorial impact of the two genes on the IAP and is further
analyzed.

The combined action score is quantified as follows: first, for each sub-cohort,
the median deviation of IAP, Mn , from the baseline is quantified as:

Mn ¼ medðxscaledi;IAP Þ �med xscaledi;IAP Baseline

� �
: ð2Þ

To reduce noise and ensure that the sign of Mn is correctly estimated, M values
that are smaller than their corresponding standard error of the median, semðMÞ,
are set to zero:

Mn ¼ Mn; absðMnÞ> semðMnÞ
0; absðMnÞ< semðMnÞ

�
; ð3Þ

in which the standard errors are calculated using standard errors within each sub-
cohort as:

sem Mn

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sem2

n þ sem2
Baseline

2

q
: ð4Þ

ME , an expected value for MN in the target group, is calculated under the
condition that each gene acts independently on the IAP. This is achieved through
the use of either of the two reference additivity models that are implemented in
ImogiMap, the Bliss independence model25 or the Highest Single Agent model24.
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Under each model ME is defined as:

ME ¼ max M1;M2

� �
Highest Single Agentmodel

M1 þ M2 �M1 ´M2 Bliss independecemodels

(
ð5Þ

In which M1 and M2 are calculated median values from Eq. (3) for the two
remaining sub-cohorts that are not baseline or target. We define a combined action
score, S, as the difference between the measured and the expected M value in the
target sub-cohort:

S ¼
signðMÞ ´ ðMtarget �MEÞ; Mtarget �ME > 0

0; Mtarget �ME ≤ 0

(
ð6Þ

in which signðMÞ is the direction of the change from the baseline in all sub-cohorts.
Note that in the reference additivity models ME for the target group can only be
estimated if all three Mn values have the same sign, which indicates the same
direction of change from baseline. If signðMÞ differs in different sub-cohorts, no
combined action score will be calculated, and a missing value will be reported.
Finally, the interactions with high combined action scores (Mtarget �ME > 0) are
selected for further statistical evaluation.

Statistical evaluation of tumor-immune interactions. Through statistical
assessment of the combined action scores between tumor-associated and immu-
noregulatory genes, we filter out the scores that are not robust, statistically sig-
nificant, or specific.

“Robustness of interactions” to the underlying data configuration is tested
through bootstrapping (1000x) of samples with partial coverage (default is 70% of a
complete cohort), re-stratifying patient sub-cohorts based on the bootstrapped
data, and calculating the combined action scores. The robustness score is defined as
the normalized root-mean-square deviation of combined action scores between
complete, Scomplete, and partial, Spartial , datasets:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ðScomplete�Sipartial Þ
2

n

2

r
absðScompleteÞ

ð7Þ

where S is the combined action score, and n is the number of sampling to
determine the Spartial set. Normalization with respect to the absolute value of
Scomplete serves as the scaling factor to enable comparison of R values across diverse
interactions with high combined action scores. The least sensitive to the exact data
configuration, therefore more robust and reliable scores, have lower R and are
assessed by ranking the sensitivity scores for all interactions.

“The statistical significance of interactions” is assessed with a Wilcoxon signed-
rank sum test comparing the rankings of immune phenotype levels in the target
sub-cohort and the remaining three sub-cohorts (LL, LH, HL, HH). In the
statistical assessment, the null model is that the immune phenotype levels in the
target sub-cohort and at least one of the remaining three sub-cohorts are sampled
from the same distribution. The maximum of the three Wilcoxon p values is
reported as the p value of the interaction. The sub-cohort-specific IAP values are
compared on boxplots that contain Wilcoxon p values (BH-corrected for multiple
hypothesis testing) for group comparisons.

“The specificity of an interaction” between a TAP and ICP gene pair is
quantified. The specificity implies that the observed combined action score between
the two genes of interest is significantly higher than the combined action scores of
each of the genes in the pair against other genes in the genome. First, two separate
null models are generated by calculating the combined action scores of each of the
two genes against a set of genes that are randomly sampled from the genome
(default Ngenes ¼ 1000). For each of the two genes, a p value is calculated against
the two null models. The highest of the two p values, pmax, which indicates the
lowest specificity is used to assess the specificity of the interaction against the whole
genome. A low p value (pmax < 0:05) indicates high specificity. The p values are
corrected for multiple hypothesis testing using the BH-method.

Network models of immune-tumor interactions. The interactions that are sig-
nificantly strong (high combined action score), robust and specific are selected to
construct a network model which captures the combinatorial interactions between
the tumor-associated and immune genes. In the network models, the edges
represent interactions between gene pairs for which a significant, specific, and
robust combined action score on IAP exists. Weak interactions are also filtered out
based on a user-defined cut-off value. The network model is visualized using the
igraph application49,50.

Ligand-receptor interactions. To interpret interactions from network models, it is
important to know potentially relevant ligand-receptor interactions in the tumor
microenvironment as they are the key components in mediating cell-cell interac-
tions. To integrate ligand-receptor interactions, we use annotations in the Cell-
PhoneDB database to infer the gene pairs corresponding to protein–protein
interactions. Given input gene lists, ImogiMap automatically searches the Cell-
PhoneDB database for potential ligand-receptor pairs and adds them to the original
gene lists. Combined action scores are computed for all gene pairs. For each gene

pair, the output will include a combined action score, statistical analysis, and
whether the gene pair is an inferred ligand-receptor pair in the CellPhoneDB
database. The receptor-ligand interactions are annotated on the network models.

Partial correlations. In each cohort, the partial correlation between expression of a
gene and fraction of immune cell types are calculated using TCGA RNASeq2-
GeneNorm data and CIBERSORT cell type fractions correspondingly. For each
immune cell type, we used R ppcor library to calculate the Spearman par-
tial correlation of the gene-immune cell type while controlling for the rest of the
immune cell types. The resulting p values are adjusted for multiple hypothesis
testing using the Bonferroni method.

Statistics and reproducibility. All statistical analyses are described in detail in the
“Statistical evaluation of tumor-immune interactions” section and the main text.
To ensure reproducibility, the source code is provided on GitHub (see “Data and
code availability section”) and we used publicly available TCGA datasets.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in the manuscript are publicly available. Numerical source data for Figs. 2
and 3 are included in the github repository (https://github.com/korkutlab/imogimap/
tree/master/inst/Tcell_dysfunction_analysis) along with the code (analysis.r) to re-create
the plots. Same code generates numerical source data for Supplementary figures and
creates the Supplementary figures.

Code availability
ImogiMap R package and detailed user guide are available at https://github.com/
korkutlab/Imogimap. Web interface is available at https://bioinformatics.mdanderson.
org/apps/imogimap.
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