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PUREE: accurate pan-cancer tumor purity
estimation from gene expression data
Egor Revkov 1,2, Tanmay Kulshrestha1, Ken Wing-Kin Sung1,2 & Anders Jacobsen Skanderup 1,2,3✉

Tumors are complex masses composed of malignant and non-malignant cells. Variation in

tumor purity (proportion of cancer cells in a sample) can both confound integrative analysis

and enable studies of tumor heterogeneity. Here we developed PUREE, which uses a weakly

supervised learning approach to infer tumor purity from a tumor gene expression profile.

PUREE was trained on gene expression data and genomic consensus purity estimates from

7864 solid tumor samples. PUREE predicted purity with high accuracy across distinct solid

tumor types and generalized to tumor samples from unseen tumor types and cohorts. Gene

features of PUREE were further validated using single-cell RNA-seq data from distinct tumor

types. In a comprehensive benchmark, PUREE outperformed existing transcriptome-based

purity estimation approaches. Overall, PUREE is a highly accurate and versatile method for

estimating tumor purity and interrogating tumor heterogeneity from bulk tumor gene

expression data, which can complement genomics-based approaches or be used in settings

where genomic data is unavailable.
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Cancerous tumors are complex mixtures of malignant and
non-malignant cells shaping the tumor microenvironment
(TME). The composition and relative proportions of

malignant cells and non-malignant components (comprising
stromal, epithelial, and infiltrating immune cells) can display
substantial variation across tumors1–4. The composition of the
TME is also associated with the disease stage and treatment
response5. The proportion of malignant cancer cells in the tumor
mass, herein referred to as tumor purity, also impacts genomic
analysis such as the estimation of clonal composition6 and tumor
mutation burden7, critical for predicting treatment outcomes and
selecting patients for immunotherapy. Moreover, tumor purity
can guide tumor transcriptome deconvolution and the estimation
of gene expression profiles for malignant and non-malignant cell
populations inside tumors8,9, enabling new insights into TME
biology10 and its impact on clinical treatment response.

Traditionally, the cancer cell proportion has been estimated by
pathologists inspecting nuclei in hematoxylin and eosin (H&E)-
stained tissue slides. However, such estimates may often be
imprecise, as demonstrated by the noticeable variation in esti-
mates when the same sample is evaluated by different
pathologists11. More recent computational approaches to esti-
mate tumor purity are based on DNA sequencing data where
variation in allele frequencies of somatic DNA mutations, copy-
number alterations (CNAs), or DNA methylation patterns are
used to infer the malignant cell proportion5,12–18. Genomics-
based purity estimation methods, despite differences in under-
lying statistical models and input data, have been shown to
produce concordant estimates of tumor purity9,19.

Tumor purity can also be estimated from the tumor gene
expression profile20, which has been used to derive clinically
relevant molecular subtypes21–24, perform quality control of
tumor samples25,26, and analyze treatment responses after
immunotherapy27. Existing methods that estimate tumor purity
from a tumor gene expression profile adopt different analytical
strategies (Supplementary Note 1, 2). ESTIMATE calculates a
combined enrichment score for infiltrating immune and stromal
cells followed by training of a supervised model28. EPIC uses
constrained least square optimization in combination with non-
malignant cell-type reference profiles to perform cell-type pro-
portion deconvolution29,30. DeMixT uses probabilistic modeling
to infer proportions of stromal and cancer-cell components from
a set of input samples, comprising both tumor and normal-tissue
samples8. LinSeed constructs an undirected weighted linearity
network of genes to determine mutually linear features followed
by simplex-based deconvolution31. CIBERSORTx defines a cell-
type signature matrix followed by support vector regression to
infer the proportions of cell types in each sample32,33. Similarly,
DeconRNASeq solves a non-negative least squares problem using
a pre-defined cell-type signature matrix to derive the cellular
proportions34. However, due to the inherent modeling assump-
tions, these methods might not always capture all the biological
variation between stroma and cancer cells, required to predict
require malignant cells’ proportions. Additionally, while these
methods show convincing results in their own benchmarks, it is
not clear how accurate they are when applied to distinct cancer
types and compared with each other.

Our goal was to develop an accurate reference-free method for
predicting tumor purity from a tumor gene expression profile. To
reduce the modeling limitations of existing approaches, we uti-
lized minimal prior modeling assumptions and instead relied on a
statistical learning approach to infer gene expression patterns
related to stroma and cancer components. We used a weakly
supervised learning strategy, training a machine learning model
using gene expression data from 7864 tumors and 20 solid cancer
types35 in combination with orthogonal consensus genomics-

based tumor purity estimates. The resulting method, PUREE, is
able to robustly predict purity values with high correlation and
low root mean squared error (RMSE) when compared to con-
sensus genomics-based estimates from the same samples, out-
performing existing deconvolution methods both on a TCGA test
set (0.2 increase in Pearson’s correlation and 0.17 decrease in
RMSE compared to the respective second-best approaches) and
seven external validation datasets of the lung, colorectal, uterine,
paraganglioma, and testicular cancers.

Results
Overview of approach. Our goal was to develop an accurate
method for estimating tumor purity from a tumor gene expres-
sion profile. Such a method should be able to generalize across
different solid cancer types and exhibit high concordance with
orthogonal purity estimates derived from tumor DNA data
(Fig. 1a). We therefore assembled a training dataset comprising
matched genomic and gene expression profiles from 7864 tumors
spanning 20 solid cancer types from TCGA35 (Supplementary
Table 1). The orthogonal (pseudo-ground truth) purity label of
each tumor was estimated using the tumor genomic profile, using
the consensus of four existing algorithms that generally displayed
high concordance (mean Pearson r= 0.85, Methods, Supple-
mentary Fig. 1). Next, we adopted a weakly supervised learning
strategy to train a model that could predict tumor purity labels
from the matched gene expression profiles. Gene expression
profiles were rank-percentile transformed to provide robustness
to variation in scale and normalization of different gene expres-
sion datasets and platforms (e.g. FPKM, TPM; Methods). From
the 60,000 transcripts profiled in TCGA, we further selected and
focused on 9554 (10 K) highly expressed protein-coding auto-
somal genes for model development (Methods). We explored the
performance of a range of machine learning methods (Supple-
mentary Fig. 2). In particular, given the regression task of pre-
dicting the bounded continuous tumor purity value, we tested
both a range of linear and non-linear machine learning archi-
tectures. This comparison showed that a simple linear regression
model could achieve optimal accuracy using only a limited set of
gene expression features (Supplementary Fig. 2). PUREE was
therefore developed using linear regression and weakly supervised
learning strategy to enable accurate estimation of tumor purity
from a solid tumor gene expression profile (Fig. 1b).

Feature selection to account for cancer type and tumor purity
imbalance. The TCGA training dataset showed strong cancer
type and purity range imbalance (Fig. 2a, Supplementary
Table 1). To reduce the impact of this imbalance during model
training, we adopted a two-step feature selection strategy
(Methods). Briefly, the first step consisted of selecting features
that could predict purity at both lower and higher purity ranges
(Fig. 2b). The second step further filtered this feature set to
identify the genes most predictive across the entire purity range,
resulting in 158 features (Fig. 2c).

We further explored the properties of the resulting reduced
feature set. Using gene set enrichment analysis, the 158 genes
were enriched in pathways relating to angiogenesis, KRAS
signaling and epithelial-mesenchymal transition (Methods, Sup-
plementary Fig. 3). Genes positively correlated with purity
showed enrichment in cancer-related pathways and processes
such as epithelial-mesenchymal transition (BASP1, COL4A1,
THBS2), genes involved in the TNFA signaling via NFKB (SPSB1,
SMAD3), and genes upregulated by KRAS activation (CFB,
MAFB). Genes negatively correlated with purity showed enrich-
ment in stroma-related processes such as inflammatory response
(IL1R1, STAB1, MSR1) and also genes involved in epithelial-
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mesenchymal transition (TGFBR3, CXCL12, CRLF1, PMP22,
SDC1). Overall, this confirmed the original hypothesis of the
PUREE model selecting cancer and stroma-related genes.

Comparing the performance of pan-cancer and cancer-type-
specific models. As an alternative to PUREE’s pan-cancer tumor
purity prediction model, we explored whether models trained for
a specific cancer type could more accurately predict purity. To
test this, we trained cancer-type-specific models (Methods) and
compared their performance with PUREE across all cancer types.
Interestingly, PUREE showed comparable and often improved
performance, with comparable median correlation (0.784 vs
0.790, P= 0.1, Wilcoxon signed-rank test, two-tailed) and lower
median RMSE (0.094 vs 0.096, P= 0.08) with the orthogonal
genomics-based purity estimates (Fig. 3a, Supplementary
Figs. 4–6). Overall, this confirmed that PUREE’s pan-cancer
feature selection and training approach provided a robust and
accurate prediction across all individual cancer types.

Next, we evaluated the ability of PUREE to predict purity in
cancer types absent from the training data (Methods). We
compared performance metrics for PUREE and versions of
PUREE where one cancer type was removed from the training
data. This comparison showed only a minor decrease in
correlation (median 0.7847 vs 0.7843, P= 0.0005, Wilcoxon
signed-rank test, two-tailed) and an increase in RMSE (0.094 vs
0.099, P= 6e−6) when the cancer type was absent from the
training data (Fig. 3b, Supplementary Fig. 7). This demonstrated
that PUREE is robust and can generalize to solid tumor types not
included in the training data, and that using the reduced feature
set provides more robustness to the model.

Benchmarking of methods on independent datasets. We eval-
uated PUREE’s performance on the withheld test sets from the
TCGA dataset. We compared PUREE with six existing
transcriptomics-based deconvolution and purity estimation
methods (Methods).

Here, PUREE consistently demonstrated higher correlation and
lower RMSE with consensus purity labels than the existing
deconvolution methods (Fig. 4, Supplementary Fig. 8). PUREE
had the highest median correlation (r= 0.78), followed by
ESTIMATE (0.63) and CIBERSORTx (0.55). Similarly, PUREE
had the lowest median RMSE of all methods (0.09), 53% lower
than the next-best method (CIBERSORTx, 0.19), and PUREE
displayed the lowest RMSE in each cancer type. PUREE also
showed less variation in performance across cancer types as
compared to the other methods, with an inter-quartile range for
correlation and RMSE of 0.12 and 0.015, respectively. We
additionally evaluated the performance of methods when tested
across solid tumor types with likely distinct stromal composition
(e.g. brain cancers and skin cancers). Consistent with our previous
observations, PUREE outperformed other transcriptomics-based
approaches, showing comparable high accuracy across cancer types
with expected dissimilar stromal composition (Supplementary
Fig. 9). A similar analysis showed that PUREE outperformed the
other methods on the cancer types with extreme median tumor
purities (Supplementary Fig. 10).

Next, we compared PUREE’s and other methods’ perfor-
mance on two additional independent public lung cancer
cohorts36,37, a colorectal cancer cohort38, and 4 TCGA cohorts
of colorectal, uterine endometrial, pheochromocytoma and
paraganglioma, and testicular cancer not present in the initial
TCGA dataset used for model training and testing

Fig. 1 Overview of PUREE. a PUREE is trained using a weakly supervised learning approach. Consensus genomics-based purity estimates are used as
orthogonal (pseudo-ground-truth) labels, and a predictive model is trained on rank-transformed gene expression profiles from 7864 tumor samples
spanning 20 solid tumor types (80%/20% train/test split). b For a new solid tumor sample, PUREE infers the purity from the corresponding tumor gene
expression profile.
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(Supplementary Table 2, Methods). Similar to the TCGA
cohort, orthogonal genomics-based tumor purity estimates in
these cohorts were estimated from tumor DNA sequencing data
(Methods). Across all seven cohorts, PUREE demonstrated
generally higher correlation and lower RMSE with the
genomics-based tumor purity estimates (Fig. 5, Supplementary
Fig. 11). We additionally compared PUREE’s resource usage
against the other methods in terms of memory (RAM) and
compute time. This evaluation showed that PUREE uses less
memory to run, in addition to consistently being the fastest
method (Supplementary Fig. 12).

Exploring the PUREE feature set using single-cell RNA-seq
data. We performed orthogonal analysis and validation of the 158
gene features in the PUREE model using single-cell RNA-seq data.
We used published scRNA-seq data from head and neck cancer39

(5902 cells total, 2539 classified as malignant, 3363 as non-malig-
nant) and melanoma40 (4513 cells total, 3256 classified as malignant,
1257 as non-malignant). We computed mean cell-wise z-scores of
the expression of the genes with positive and negative purity-
expression correlation. Interestingly, these genes showed noticeable
expression differences betweenmalignant and non-malignant cells in
both tumor types (Fig. 6, Mann–Whitney P < 1e−90; Supplementary

Fig. 2 Feature selection to account for cancer type and tumor purity imbalance. a Boxplots of the genomics-based tumor purity across 20 cancer types
from TCGA, blue and red lines marking the bottom/top 20% purity samples; bar plots of the genomics-based tumor purity separated into low, medium,
and high purity ranges. b The first step of the feature selection strategy: lasso feature selection, cross-validated on cancer types as folds, was performed
separately on low-mid (0.17–0.72 purities) and mid-high (0.38–0.97) purity range samples, the two feature sets were intersected resulting in 167 genes.
c The second step of the feature selection strategy: using the features from the first step, lasso feature selection was iteratively performed across all purity
ranges, cross-validated on cancer types as folds, resulting in 158 gene features used for the final model. In the boxplots in (a), the lower and upper hinges
correspond to the first and third quartiles, the upper whisker extends to the largest value no further than 1.5 of inter-quartile range from the hinge, the lower
whisker extends to the smallest value no further than 1.5 of inter-quartile range from the hinge, and points beyond the end of the whiskers are plotted
individually.
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Fig. 13). Genes with positive purity-expression correlation had
markedly higher expression in malignant cells as compared to non-
malignant cells. In contrast, genes with negative purity-expression
correlation were upregulated in non-malignant cells. This result
further confirmed that the gene feature set used by PUREE has the
ability to distinguish between and quantify the proportion of cancer
and non-cancer cells in the tumors.

Discussion
We developed a computational method, PUREE, that can predict
the proportion of cancer cells in a sample (tumor purity) from a
bulk tumor gene expression profile. The method adopts a
machine learning-based feature selection strategy in combination
with a linear regression architecture. The model is trained using
weak supervision and consensus tumor purity labels obtained

from tumor DNA sequencing data spanning 20 solid tumor types
and a range of median genomics-based purities from 35% in
pancreatic cancer to 72% in ovarian cancer. Compared with
existing transcriptome deconvolution methods, we demonstrate
that PUREE has superior accuracy across multiple independent
test cohorts, spanning median purity ranges from 45% to 76%.
Additionally, PUREE is fast and user-friendly as the underlying
model is pre-trained in advance.

PUREE adopts a stringent feature selection strategy, with
which we were able to reduce the initial feature set of 9554 genes
to 158 predictive genes. Combined with a pan-cancer training
strategy, we demonstrate that this sparse model can generalize
well to unseen tumor types and cohorts. We also show that
PUREE’s pan-cancer architecture has comparable accuracy to
cancer-type-specific models. This suggests that the model is able
to capture expression signatures of cancer and stromal cells
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conserved across solid tumor types and that cancer-type-specific
expression signatures do not provide additional discriminatory
information for tumor purity estimation. We found that these
pan-cancer conserved feature genes were enriched for known
cancer and stromal cell-specific processes such as epithelial-
mesenchymal transition and immune cell activity.

The gene feature set used by PUREE also demonstrated a
remarkable ability to distinguish between malignant and non-
malignant cells in single-cell RNA-seq data. This provides ortho-
gonal validation of our feature selection and pan-cancer training
strategy, and further confirms the predictive power of the selected
gene set. This result also suggests that a modified version of our
approach could potentially be repurposed to classify malignant and
non-malignant cells in single-cell RNA-seq data. Finally, due to its
supervised machine learning approach, PUREE has some limita-
tions stemming from the composition of the training data. Speci-
fically, the method has only been trained and tested on solid tumor
samples and will therefore likely have suboptimal performance if
applied to other non-solid cancer types.

In summary, we have shown that PUREE is a highly accurate
and efficient method for purity estimation from a tumor gene

expression profile, enabling robust and accurate interrogation of
tumor purity and heterogeneity from bulk tumor gene expression
data. We envision PUREE to be especially useful in settings where
the DNA-seq data is either hard to obtain or absent. Even when
tumor DNA-seq data are available, PUREE may provide an
additional and orthogonal approach to tumor purity estimation.
This may be especially relevant in cohorts and settings where the
DNA and RNA are extracted from different aliquots of a tumor.

Methods
Genomics-based consensus tumor purity estimates. For TCGA samples,
genomic-based consensus tumor purities were computed as a mean of predictions
from ABSOLUTE17, AbsCNSeq18, ASCAT15, and PurBayes16 following the
approach reported in Ghoshdastider et al. 41. AbsCNSeq and PurBayes estimates
are based on mutation variant allele frequency data, and ASCAT and ABSOLUTE
on SNP-array data. Briefly, samples with extremely low (<0.1) and extremely high
(>0.98) purity estimates from individual methods were flagged as missing data, as
recommended by Ghoshdastider et al. These missing data values were instead
imputed using an iterative principal component analysis approach42. Quantile
normalization was used to standardize and average the tumor purity distributions
of different algorithms per cancer type. Finally, consensus purity estimates were
estimated as the sample-wise medians of the normalized purity estimates from
individual methods.
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Fig. 4 Comparing PUREE and existing methods on TCGA data. Comparison of PUREE and 6 existing transcriptome deconvolution methods. a Mean
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TCGA training and test set construction. The TCGA dataset consisted of
7864 samples from 20 solid cancer types. 80% of samples were selected for model
training (TCGA train split, 6291 samples) and 20% for testing (TCGA test split,
1573 samples). The training and test sets were randomly sampled so they had
comparable cancer-type and purity distributions. The initial gene expression fea-
ture matrix was filtered to only include autosomal and protein-coding genes. Genes
with low expression (median TPM < 1) and low variance (variance < 1) in all
cancer types in the TCGA train split were further filtered, leaving 9554 gene
expression features for subsequent steps (referred to as the 10 K features set).

Gene expression data rank-transformation. Gene expression data is rank-
percentile normalized (sample-wise) when serving as input for PUREE. The initial
rank-transformation allows for generalization across different gene expression
platforms (e.g. RNA-seq, microarray) and measurement units (e.g. Transcripts Per
Million (TPM), Fragments Per Kilobase Million (FPKM)). Briefly, gene expression
values (e.g. TPMs [0, 0, 1, 5, 100]) are first ranked based on their position within
a sample in ascending order, assigning the lowest possible rank for tied groups

([1, 1, 3, 4, 5]). The percentile of the resulting rank is then computed ([0.2, 0.2, 0.6,
0.8, 1]). The resulting percentiles computed relative to the ranking universe of the
10 K feature set serve as input values to PUREE.

Construction of machine learning models. All machine learning models (Elastic
Net, Gradient Boosting, nu-Support Vector Regression, Lasso, Logit Regression and
Linear Regression models, as well as Simple Imputer for missing values imputa-
tion) were constructed and trained using the Scikit-Learn Python package43. Logit
Regression was built as a modified version of Linear Regression from Scikit-Learn.
A fully connected Neural Net consisting of a variable number of relu-activated fully
connected hidden layers, depending on the feature size of the input data, was
constructed and trained using the Keras submodule of the Tensorflow Python
package44. All the hyperparameters not explicitly defined in the model call func-
tions (e.g. alphas for Lasso) or in the hyperparameter search functions (e.g.
HalvingGridSearchCV), were allowed to either be chosen by the in-built hyper-
parameter selection procedure or be used at their default values.
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(CRC+), uterine endometrial (UCEC+), pheochromocytoma and paraganglioma (PCPG), and testicular cancer (TGCT) not present in the initial TCGA
dataset used for training and testing. aMean Pearson’s correlation and RMSE per cohort for all methods. bMean correlation and RMSE per cohort of every
method shown together. DeMixT could not be run on the Chua et al., Joanito et al., PCPG and TGCT cohorts due to the absence of normal samples there. In
the boxplots in a, the lower and upper hinges correspond to the first and third quartiles, the upper whisker extends to the largest value no further than 1.5 of
inter-quartile range from the hinge, the lower whisker extends to the smallest value no further than 1.5 of inter-quartile range from the hinge, and points
beyond the end of the whiskers are plotted individually.
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Feature selection. We used Lasso regression to reduce the number of input fea-
tures in PUREE. During the first step, we selected features relevant to both low and
high purity ranges. As feature selection models, two lasso regression models, cross-
validated using cancer types as folds, were trained on all training data except the
bottom and top-20% purity values, respectively. These two resulting feature sets
were intersected, resulting in 167 genes. Next, we further iteratively selected fea-
tures equally relevant to all cancer types by training a Lasso model (cross-validated
with cancer type as folds) on a balanced subset of the full TCGA training set
comprising all purity ranges, using the earlier selected 167 genes as initial features.
Briefly, this is done by training on samples from N−1 cancer types, and testing on
samples from the remaining withheld cancer type (leave-one-cancer-type out). We
perform balanced feature selection by selecting 117 samples (determined by tumor
type with the lowest number of samples in the training set: GBM, N= 117) from
each cancer type while preserving the original purity distribution. This resulted in
158 genes with non-zero weights, which serve as predictive features in the final
PUREE model. Correlations of the genes’ expression with genomic-based tumor
purity were computed on the train portion of TCGA as means per each cancer type
averaged across all cancer types.

Predicting on unseen samples. The PUREE pipeline consists of three parts: rank-
percentile normalization, missing values imputation and linear regression model
inference. During the first step, rank percentiles of the overlap of the genes in the
input data and the 10 K genes are computed. The data is further reduced to the 158
PUREE input genes. During the second step, if there are any missing values in the
158 selected genes, they are imputed based on the medians of the values in TCGA
train set. During the third step, the pre-trained linear regression model is applied to
the resulting data in order to predict purity values. The predicted values that fall
out of the [0,1] range are rounded to the nearest in-range value.

Cancer-type-specific models and test experiments. For experiments with cancer
type-specific models, we constructed training/test sets comprising the 10 K features
for each individual cancer type. We used 5-fold cross-validation to train lasso
models on these cancer-type-specific training sets. For experiments where indivi-
dual cancer types were excluded during model training, we constructed a pan-
cancer training set (158 features) comprising all cancer types except the cancer type
being withheld, followed by linear regression training as described for the main
pan-cancer PUREE model.

Gene set enrichment analysis. Gene set enrichment analysis was evaluated using
the GSEApy Python package (https://github.com/zqfang/GSEApy), which is based
on Enrichr45 and Gene Set Enrichment Analysis (GSEA)46. The names of
158 selected genes were converted into HGNC nomenclature and used as an input
to the enrichr function. Background genes were set to be 9554 significantly
expressed autosomal genes in TCGA. The hallmark gene set used in the enrich-
ment analysis was downloaded from the MSigDB collection (http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp, set H). For each gene, Pearson correlation
was computed between its expression and DNA-based tumor purity in each of the
20 cancer types in the TCGA train set, and a mean of it was taken. Top 10 enriched
pathways by Benjamini-Hochberg adjusted p-value were computed for 4 gene sets:
full feature set of 158 genes, top 30% genes by their mean expression-purity cor-
relation per cancer type, bottom 30% genes by their mean expression-purity cor-
relation per cancer type, and, finally, the genes in the 30-70% range by their mean
expression-purity correlation per cancer type.

Running other transcriptomics-based methods for purity prediction. Unless
explicitly stated otherwise, the packages below were run in R environment ver-
sion >= 3.4. For all the gene expression matrices below, only protein-coding genes
were left for the downstream analysis. The gene ids were used in HGNC
nomenclature.

CIBERSORTx32 was run using the web interface available at https://cibersortx.
stanford.edu/. The analysis module was selected to be “Impute Cell Fractions”,
“Custom” mode and “RNA-seq” input data. The NSCLC signature matrix used for
imputation was taken from CIBERSORTx’s paper32 supplementary 2 l. Mixture
files were used in linear space (in TPM values when available, otherwise FPKM)
and formatted according to the instructions provided on the website. Batch
correction was run in B-mode with no GEP. Quantile normalization was disabled.
100 permutations were used for statistical analysis. “EPCAM” column was taken as
tumor purity.

DeMixT8 (https://github.com/wwylab/DeMixT) was run on gene expression
matrices in linear counts space. As the DeMixT package required tumor and
normal counts (not necessarily matched), it was run only on datasets that had both
available. Additionally, the counts matrices were quartile-normalized and the genes
where the total sum of values across all samples was <1 were discarded. As DeMixT
seemed to predict the stromal component, the purity was computed as (1-DeMixT
predictions).
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Fig. 6 Validation of PUREE’s features using single-cell RNA-seq data. a, b Comparing the expression of PUREE gene features in malignant and non-
malignant cells in (a) head and neck cancer cells from Puram et al. 39 and (b) melanoma cells from Tirosh et al. 40. Malignant and non-malignant cell labels
were obtained from the original publications. Genes were separated into groups of positive (top 20%) and negative (bottom 20%) purity-vs-expression
correlation in TCGA data averaged across cancer types. The dashed red and blue lines indicate medians of malignant and non-malignant cells’ z-scores
distributions respectively. P-values are calculated using the Mann–Whitney U rank test (two-tailed).
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EPIC29,30 (https://github.com/GfellerLab/EPIC) was run on gene expression
matrices in linear normalized values space (TPM or FPKM). Purity was taken as
the ‘otherCells’ component of the resulting cellFractions.

ESTIMATE28 (https://rdrr.io/rforge/estimate/) was run on gene expression
matrices in linear normalized values space (TPM or FPKM). For the estimateScore
function the platform parameter was chosen to be “affymetrix”.

LinSeed31 (https://github.com/ctlab/LinSeed) was run on gene expression
matrices in linear values space (counts if they were available, or TPM or FPKM if
not). Additionally, the matrices were normalized sample-wise so that the samples
would have the same sum. RPL/RPS genes were removed from the matrix.
LinseedObject function was run with topGenes= 10,000, the rest of the functions
were run in a 2-component mode according to the instructions provided by the
authors in their GitHub repository https://github.com/ctlab/LinSeed. As LinSeed
does not explicitly state which of the deconvolved components represents the
cancer cells’ proportion, the component that had the best Pearson’s correlation
with DNA-based purities was taken. Additionally, since it appeared that sometimes
LinSeed might be predicting the stromal cell proportion instead of purity, if the 1-
(LinSeed predictions) had better correlations, that was taken as predicted purity
instead.

DeconRNASeq34 (https://doi.org/10.18129/B9.bioc.DeconRNASeq) was run on
gene expression matrices in linear normalized values space (TPM or FPKM),
CIBERSORTx’s NSCLC matrix was used as a signature. The “EPCAM” column was
taken as tumor purity.

Statistics and reproducibility. To calculate P-values, Mann–Whitney U rank test
was used for non-paired data (single-cell z-scores) and Wilcoxon signed-rank test
for paired samples (cancer types). Pearson’s correlation and root mean squared
error were used to calculate the mean statistics for each cancer type or cohort.

TCGA cohort of 20 cancer types includes 7864 samples with 6291 in the train set
and 1573 in the test set. Chen et al. lung cancer cohort consists of 172 samples.
Chua et al. lung cancer cohort consists of 64 samples. Joanito et al. colorectal cancer
cohort consists of 153 samples. TCGA-CRC+ colorectal cancer cohort consists of
243 samples. TCGA-UCEC+ uterine endometrial cancer cohort consists of
353 samples. TCGA-PCPG pheochromocytoma and paraganglioma cohort consists
of 164 samples. TCGA-TGCT cohort consists of 155 samples.

The head and neck single-cell RNA-seq cohort from Puram et al. consists of
5902 cells, 3363 of which are malignant and 2539 non-malignant. The melanoma
single-cell dataset from Tirosh et al. consists of 4513 cells, 3256 of which are
malignant and 1257 non-malignant (132 cells with unresolved cell type assignment
were dropped).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TCGA gene expression data on 20 solid cancer types were downloaded through the
UCSC Xena Hub (https://xenabrowser.net/datapages/)47. The gene expression data of the
lung cancer validation cohorts used in the external benchmark were obtained from the
publication by Chen et al. 36 and Chua et al. 37. The gene expression data of the colorectal
cancer cohort used in the external benchmark was obtained from the publication by
Joanito et al. 38. The preprocesed gene expression data of 4 TCGA cohorts of colorectal,
uterine, paraganglioma and testicular cancers were also obtained from the UCSC Xena
Hub47. The gene expression data and the cell type labels of the head and neck cancer
single-cell cohort used in the feature set validation was taken from the publication by
Tirosh et al. (Gene Expression Omnibus ID GSE72056)40. The gene expression data and
the cell type labels melanoma single-cell cohort used in the feature set validation were
obtained from the publication by Puram et al. (Gene Expression Omnibus ID
GSE103322)39. In the first lung cancer validation dataset from Chen et al. 36, genomic
purity estimates were originally computed as a mean of THetA248, TitanCNA49,
AbsCNSeq18 and PurBayes16 and obtained from the respective publication. In the second
lung cancer validation dataset, Chua et al. 37, genomic purity estimates were originally
based on ASCAT15 and Sequenza50 methods and taken from the respective publication.
In the colorectal cancer validation cohort from Juanito et al., genomic consensus purity
values were re-computed as a mean of THetA248, TitanCNA49, AbsCNSeq18 and
PurBayes16 methods. ABSOLUTE tumor purity estimates for TCGA samples were
obtained from the NCI Genomic Data Commons (GDC) database35. Only samples that
had genomic tumor purity available were used. All public datasets used in this study were
collected with appropriate ethical approvals. The source data to generate the figures were
deposited to Zenodo (https://doi.org/10.5281/zenodo.7772812).

Code availability
PUREE is available as a web service (https://puree.genome.sg/) and the respective
Python package (https://github.com/skandlab/PUREE). The version of the code for the
PUREE package used to generate the data for the publication was deposited to Zenodo
(https://doi.org/10.5281/zenodo.7772812)51. The source data and the codes used to

generate the figures, as well as the codes used to conduct the methods benchmark and to
set up the machine learning models were also deposited to Zenodo (https://doi.org/10.
5281/zenodo.7772812).
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