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Does AlphaFold2 model proteins’ intracellular
conformations? An experimental test using
cross-linking mass spectrometry of endogenous
ciliary proteins
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A major goal in structural biology is to understand protein assemblies in their biologically

relevant states. Here, we investigate whether AlphaFold2 structure predictions match native

protein conformations. We chemically cross-linked proteins in situ within intact Tetrahymena

thermophila cilia and native ciliary extracts, identifying 1,225 intramolecular cross-links within

the 100 best-sampled proteins, providing a benchmark of distance restraints obeyed by

proteins in their native assemblies. The corresponding structure predictions were highly

concordant, positioning 86.2% of cross-linked residues within Cɑ-to-Cɑ distances of 30 Å,

consistent with the cross-linker length. 43% of proteins showed no violations. Most incon-

sistencies occurred in low-confidence regions or between domains. Overall, AlphaFold2

predictions with lower predicted aligned error corresponded to more correct native struc-

tures. However, we observe cases where rigid body domains are oriented incorrectly, as for

ciliary protein BBC118, suggesting that combining structure prediction with experimental

information will better reveal biologically relevant conformations.
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The remarkable results of AlphaFold2 (AF2) in the 14th
CASP competition1 and the public release of code2 has
resulted in numerous applications for structural

prediction3–8. While not the first attempt at proteome-wide
structure prediction9, AF2’s success stems from its high accuracy
at ab initio prediction1. Its broad applicability across protein
families without requiring prior structural knowledge has already
led to the discovery of at least 26 entirely new protein folds10.
Global benchmarking and independent validation of such pre-
dicted structures will be necessary to inform reliable and nuanced
interpretations of these structures.

Along with the AF2 method, an AlphaFold database was
released that currently contains over 200 million protein structure
predictions, including most of the Uniprot database11. Prior to
AF2, it was estimated that the coverage of the human proteome
by three-dimensional (3D) structures was about 48%; however,
this fraction substantially increased to 76% with the inclusion of
confident AF2 predictions. In addition, the dark proteome12—the
set of proteins whose structures have not been observed experi-
mentally and cannot be modeled with conventional homology
modeling—shrank from 26 to 10%13. AF2 has similarly con-
tributed to the increased coverage of disease-associated genes and
mutations in the Clinvar database14.

With the impressive boost in individual protein structure
coverage, AF2 has also opened opportunities for structure pre-
diction of protein–protein15–17 and protein–peptide18,19 interac-
tions. For example, AlphaFold-multimer15 offers a reasonably
accurate prediction for many multi-protein complexes, as do
several other tools that build on the original AF2 model16.
Similarly, the addition of new protein structures has the potential
to aid in the drug design of protein targets20,21 and when com-
bined with deep mutational scanning22 can predict the effect of
missense variants8.

While these feats are impressive, caution is always merited in
relying solely on computational predictions, and the degree of
support for AF2 protein structures and regions with lower per-
residue confidence scores (predicted Local Distance Difference
Test, pLDDT <70) can be difficult to interpret. Moreover, it has
been shown that AF2 predictions suffer for proteins that do not
have available template sequences21 and that AF2 is challenged by
intrinsically disordered regions23 and dynamics in general24. AF2
produces lower pLDDT scores in dynamic regions such as binding
pockets8, and it has been suggested that predictions of large mul-
tidomain proteins may not be suitable for drug studies21.

There have been several studies demonstrating that combining
AF2 structure predictions with experimental data can improve
and aid in the interpretation of the results. Examples include
combining predicted structures with cryo-EM data, crystal-
lographic maps, or chemical cross-links3,25,26. When compared
with NMR data, AF2 was better at predicting rigid loops, while
NMR was superior in more dynamic regions24. Finally, AF2 has
already proven useful for crystallographic phasing by molecular
replacement27. Such studies suggest that combining computa-
tional predictions with experimental data can strongly increase
confidence in and interpretability of the structure predictions.

We sought to independently assess AF2’s confidence scores
and ask if it correctly captured conformations of proteins in their
cellular context. Because AF2 is trained on proteins in the Protein
Data Bank28, it could propagate biases present in that dataset,
ranging from organismal biases to experimental techniques.
However, AlphaFold2 also incorporates information from evo-
lutionary coupling and amino acid conservation1, which should,
in principle, help to capture those structures most relevant to the
predominant cellular roles of these proteins.

In our assessment of AF2, we therefore used in situ chemical
cross-linking, performed on endogenous proteins directly within

their cellular contexts, as a method to provide 3D spatial infor-
mation about proteins within their native conformations and
assemblies. The use of XL/MS serves as independent experimental
observations for pairwise distance restraints and can therefore be
used in integrative modeling or as structural validation29,30.
Cross-linking has the additional advantage of capturing distance
restraints between residues in complex samples and within intact
organelles—as we have demonstrated here–to complement other
structural biology methods31. The use of this method to capture
native contacts is especially fruitful when combined with methods
such as cryo-EM. Previous studies combining these methods
found that cryo-EM models have a 97% concordance with
independently derived cross-links, assessed using the cross-linker
BS332. XL/MS can also be a useful tool in interpreting protein
dynamics, where the recommended maximum length of 30Å for
cross-linkers DSS and BS3 is in agreement with empirically
determined thresholds33.

Our experimental dataset summarizes chemical cross-linking/
mass spectrometry on intact cilia and native ciliary extracts iso-
lated from Tetrahymena. Importantly, this organism has few
experimentally determined protein structures. In fact, fewer than
60 experimentally determined Tetrahymena structures have been
reported in the Protein Data Bank28, 18 of which relate to
telomerase34. The ciliary proteome is of particular interest
because of its relevance to a wide range of human congenital
disorders (ciliopathies)35, and a better definition of ciliary protein
structures is expected to offer insights into how specific alleles
may lead to human disease. Importantly, ciliary proteins are
highly conserved across eukaryotes, with many ciliary genes
dating back to the last eukaryotic common ancestor36. Tetra-
hymena serves as a model organism for ciliary studies: It is easy to
grow, roughly a thousand cilia decorate each cell, and large
numbers of intact cilia can be prepared for biochemical analyses
simply by treating cells with the nonlethal anesthetic dibucaine,
which causes the cilia to detach from the cells37.

In this study, we compare intramolecular distance restraints
obtained from in situ chemical cross-linking and cross-links from
enriched biochemical fractions of T. thermophila ciliary proteins
to the AF2-predicted structures of the 100 most cross-linked
proteins identified by mass spectrometry. In doing so, we hoped
to address whether AF2, by incorporating co-evolutionary
couplings38,39, would have the power to detect biologically
active structural conformations, especially for cases where mul-
tiple conformations or assembly states might occur. Our findings
suggest that while there is a high concordance between our cross-
links and AF2 structure predictions, we do observe violations
between domains of multidomain proteins and those that
undergo a dramatic conformational change.

Results and discussion
We isolated intact cilia from T. thermophila25,40 and cross-linked
proteins directly within their native ciliary environments by using
the membrane-permeable chemical cross-linker disuccinimidyl
sulfoxide (DSSO), an analog of the cross-linker DSS that is also
mass spectrometry cleavable. We supplemented these data with
additional cross-links generated from native biochemical extracts
of cilia after confirming the high agreement between these data-
sets (Supplementary Fig. S1). DSSO contains two amine-reactive
N-hydroxysuccinimide (NHS) ester chemical groups capable of
covalently coupling to the terminal amines of lysine amino acid
side chains. Based on the length of the cross-linker and the
extended lengths of two lysine side chains, a DSSO cross-link
provides direct evidence that two lysine residues are positioned
nearby in space, and are within 30Å from each other, as mea-
sured between their respective Cɑ atoms (Fig. 1a).
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The coverage of the most abundantly intramolecular cross-
linked proteins was extensive and spanned the full lengths of
most sequences (Fig. 1b). To build confidence that our cross-link
data do indeed faithfully capture biological protein structures, we
compared our intramolecular cross-links against available
experimental cryo-EM structures determined for the T. thermo-
phila outer dynein arms (ODA) proteins41. For the three dynein
heavy chains, comprising 13,382 amino acids in all, we observed a
total of 155 intramolecular cross-links (Fig. 2a). This large
number of intramolecular cross-links may be explained by the
enrichment of dynein heavy chains in the endogenous sample
and high-concentration of dynein heavy chains in the in situ
experiment. After removing cross-links that occurred in regions
without known structure, 124 cross-links could be positioned on
the ODA structures (Fig. 2b). Across all three dyneins (Fig. 2c),
97% of the 124 cross-links were observed to connect lysines less
than 30Å apart (Cɑ-to-Cɑ), falling within the expected distance.
However, the few violations we saw were quite large, with

distances greater than 200Å. Due to these uncharacteristically
large violations, we considered the possibility that these cross-
linked pairs captured intermolecular contacts between adjacent
copies of identical dynein proteins, reflecting the higher-order
in situ arrangement of these proteins inside cilia.

To model the native arrangement of these dynein arms, we
aligned the ODA structures into a subtomogram average deter-
mined from cryo-electron tomography of intact cilia axonemes42

using ChimeraX43. Mapping cross-link violations onto the
resulting assembly showed that the cross-links were now well-
accommodated (i.e., less than 30Å) by the dynein oligomer
structure (Supplementary Table S1), boosting the agreement to
99% between the structure and the 124 cross-links, with the only
violation being a single cross-link occurring at 34Å, just above
the maximum expected distance.

This near-perfect concordance between the experimental
outer dynein arm structure and our cross-link dataset strongly
supported the use of the cross-links to assess the quality of

Fig. 1 Chemical cross-linking of isolated ciliary proteins provides abundant intramolecular cross-links. a Schematic of the protocol used to determine
chemical cross-links among Tetrahymena thermophila ciliary proteins, from cell culture through ciliary isolation, incubation with the membrane-permeable
cross-linker DSSO, to the use of tandem (MS1/MS2/MS3) mass spectrometry to identify the specific cross-linked peptides. Created with BioRender.com.
b Examples of the most extensively intramolecularly cross-linked proteins observed. The corresponding Uniprot identifiers and amino acid sequences are
provided for all proteins discussed in the supporting Zenodo archive, along with the precise locations of the cross-links.
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AF2-predicted protein structures. We selected the 100 most
highly cross-linked Tetrahymena ciliary proteins and predicted
their structures using AF2 (Supplementary Table S2). Across
this protein set, we had experimental measurements for a total
of 1225 intramolecular cross-links, 86.2% of which agreed with
the predicted structures. With longer distance thresholds of 35
and 40Å, we measured 89.6% and 92.2% agreement,

respectively. Impressively, 43 predicted structures had no vio-
lations at all.

In order to gain some insight into areas of disagreement, we
compared the number of cross-link violations per protein to the
protein’s average predicted local distance difference test (pLDDT)
confidence score9 (Fig. 3). Proteins with the most cross-link
violations generally tended to have lower pLDDT scores,

Fig. 2 In situ cross-links agree with the known T. thermophila outer dynein arm cryo-EM structure. a Cross-link diagram for DYH3 shows the abundance
of intramolecular cross-links within the protein. b We observed a total of 155 intramolecular cross-links across all three dynein heavy chain proteins, 124 of
which corresponded to structured regions and hence could be used as a validation set. Intramolecular distances are plotted for these 124 cross-links.
c Intramolecular cross-links mapped onto the DYH3 structure. In summary, there was a 97% agreement between cross-links and cryo-EM structures of the
dynein proteins. d In situ assembly of ODAs, show that perceived monomer cross-link violations are actually satisfied between copies of dynein proteins,
improving the cross-link agreement to 99% (PDB ID:7MOQ) (see also Supplementary Table S1 for specific values).
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consistent with AF2’s reduced confidence in these predictions. Of
the 13.8% of cross-link violations, about a third occurred in
proteins with pLDDT scores below 70. The remainder of the
violations occurred in reasonably confident protein structures
(pLDDT over 70), leading us to further explore these regions
within the predicted structures.

The predicted aligned error (PAE) scores produced by AF2 can
be used to distinguish well-structured regions and well-folded
domains within a protein structure from poorly predicted or
unstructured regions44. PAE scores can thus be used to roughly
define rigid domains or sets of domains within proteins that have
the potential to be positioned in multiple orientations relative to
each other. We, therefore, examined the PAE scores for our
structures to determine if cross-link disagreements were more

likely to occur within or between these well-structured regions. By
analyzing the PAE score maps using a watershed algorithm, we
could segment the AF2-predicted structures to identify the best-
predicted, contiguous, well-structured regions (Supplementary
Fig. S2). We used this approach to examine the largest outliers in
Fig. 3.

Among proteins with many cross-link violations,
BBC118 stood out for having 10 violations despite a pLDDT
score greater than 85, indicating a fairly confident structural
prediction. To better understand why such a confidently pre-
dicted structure might have so many violations, we segmented
its PAE score map to define well-predicted regions and asked
whether the violations occur within or between these regions
(Fig. 4a). Interestingly, these domains did not align exactly with

Fig. 3 A general trend for fewer cross-link violations in AlphaFold2 models with higher pLDDT scores. a Number of cross-link violations plotted against
the pLDDT score for each of the T. thermophila proteins predicted. The size and shade of each dot represent the number of intramolecular cross-links for a
given protein. The full data are provided as Supplementary Table S2. b A distance distribution view of the 43 proteins with no cross-link violations. c A
selection of proteins from (b) with cross-links mapped onto the AF2-predicted structure.
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known Pfam or InterPro domain annotations, which corre-
sponded to the individual or grouped EF-hand motifs; in con-
trast, AF2 captured more extensive regions including
interdomain segments whose structures could be confidently
predicted. We plotted our intramolecular cross-links onto the
PAE heatmap and onto the predicted structure (Fig. 4a, b) and
found that all ten violations occurred between AF2 domains,
while the eight cross-links falling within the domains satisfied
the allowable cross-link distance. These results suggest that
while AF2 may produce confident structure predictions locally
within rigid bodies, there may be ambiguity in placing such
rigid bodies relative to each other.

To test whether or not a conformation satisfying all cross-links
was even possible, we divided the BBC118 3D structure into three
rigid bodies based on the PAE segmentation boundaries, con-
sisting of amino acids 8–195, 201–296, and 311–498, and we
computed an integrative model45 using the rigid bodies and 25
intramolecular cross-links. The resulting model of
BBC118 satisfied all but one of the cross-links (Fig. 4c), showing
that such a structural arrangement is physically plausible. Fur-
thermore, when we similarly segmented (based on PAE) all 13

AF2-predicted structures with four or more cross-link violations,
we found that 89.9% of the violations occurred between AF2-
predicted well-folded regions. It is important to note that these
violations may not necessarily represent incorrect structure pre-
diction but rather could also point to the existence of an
unknown stable interaction or homo-oligomer involving the
proteins, such as we observed in Fig. 2.

Given the strong relationship between the PAE scores and the
cross-link violations, we next examined this relationship more
systematically. Binning the cross-linked amino acids across all
100 proteins according to their PAE scores (Fig. 5) revealed a
linear relationship between the PAE and the cross-links, where
larger PAE values correspond to a larger proportion of cross-link
violations. The PAE range of 0–3.5 showed no cross-link viola-
tions, suggesting AF2’s high confidence is appropriate in this
regime. Overall, this analysis suggested that the PAE measure is
reasonably well-calibrated and serves as an excellent indicator to
help interpret the relative quality of specific regions of
AF2 structures.

We observed one additional challenge for AF2: dynamic pro-
teins that undergo large domain movements. In our data, this

Fig. 4 Cross-link violations tend to occur between or outside of structurally well determined regions. a The predicted alignment error (PAE)2 for T.
thermophila protein BBC118 (Uniprot identifier I7ME23) with satisfied and violated cross-links plotted onto the heatmap. Blue circles are the satisfied cross-
link and red x’s are the cross-link violations. b We apply a watershed model to the PAE heatmap to segment the protein into individual rigid bodies. For
BBC118, all cross-link violations occur between segmented rigid bodies. c The protein rigid bodies were broken up by the segmentation from the PAE and
modeled using the intramolecular cross-links as distance restraints to find an arrangement that satisfied all but one of the cross-links. All models and PAE
plots are provided at the supporting Zenodo web site.
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trend was evident for eEF-2, which, similar to BBC118, exhibited
10 cross-link violations despite an extremely confident pLDDT
score (~90). Again, for eEF-2, the cross-link violations all
occurred between compact domains. However, eEF-2 differed
from BBC118 in that the regions between the domains had high
per-residue pLDDT scores.

We investigated the role of these dynamics by first verifying
that the structures predicted by each of the five AF2 models did
not suggest any significant domain movements. Indeed, a com-
parison between these structures confirmed that all five predic-
tions were highly similar, with the largest RMSD between
structures being 1.01Å. To investigate further, we examined the
four experimentally determined structures of yeast orthologs46–48

obtained from the Protein Data Bank28 (Fig. 6). Each structure
was determined with different binding partners, and collectively,
they reveal that the two domains of yeast eEF-2 exhibit con-
siderable conformational flexibility with respect to each other.
Homology modeling of the T. thermophila protein onto each of
the yeast ortholog structures reveals that the AF2-predicted
structure shows another conformation of the two domains, dis-
tinct from the four other orientations; all five structures exhibit
multiple cross-link violations, suggesting that the T. thermophila
eEF-2 likely samples multiple conformations inside the cilia.
Regardless, the AF2 structure prediction, while largely correct for
the separate domains, fails to capture the dynamics of their
relative positions for this protein.

Conclusions. In this paper, we used chemical cross-linking and
mass spectrometry of T. thermophila ciliary proteins to inter-
rogate their 3D structures within their native contexts and
assemblies. These data, in turn, allowed us to evaluate the con-
cordance of AlphaFold2’s predictions of these protein structures.
Impressively, 43% of AF2-predicted protein structures show no

disagreements with the in situ cross-links, and a large majority
(87%) showed three or fewer cross-link violations, demonstrating
AF2 predicts biologically relevant protein conformations.

However, our study also highlights the importance of
experimental validation. For specific cases, high-confidence
structures were predicted that exhibited a number of cross-link
violations, 89.9% of which fell outside well-predicted domains or
in unstructured segments. Multidomain proteins can exhibit
varying arrangements of their rigid body domains, which can
pose a significant challenge for AlphaFold. Importantly, we
confirm that the PAE scores provide useful guidance for defining
these domain boundaries.

Overall, this combination of AF2 and cross-linking data can
add confidence to the models, guide their interpretation, and may
also serve as a valuable complement to other approaches, such as
cryo-electron tomography, for elucidating proteins’ endogenous
structures.

Methods
T. thermophila culture. Tetrahymena thermophila SB715 were obtained from the
Tetrahymena Stock Center (Cornell University, Ithaca, NY) and maintained in
Modified Neff medium obtained from the stock center at room temperature
(~21 °C). To prepare cilia, 10 ml cultures were expanded at 30 °C with shaking
(100 rpm) directly before cilia isolation.

Deciliation of T. thermophila and in situ cross-linking. Tetrahymena were
resuspended in Hepes Cilia Wash Buffer (H-CWB) [50 mM HEPES pH 7.4, 3 mM
MgS04, 0.1 mM EGTA, 250 mM sucrose, 1 mM DTT, 1× Complete protease
cocktail, 1× PhosSTOP cocktail]. Intact cilia were released by dibucaine
treatment40, and all subsequent steps were performed at 4 °C. After removing cells
and debris, cilia were recovered by centrifugation (17,000 × g, 5 min), and washed
once in H-CWB. A cilia pellet of ~10 µl was resuspended in 50 µl H-CWB.
Cross-linking was performed by the addition of 5 µl DSSO stock (freshly made
50 mM in anhydrous DMSO) to 5 mM final concentration and incubation for 1 h
at room temperature. Cross-linking was quenched by adding 1M Tris pH 8.0 to
33 mM for 30 min at room temperature.

Fig. 5 The proportion of cross-link violations is well-predicted by AF2’s Predicted Aligned Error score, suggesting that it accurately captures the
accuracy of structural models. Considering the full set of cross-links in the 100 proteins, we ranked all cross-linked amino acid pairs by increasing PAE
scores and divided them into 49 bins, comprising 25 cross-links per bin. For each bin of PAE values, we plotted the mean PAE score (+/− 1 standard
deviation) and the proportion of in situ cross-links violated within that bin (in the unrelaxed AF2-predicted structures). All relevant data are located in the
Zenodo repository, accompanied by a Python notebook to compute raw and average distances.
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The cross-linked sample was prepared for mass spectrometry as in49.
Specifically, cross-linked cilia were solubilized in 2% SDS at 95 °C, and proteins
were precipitated by adding six volumes of acetone, incubated overnight at 4 °C,
and precipitated protein was collected by centrifugation at 13,000 × g 4 °C for
15 min. The protein pellet was washed with acetone twice, dried, resuspended in
200 µl 1% sodium deoxycholate/50 mM NH4HC03, and sonicated (2 × 10 min.) in a
water bath. Proteins were reduced with 5 mM TCEP at 56 °C for 45 min, alkylated
with 25 mM iodoacetamide in the dark for 45 min, quenched with 12 mM DTT,
then digested overnight with 2 µg trypsin in 1 ml final volume at 37 °C. Digestion
was stopped by the addition of formic acid to 1%, and the deoxycholate precipitate

was removed by centrifugation at 16,000 × g for 10 min. The supernatant volume
was reduced in a vacuum centrifuge, and peptides were filtered through a 10,000
MWCO Amicon Ultra 0.5 ml device (Millipore) before desalting with a C18 spin
tip (Thermo Scientific HyperSep SpinTip P-20 BioBasic # 60109-412) as in ref. 50.
To enrich for cross-linked peptides, the desalted peptides were dried and
resuspended in 50 µl 30% acetonitrile, 0.1% TFA, and separated on a GE Superdex
30 Increase 3.2/300 size-exclusion column (Cytiva) at 50 µl/minute flow rate using
an ÄKTA Pure 25 FPLC chromatography system (Cytiva). 100 µl fractions were
collected, dried, and resuspended in 5% acetonitrile, 0.1% formic acid for mass
spectrometry.

Fig. 6 Predictions for the protein eEF-2 show that the AF2 model differs from 4 homologous crystal structures and the cross-links due to interdomain
rearrangements. a Distribution of cross-link distances for proteins in our dataset with four or more cross-link violations (data are available on the
supporting Zenodo site). b A hinge-like motion is evident between the two domains of the AF2 structure of the T. thermophila eEF-2 protein (Uniprot
accession Q22DR0)(cyan) compared to four eEF-2 structures solved by X-ray crystallography and showing structures determined in the presence of
different binding partners46–48. All structures were superimposed on the N-terminal GTP binding domain. c indicates the distribution of 35 cross-link
distances in each structure, with the appropriate PDB identifiers labeled to the right of the violin plots.
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Mass spectrometry. Mass spectra were collected on a Thermo Orbitrap Fusion
Lumos tribrid mass spectrometer as follows: Peptides were separated using reverse
phase chromatography on a Dionex Ultimate 3000 RSLCnano UHPLC system
(Thermo Scientific) with a C18 trap to Acclaim C18 PepMap RSLC column
(Dionex; Thermo Scientific) configuration. An aliquot of the cross-linked peptides
prior to SEC enrichment was analyzed using a standard top-speed HCD MS1-MS2
method51 and analyzed using the Proteome Discoverer basic workflow. Proteins
identified were exported as a fasta file to serve as the look-up database for cross-
link identification in the cross-link-enriched fractions. For identification of DSSO
cross-links, spectra were collected as follows: peptides were resolved using a
115 min 3–42% acetonitrile gradient in 0.1% formic acid. The top-speed method
collected full precursor ion scans (MS1) in the Orbitrap at 120,000m/z resolution
for peptides of charge 4–8 and with dynamic exclusion of 60 s after selecting once,
and a cycle time of 5 s. CID dissociation (25% energy 10 msec) of the cross-linker
was followed by MS2 scans collected in the orbitrap at 30,000m/z resolution for
charge states 2–6 using an isolation window of 1.6. Peptide pairs with a targeted
mass difference of 31.9721 were selected for HCD (30% energy) and collection of
rapid scan rate centroid MS3 spectra in the Ion Trap. Data were analyzed using the
XlinkX node of Proteome Discoverer 2.3 and the XlinkX_Cleavable processing and
consensus workflows, selecting cross-links with a False Discovery Rate of 1%, and
results were exported to xiView52 for visualization.

We supplemented these in situ cross-links with additional cross-links collected
from native (non-denaturing) protein extracts from isolated Tetrahymena cilia
prepared as above. These data were previously collected and analyzed by mass
spectrometry (available from the MassIVE database under accession ID
MSV000089131) as described in ref. 25, which focused solely on the analysis of the
Intraflagellar Transport A protein complex. For this work, we considered all
intramolecular protein cross-links captured by these data, analyzed identically as
for the in situ data. A comparison of the in situ and native extract cross-link sets
showed high concordance (Supplementary Fig. S1), and we therefore performed all
tests using the union of the two sets.

AlphaFold2 structure prediction. We sorted the identified ciliary proteins by
decreasing counts of intramolecular chemical cross-links per protein and selected
the top 100 proteins with the most intramolecular cross-links to serve as a test set
for structure prediction and subsequent analyses. Protein structures were predicted
using the 2.1.2 version/release of AlphaFold22 as implemented on Texas Advanced
Computing Center (TACC) Maverick2 and Frontera53 GPU computer clusters.
Structures were predicted using the monomer and predicted template modeling
(pTM) AF2 protocols2 and are available for download on the supporting Zenodo
data repository.

We selected the unrelaxed predicted structures from monomer model 1 in order
to increase throughput and remain within the allocated maximum time limits for
the TACC clusters. Proteins with the most cross-link observations were selected as
candidates for AF2 prediction, and then the top 100 proteins for which completed
unrelaxed structure predictions could be derived were selected for further analysis.
To confirm there was no significant variation in cross-link violation between
unrelaxed and relaxed AF2 predictions, we also predicted relaxed structures for the
top ten most cross-linked proteins (Supplementary Fig. S3). There were no
differences in cross-link agreement between these unrelaxed and relaxed
predictions. In addition, we judged whether limiting our predictions to only model
1 might affect our results by predicting all 5 monomer models for one example
protein, eEF-2.

AlphaFold2 domain boundary prediction. To identify whether violated cross-
links occurred within or between domains, we identified proteins that had four or
more cross-link violations (a total of 13 proteins) for the predictions’ pLDDT
scores (based on the unrelaxed structure). The AF2 monomer pTM model 1 was
used to predict these protein structures again with predicted aligned error (PAE)
scores. PAE is calculated for two residues x and y as the predicted error (in units of
Angstroms (Å)) for the position of x when assuming that the predicted position for
y is correct. Regions of low PAE were used to identify well-structured domains or
well-predicted regions using segmentation of a PAE matrix.

PAE scores are not symmetrical, but we were interested in using low error
regions to analyze distributions of recorded cross-links, which are symmetrical
between residues. Therefore, to incorporate the information from both directions
of the PAE scores, the PAE matrix was averaged with its transpose to create a
matrix symmetrical across its diagonal. We then denoised the matrix one or more
times using a median filter, and applied a gradient filter to generate the topography
for watershed segmentation. Initial basin markers were defined where another
gradient filter found values below a chosen threshold. The gradient was then used
as the input to the watershed segmentation transform from scikit-image54, along
with the identified markers, to produce a segmented version of the PAE heatmap.

Due to the low PAE values of one residue compared to itself or its close
neighbors, thin segments were often identified along the diagonal of the image.
Since these thin segments do not represent regions that are fully interconnected
with low error, we removed labels on areas not meeting a minimum width
threshold, and any gaps created by this process within a region were filled with that
region’s label. Finally, labels were assigned to each residue by traversing the

diagonal of the resulting segmented matrix. The number of times the denoise filter
was applied, and the window size of each filter was configured per protein to
produce labels that appeared to match the PAE heatmap well.

Code for the watershed-segmentation approach for identifying well-predicted
regions is provided on the supporting Zenodo repository.

BBC118 modeling. We used the Integrative Modeling Platform45 to refine the 3D
structural model of BBC118 taking into account our cross-links as distance
restraints. We used the AF2 prediction of the structure as the initial state of the
protein in our modeling. BBC118 was modeled as a chain of rigid bodies, where
the boundaries of the rigid bodies were defined using our watershed segmen-
tation of the output AF2 PAE heatmap. DSSO intramolecular cross-links were
used as cross-linking restraints in the modeling, which was run for a total of
20,000 frames from 10 random initial conditions. Model convergence and
sampling exhaustiveness were assessed using standard methods55. A total of
200,000 models were produced with 29,000 models in the final model cluster,
which had a cluster precision of 3.369Å, and which markedly improved the
agreement with cross-linking data while maintaining reasonable packing of
domains (Supplementary Fig. S4).

Statistics and reproducibility. Cross-links were selected for this study at a False
Discovery Rate of 1%. We predicted the structures for only the top 100 best-
sampled proteins from our XL/MS data. Summary statistics for the AF2-predicted
structures are available in the supporting Zenodo repository. For our improved
model of BBC118, all statistics are summarized in Supplementary Fig. S4.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Mass spectrometry proteomics data were deposited in the MassIVE/ProteomeXchange
databases (https://massive.ucsd.edu, see also ref. 56)) under MassIVE accession numbers
MSV000089917 and MSV000090056. Additional supporting materials, including all AF2
3D models, are available in a supporting Zenodo repository available at https://doi.org/
10.5281/zenodo.7725518.
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