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Metabolic dysregulation impairs lymphocyte
function during severe SARS-CoV-2 infection
Sanjeev Gurshaney1, Anamaria Morales-Alvarez 1, Kevin Ezhakunnel 1, Andrew Manalo1,

Thien-Huong Huynh1, Jun-Ichi Abe 2, Nhat-Tu Le3, Daniela Weiskopf4, Alessandro Sette 4,5, Daniel S. Lupu6,

Stephen J. Gardell7 & Hung Nguyen 1✉

Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key

determinant of disease severity. However, how metabolic perturbations influence immuno-

logical function during COVID-19 remains unclear. Here, using a combination of high-

dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-

cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty

acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent meta-

bolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysre-

gulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector

function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with

mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-

2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation.

Taken together, our study provides critical insight regarding the cellular mechanisms

underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and high-

lights immunometabolism as a promising therapeutic target for COVID-19 treatment.
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Coronavirus disease 2019 (COVID-19) is one of the most
severe health crises in history1. In the vast majority of
infected individuals, the host immune response is suffi-

cient to clear the infection. However, as a result of the insufficient
and dysfunctional immune response towards SARS-CoV-2
infection, some individuals acquire severe disease marked by
tremendous lung damage2. The growing body of evidence is
suggestive of a link between host immune cells and patient
metabolism during severe COVID-193. Prior metabolic comor-
bidities and their associated cluster of conditions pose potent risk
factors for disease severity4–7. Patients with type 2 diabetes,
obesity, hyperglycemia, dyslipidemia, and older age have higher
rates of severe complications and mortality8. Interestingly, host
metabolic rebalance using cholesterol-lowering-(statins), glucose
metabolism-reducing (2-deoxyglucose), and antioxidant (mela-
tonin) drugs has been shown to benefit COVID-19 treatment9.

T cells (Tc) including CD4 and CD8 are major cell subsets
providing protective immunity against SARS-CoV-2 infection10.
Indeed, SARS-CoV-2- induced Tc lymphopenia is evident in
83.2% of COVID-19 patients with acute respiratory distress
syndrome (ARDS)11. The processes of Tc activation, differentia-
tion, and maturation into memory and effector subsets are tightly
regulated by metabolic reprogramming12. Upon Tc receptor
(TCR) activation, mTOR signaling initiates a glucose transporter
1 (glut-1)- mediated increase in aerobic glycolytic flux that is
required for activation13. Whereas the downstream differentia-
tion of effector CD8+Tc is heavily dependent on the activity of
prolonged aerobic glycolysis; increased lipid uptake and mito-
chondrial fatty acid oxidation (FAO) are required for memory
cell differentiation14. It has been shown that under hypoxic
conditions, hypoxia-inducible factor a (HIF-1a) redirects pyr-
uvate from mitochondrial shuttling towards lactate conversion
while increasing Tc intrinsic reactive oxidative species (ROS),
resulting in impaired mitochondrial function and hampered
memory cell differentiation5. While the accumulation of ROS was
found in Tc from COVID-19 patients with ADRS9, it is com-
pletely unknown how the condition of oxygen deprivation would
affect the balance of effector and memory Tc phenotypes as well
as the abundance of viral antigen-specific Tc during COVID-19.
Moreover, it is also unclear whether Tc fate and function would
be different in severe COVID-19 compared to other lung
pathologies.

Mitophagy is a cellular process involved in the selective
degradation of damaged mitochondria15. During conditions of
hypoxia, cells upregulate mitophagy to direct their metabolism
towards aerobic glycolysis as a mechanism to maintain their
survival16. While enhancing mitochondrial damage has been
identified in Tc from COVID-19 patients with ADRS5, the role of
mitophagy in regulating mitochondrial functions during SARS-
CoV-2 infection remains unexplored. Importantly, inhibition of
mitophagy has been shown to inhibit viral proliferation in virally
infected cells; thus, suggesting that mitophagy-targeting strategies
may have a combinatorial effect of altering host immunometa-
bolism as well as directly decreasing viral load17.

The abundance of CD56+CD8+ cells (NKT) is a strong pre-
dictive biomarker for COVID-19 outcome18. It has been apparent
that NKT plays an important role in the prevention of COVID-
19-induced pneumonia19. As a key bridge between innate and
adaptive immunity20, little is known about how NKT metabolism
during SARS-CoV-2 infection. Interestingly, in contrast to Tc,
NKTs are considerably more dependent on mitochondrial
metabolism after activation21,22. Because mitochondrial dys-
function is identified in the majority of immune cells during
SARS-CoV-2 infection9, understanding how ADRS-induced
hypoxia affects NKT function in COVID-19 is critically
important.

The lung is the primary target organ of SARS-CoV-2, as the
spike protein directly binds to ACE2 receptors expressed on the
surface of lung epithelial cells (ECs)23. As a result, severe COVID-
19 is characterized by profound lung damage, resulting in
decreased blood oxygen saturation (hypoxia), as well as increased
serum lactate dehydrogenase (LDHA) level2,24,25. Both down-
stream hypoxia signaling and hyperlactatemia have been asso-
ciated with pro-inflammatory cytokine syndrome and
lymphocyte dysfunction26,27. However, it is not completely
understood how hypoxia in COVID-19 patients affects the
metabolic phenotype of Tc through attenuating EC function in
the lung of COVID-19 patients.

In the current study, using high-dimensional flow cytometry
and cutting-edge single-cell metabolomics of PBMCs from hos-
pitalized COVID-19 patients, we demonstrated that metabolic
disorders by hypoxia and anaerobic glycolysis induced dysfunc-
tional CD8+Tc and NKTs during SARS-CoV-2 infection. We
show an impaired, hypoxia triggered memory cell differentiation
in CD8+Tc of COVID-19 patients. Finally, mitophagy was found
to be an important regulator of immunometabolic function in
CD8+Tc and ECs. Intriguingly, pharmacological inhibition of
mitophagy via mdivi-1 enhanced effector function as well as
rescued memory differentiation function amongst CD8+Tc.
Publicly available single-cell sequencing datasets on the bronch-
oalveolar lavage fluid (BALF) and PBMCs from COVID-19
patients were reanalyzed to validate the metabolic reprogram-
ming in CD8+Tc, NKTs, and ECs at transcriptomic level. Alto-
gether, the current study provides key, insightful cellular and
molecular mechanisms underlying a critical link between lung
dysfunction, metabolic dysregulation, and impaired lymphocyte
function during SARS-CoV-2 infection.

Results
High-dimensional immunophenotyping reveals a distinct
COVID-19 immunophenotype in both circulation and the
BALF. COVID-19 patients with severe disease have been found
to suffer from substantial immune dysregulation28,29. We first
performed high-dimensional immunophenotyping of peripheral
blood mononuclear cells (PBMCs) from non-infected controls
(healthy), hospitalized COVID-19 patients (COVID(+)), as well
as from non-COVID (by PCR test) patients with COVID-like
upper respiratory symptoms requiring intensive care, abbreviated
as COVID(−). (Fig. 1a, Supplementary Fig. 1, Supplementary
Table 1,5). Analysis was performed on freshly isolated cells
without cryogenic preservation to best reflect the metabolic/
functional state of cells in the body. Comparative evaluation of
patient samples by principal component analysis (PCA) revealed
distinct clustering of healthy, COVID(−), and COVID(+)
patients, suggesting an abnormal immunophenotype of PBMCs
during SARS-COV-2 infection (Fig. 1b). CD8+Tc are the main
cellular immune population that governs viral clearance30,31.
Corroborating prior reports, high-dimensional flow cytometry
(Supplementary Fig. 2A–C) revealed significant lymphopenia of
multiple CD8- derived subsets in PBMCs from hospitalized
COVID(+) patients (Fig. 1c–e). Bulk CD8+Tc were dramatically
decreased in COVID(+) patients compared to both COVID(−)
and healthy patients (Fig. 1e). The percentage of circulating
effector CD8+Tc was increased in COVID(+) patients compared
to healthy donors; however, significantly decreased compared to
that of COVID(−) patients (Fig. 1e). Additionally, the percentage
of circulating CD8+TM was heavily reduced in severe COVID(+)
patients as compared to healthy controls (Fig. 1d, g). However,
this consistent decrease was not noted amongst COVID(−)
patients, indicating impaired memory differentiation specifically
occurs in SARS-CoV-2 infection (Fig. 1d, g). Given that the lung
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is the primary target for COVID-19 attack1, we examined whe-
ther CD8+Tc lymphopenia could also be detected in bronch-
oalveolar lavage fluid (BALF) cells. We reanalyzed a publicly
available single-cell RNA-sequencing (scRNA-seq) dataset of
BALF samples from COVID(+) patients32. Tc were identified
(Supplementary Fig. 3a, b), subsetted, and a second round of
unsupervised clustering and UMAP dimensionality reduction was
performed to identify and delineate distinct, clear Tc subsets
(Fig. 1h, l, Supplementary Fig. 4, and Supplementary Table 2).
Similarly, effector and bulk CD8+Tc were significantly increased
in the BALF of moderate COVID(+) patients compared to
healthy controls (Fig. 1i–k). Noticeably, patients with moderate as
compared to severe symptoms had dramatically higher abun-
dance of effector CD8+Tc in the BALF (Fig. 1i, k). Finally, we
observed an attenuation in the percentage of CD8+TM in
COVID-19(+) BALFs, which was most apparent in severe
patients (Fig. 1i, l), corroborating the impaired memory cell
abundance found in PBMCs (Fig. 1d, g).

CD8+Tc metabolically reprogram towards glycolytic depen-
dence and exhibit impaired mitochondrial function during
SARS-CoV-2 infection. Metabolic dysregulation is well-
recognized in COVID-19 pathogenicity and has been linked to
a dysfunctional immune response33. The function and

immunological fate of CD8+Tc specifically has been shown to be
heavily dependent on metabolism during viral infection8. We
assessed the immunometabolic profiles of CD8+Tcs on freshly
isolated patient-derived PBMCs. Because hypoxia and excessive
glycolysis are evident in COVID(+) patients with severe
disease25,34,35, we first examined the degree of glucose uptake in
CD8+Tc during SARS-COV-2 infection. Glucose transporter 1
(glut-1) is a receptor that facilitates glucose uptake by Tc during
viral infection36. Indeed, expression of glut-1 was augmented in
CD8+Tc of COVID(+) patients (Fig. 2a). To assess the cellular
dependence of COVID-19(+) CD8+Tc on glycolysis, we lever-
aged SCENITH single-cell metabolomics assay. COVID(+)
CD8+Tc had increased glycolytic flux compared to healthy and
COVID(−) patients (Fig. 2b). Accelerated glut1 expression and
glycolytic flux in CD8+Tc from COVID-19(+) compared to
those from COVID(−) patients (Fig. 2a, b) suggested dysfunc-
tional CD8+TC glucose metabolism as a hallmark of SARS-CoV-2
infection. Under hypoxic condition, excessive dependence on
glycolytic flux has been linked to mitochondrial dysfunction37. As
expected, decreased mitochondrial membrane potential, indica-
tive of impaired mitochondrial function was selectively noted in
COVID(+) CD8+Tc (Fig. 2c). Consistently, SCENITH metabo-
lomics analysis revealed a strong reduction in the mitochondrial
flux of COVID(+) CD8+Tc compared to those from both healthy

Fig. 1 Distinct immunophenotype of BALFs and PBPMCs from COVID-19 patients. a Schematic illustrating experimental design for multiparametric flow
cytometry and single-cell RNA-sequencing re-analysis. b–g The total PBMC patient cohort includes 9 healthy, 36 COVID(–), and 52 COVID-19+ patients;
given the high degree of lymphopenia, various subsets of the total cohort were used for different experiments. h–l The total BALF patient cohort includes 4
healthy, 3 moderate COVID-19, and 6 severe COVID-19 patients. One healthy and one severe patient was excluded from downstream analysis due to low
T-cell count. b 3D PCA analysis conducted using bulk expression of each marker per sample as input; circles were manually drawn around the PCA plot to
highlight distinct clustering. c UMAP projection of labeled PBMC populations from 8 Healthy (HD), 12 COVID (−) (C−), and 17 COVID (+) (C+) patients.
d Representative contoured kernel density for UMAP projection of PBMCs, a representative sample from each group was displayed. e–g Summary graphs
demonstrating frequency of CD8+Tc amongst all live cells in patient PBMCs (n= 8 HD,15 COVID (−), 27 C+). e frequency of effector CD8Tc
(grzmB+ CD8Tc) amongst all CD8+Tc (n= 8 HD, 12 C−, 20 C+) (f), and frequency of CD8+Tc memory (CD8+TM) amongst all CD8+Tc (n= 8 HD,
16 C−, 26 C+) (g). h UMAP projection displaying population labeling of 66,452 cells from healthy (HD), moderate (M), and severe (S) COVID-19+

patients, Tc populations were circled manually. i UMAP projections displaying labeled unsupervised clustering analysis of 7601 reintegrated cells split
between healthy, moderate, and severe COVID-19+ patients. j–l Summary graphs demonstrating frequency of bulk CD8+Tc amongst total BALF cells
(n= 3 HD, 3M, 5 S) (j), effector CD8+Tc among all Tc (n= 3 HD, 3M, 5 S) (k), and CD8+Tc memory (CD8+TM) (n= 3 HD, 3 Moderate (M),
5 Severe (S), (l) amongst all Tc. Two-tailed student’s t test was used. *p < 0.05, **p < 0.01, and ***p < 0.001. Biorender was used in part to create the
schematic in a; appropriate license and permission to use figure in publication were obtained.
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and COVID(−) patients (Fig. 2d). Together, these results clearly
indicated a functional metabolic switch from mitochondrial
respiration to glucose-dependent metabolism in CD8+Tc during
SARS-CoV-2 infection. Prolonged anaerobic and mitochondria-
independent glycolysis was reported to impair reductive NADPH
activity, resulting in the propagation of oxidative stress38,39. As
predicted, an accumulation of ROS was detected in CD8+Tc from
COVID-19 (+) patients (Fig. 2e). Mitochondrial FAO is an
important mechanism for cells to prevent excessive oxidative
stress production40 and to generate acetyl-CoA (Ac-CoA)
required maintaining stemness41. Indeed, decreased expression of
carnitine palmitoyltransferase 1 A (cpt1a), an enzyme catalyzed
the transfer of long-chain FA through mitochondrial membrane
for subsequent oxidation42, was also found indicating attenuated
FAO in CD8+Tc from COVID-19 patients (Fig. 2f). Additionally,
enhanced expression of LC3 (Fig. 2g) indicated prevalence of
CD8+Tc autophagy in COVID-19. Along with mitochondrial
impairment, these results demonstrated upregulation of mito-
phagy in CD8+Tc during SARS-CoV-2 infection.

Metabolically linked exhaustion in CD8+Tc during severe
SARS-CoV-2 infection. Given that metabolism is a critical reg-
ulator of immune cell function43, we next examined the func-
tional characteristics of CD8+Tc during COVID-19. Augmented
expression of surface glycoprotein lymphocyte activation gene-3
(lag-3) is indicative of increased cellular exhaustion of CD8+Tc in
COVID(+) patients (Fig. 3a). We further found that cellular
protein synthesis, which is required for production of effector
molecules and cytokines in activated Tc44, was reduced in

COVID(+) as compared to COVID(−) CD8+Tc (Fig. 3b). In
support of this observation, remarkable decrease in ki67 expres-
sion was detected in CD8+Tc from COVID(+) patients (Fig. 3c)
validating an impairment in CD8+Tc proliferation during SARS-
CoV-2 infection. Increased hif-1α was detected during severe
SARS-CoV-2 infection as a result of reduced oxygen saturation
and hypoxia45,46. Notably, there was a significantly increased
expression of hif-1α in lag-3highCD8+Tc from COVID(+)
patients (Fig. 3d) suggesting that a hypoxia-mediated metabolic
switch may implicate in CD8+Tc dysfunction. Along this line,
COVID-19(+) CD8+Tc with lower mitochondrial mass exhibited
impaired IFNy secretion capacity (Fig. 3e).

To investigate whether immunometabolic dysregulation in
CD8+Tc can be a potential mechanism underlining increased
COVID-19 severity within patients with metabolic disorders, we
evaluated whether COVID(+) patients in our cohort who had
metabolic syndrome (see Methods for detailed classification)
possessed differential immunometabolic profile. We observed a
significant increase in the expression of hif-1α on CD8+Tc
amongst COVID(+) patients with metabolic syndrome, accom-
panied by a mild increase in glut-1 expression, suggesting that
patients with prior metabolic comorbidities may have an
increased hypoxia-driven anaerobic glycolysis (Supplementary
Fig. 5a). In patients who had elevated level of serum lactate
dehydrogenase (LDH) (key glycolysis rate-limiting enzyme), we
found a moderate increase in the expression of hif-1α and lag-3
(Supplementary Fig. 5b), further highlighting the potential
connection between altered patient metabolism and dysregulated
immune function during SARS-CoV-2 infection. Accordingly,

Fig. 2 Metabolic dysfunction is evident in CD8+Tc from severe COVID-19 patients. Freshly isolated PBMCs were evaluated by flow cytometry.
a Representative histogram and summary graphs demonstrating glut-1 expression in CD8+Tc from healthy, COVID(−), and COVID(+) patients (n= 8
HD, 12 C−, 20 C+). b Representative histograms and summary graph demonstrating glycolytic flux of CD8+Tc from healthy, COVID(−), and COVID(+)
patients using SCENITH (n= 3 HD, 7C−, 4 C+). c Representative histogram and summary graph demonstrating ΔΨm, mitochondrial membrane potential
(TMRM), in CD8+Tc from healthy, COVID(−), and COVID(+) patients (n= 3 HD, 9 C−, 8 C+). d Representative histograms and summary graph
demonstrating mitochondrial flux of CD8+Tc from healthy, COVID(−), and COVID(+) patients by SCENITH assay (n= 4 HD, 10 C−, 14 C+).
e–g Representative histogram and summary graphs demonstrating the levels of ROS (n= 8 HD, 12 C−, 20 C+) (e), cpt1a (n= 3 HD, 7 C−, 7 C+) (f), and
lc3 (n= 3 HD, 9 C−, 8 C+) g in CD8+Tc from healthy, COVID(−), and COVID(+) patients. c, d, g Three samples were excluded from the analysis due to
critically low CD8+Tc count; in b, one sample was excluded from analysis due to critically low CD8+Tc count. Two-tailed student’s t test was used.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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positive correlations between serum glucose level and lag-3 or
glut1 expression in CD8+Tc and between LDH and CD8+Tc
expression of lag-3 and VDAC-1 were identified in COVID-19
patients (Supplementary Fig. 5c).

Hypoxia-mediated metabolic reprogramming in COVID-
19(+) CD8+Tc. To better understand the transcriptional changes
underlying the relationship between metabolic dysfunction and
impaired immune cell function in the primary site of viral attack,
we profiled the metabolic landscape of BALF effector CD8+Tc
from COVID(+) patients. Differential expression analysis
revealed increased expression of genes encoding anaerobic gly-
colysis (GAPDH, GALM, and ALDOA) in effector CD8+Tc from
moderate and severe COVID(+) patients (Supplementary Fig. 6a,
b). Key metabolic pathways including hypoxia, anaerobic glyco-
lysis, mitophagy, autophagy, cell exhaustion, and senescence were
upregulated, while pathways relying on mitochondrial metabo-
lism including FAO, cholesterol metabolism, and oxidative
phosphorylation (OXPHOS) were attenuated in effector CD8+Tc
from COVID(+) patients (Supplementary Fig. 6a, c). Hier-
archical clustering suggested a tight association between HIF-1α
and anaerobic glycolysis (Supplementary Fig. 6b), indicating that
oxygen-deprived condition in the BALF environment is linked to
anaerobic glucose metabolism. GSEA analysis showed that
effector CD8+Tc were comparatively less dependent on mito-
chondrial metabolism during SARS-CoV-2 infection (Supple-
mentary Fig. 6c). Reduction of NAD+ to NADH conversion is
required to preserve cellular redox homeostasis and sustain gly-
colytic flux39. We observed decreased expression of transcripts
encoding NADH oxidoreductases (NDUFB8, NDUFC2, and
NDUFA11) in effector CD8+Tc from COVID(+) patients (Sup-
plementary Fig. 6a, c). There was also downregulation of lipid
metabolism-associated genes (FABP4, APOC1, APOE, MARCO)
in COVID-19 effector CD8+Tcs (Supplementary Fig. 6a, c).
Increased oxidative stress was also evident by overexpression of
NFE2L2 and PRDX2 (Supplementary Fig. 6d). Decreased NADH

oxidation and a concomitant increased NAD+ are associated with
impaired cytokine secretion, cell proliferation, and
exhaustion47,48. Indeed, the expression of CD38, an NAD+

hydrolase linked to Tc exhaustion48, was increased in COVID-19
effector CD8+Tc (Supplementary Fig. 6a, b). These results prove
that hypoxia-induced CD38 expression is associated with meta-
bolic reprograming and cellular exhaustion in the lung of
COVID(+) patients. This conclusion is supported by higher
levels of exhaustion markers LAG3 and TIGIT in effector
CD8+Tc from severe COVID(+) patients (Supplementary
Fig. 6a, b). In order to validate the observed transcriptomic
changes in the BALF, we reanalyzed an existing single-cell tran-
scriptomic profiling dataset from COVID-19 patient PBMCs49

(see Methods for details). In bulk CD8+Tc identified by unsu-
pervised clustering, we also observed a strong increase in the
expression of key glycolytic genes in COVID(+) patients (Sup-
plementary Fig. 6e, f). Additionally, the expression of transcripts
regulating cellular exhaustion (TIGIT, BTL4, PDCD1, and
HAVCR2) was found to be similarly upregulated in severe
COVID-19 (Supplementary Fig. 6g). Altogether, these results
consistently suggest that hypoxia arising from COVID-19- pul-
monary dysfunction augments glycolytic flux, impairs FAO and
oxidative stress, leading to mitochondrial dysfunction and
immunological exhaustion.

Impaired memory cell differentiation in CD8+Tc from
patients with severe COVID-19. Memory CD8+Tc (CD8+TM)
are capable of providing protective immunity against secondary
viral infection50,51. To understand the dynamics of memory dif-
ferentiation in CD8+Tc during SARS-CoV-2 infection, we per-
formed trajectory inference and pseudo-temporal modeling
analysis for BALF CD8+Tc (Fig. 4a). Differential analysis
demonstrated a strong reduction of pseudotime for CD8+TM in
severe compared to moderate COVID-19 and healthy control
patients (Fig. 4a–c). In contrast to reduced CD8+TM, the
enrichment of proliferating and effector CD8+Tc was identified

Fig. 3 CD8+Tc are functionally exhausted in severe COVID-19 patients. Freshly isolated PBMCs were evaluated for metabolic properties by flow
cytometry. a–c Representative histogram and summary graph demonstrating the abundance of lag-3+ CD8+Tc (n= 8 HD, 12 C−, 20 C+) (a), cellular
translational level via Puromycin (n= 3 HD, 7 C−, 5 C+) (b), and Ki-67 expression (n= 3 HD, 9 C−, 8 C+) (c) in CD8+Tc from healthy, COVID(−), and
COVID(+) patients. d Representative histogram and paired graph abundance of HIF-1αHigh cells in lag-3low and lag-3highCD8+Tc from COVID(+) patients
(n= 18). e Representative contour plot and summary paired graph demonstrating IFNy+ cells in MTRlow and MTRhigh CD8+Tc from COVID(+) patients
(n= 11). b, d One sample was excluded due to critically low CD8+Tc count; in c, three samples were excluded due to critically low CD8+Tc count. Two-
tailed student’s t test was used. *p < 0.05, **p < 0.01, and ***p < 0.001.
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in moderate and severe compared to healthy BALF cells (Fig. 4c).
Notably, these findings are also corroborated in patient PBMCs,
where the proportion of effector CD8+Tc are increased in severe
and moderate patients compared to healthy donors, however, the
proportion of memory cells are severely decreased in comparison
to both COVID(−) and healthy patients (Fig. 1e–g). These
findings suggest that CD8+Tc are stalled along their memory
differentiation trajectory and are unable to reach the terminal
state during severe COVID-19 infection. During viral infection,
circulating memory cells migrate to the infected tissue and dif-
ferentiate into tissue-resident memory (TRM) cells to provide the
first response against pathogen reencounter52. We observed
reduced expression of tissue residence- indicating genes ITGA1
and ZNF683 selectively in severe COVID(+) patients (Fig. 4d).
This result suggests that impaired differentiation of TRM was also
evident in the lung of severe COVID-19 patients, which may be
implicated with attenuated capacity for viral clearance of CD8+Tc
during SARS-COV-2 infection. However, no dysregulation of
memory differentiation was found in CD4+Tc of COVID(+)
patients (Supplementary Fig. 7a, b), suggesting this phenomenon
selectively occurred in CD8+Tc.

As memory differentiation is strictly regulated by
metabolism53,54, we investigated the potential relationship
between infection-induced metabolic dysregulation and memory
cell differentiation in CD8+Tc. Increased glucose uptake,
indicated by augmented glut-1 expression, as well as elevated
dependence on glucose metabolism, demonstrated through
single-cell SCENITH analysis, were observed in CD8+TM from
COVID(+) patients (Fig. 5a, b). Additionally, a decreased
capacity of mitochondria to oxidize amino acid (AA) and FA
were found in COVID-19+ CD8+TM (Fig. 5b). During cellular
stress, excessive ROS production may be associated with
increased electron leakage at the sites of complex I (NADH-
ubiquinone oxidoreductase) and complex III (ubiquinone-

cytochrome c oxidoreductase) in the electron transport chain
(ETC), resulting in dysfunctional mitochondrial activity55,56. Our
results demonstrated increased ROS was solely observed in
CD8+TM from COVID(−) but not from COVID(+) patients
(Fig. 5c) suggesting that ROS accumulation in CD8+TM is
nonspecific for COVID-19. However, a selective increase in
COVID(+) patients of voltage-dependent anion channel
(VDAC), involved in cellular redox and mitochondria-mediated
apoptotic signaling, was identified (Fig. 5d), suggesting impaired
mitochondrial integrity in COVID-19(+)CD8+TM. Accordingly,
decreased mitochondrial membrane potential was identified,
further validating hampered mitochondrial function in CD8+TM

during SARS-CoV-2 infection (Fig. 5e). Evaluating the impact of
dysregulated metabolism on cellular function, we found CD8+TM

exhibited increased cellular exhaustion during SARS-CoV-2
infection, as evidenced by upregulated expression of lag-3
(Fig. 6a). Consistently, CD8+TM from COVID(+) patients
demonstrated impaired cytolytic function, illustrated by
decreased proportion of granzyme B (GrzmB)+ cells (Fig. 6b).
Mitochondrial mass is a key regulator of cytokine-secreting
capacity of CD8+TM

57. We indeed observed an elevated IFNy
secretion in COVID(+) CD8+TM with preserved mitochondrial
mass (Fig. 6c). SCENITH analysis further confirmed that lag-
3highCD8+TM were more metabolically dependent on glucose
metabolism in COVID(+) patients (Fig. 6d). Meanwhile,
oxidation of FAO and AA in mitochondria was significantly
reduced in lag-3highCD8+TM (Fig. 6d), validating that a
prolonged shift towards glucose metabolism is a key driver of
mitochondrial impairment in exhausted CD8+TM during SARS-
CoV-2 infection.

Metabolic dysregulation triggers CD8+TM exhaustion in
COVID-19. GSEA analysis revealed that CD8+TM from the BALF
of severe or moderate COVID(+) patients were highly dependent

Fig. 4 Impaired memory differentiation of CD8+Tc in COVID-19. Pseudotime and trajectory inference analysis to evaluate the kinetic differentiation of
CD8+Tc in the BALF during SARS-CoV-2 infection. a, b UMAP projection (a) and dot plot showing pseudotime values (b) of 3694 CD8+Tc of reintegrated,
healthy, moderate, or severe COVID-19 patients. c Bar graphs displaying the frequency of CD8+Tc subpopulations across disease conditions; d Violin plot
demonstrating the expression of tissue-resident memory encoding genes in CD8+TM.
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on glycolysis for their bioenergetics demands (Fig. 7a, b). Clustering
and shared upregulation of glycolytic enzyme encoding genes
GALM, GAPDH, GPI, and ALDOA together with HIF1A, and
transcripts regulating exhaustion (TIGIT and LAG3) (Fig. 7b)
suggested that hypoxia/anaerobic axis is associated with impaired
CD8+TM function in COVID-19 BALF. FAO and OXPHOS

promote the development of CD8+TM after antigen exposure58.
Indeed, genes-encoding regulators of lipid uptake (APOE, and
APOC1) and FAO (OLR, MARCO, FABP4) were downregulated
in CD8+TM from severe COVID(+) patients (Fig. 7a, c). Con-
sistently, decreased expression of OXPHOS-coding genes was
found in severe COVID (+) CD8+TM (Fig. 7a, c). A negative

Fig. 5 Metabolic reprogramming towards anaerobic glycolysis upon mitochondrial dysfunction in CD8+TM during SARS-CoV-2 infection. Freshly
isolated PBMCs were evaluated for metabolic analysis using flow cytometry. a Representative histogram and summary graphs demonstrating glut-1
expression in CD8+TM from healthy, COVID(−), and COVID(+) patients (n= 8 HD, 12 C−, 19 C+). b Representative histograms and dot plot graphs
demonstrating glucose dependence and FAO/AAO capacities of CD8+TM from healthy, COVID(−), and COVID(+) patients by the SCENITH assay (n= 6
C−, 5 C+). c–e Representative histogram and summary graphs demonstrating the expression of ROS (n= 8 HD, 12 C−, 19 C+) (c), abundance of vdac+

CD8+Tc (n= 8 HD, 12 C−, 19 C+) (d), and mitochondrial membrane potential (n= 3 HD, 9 C−, 8 C+) e in CD8+TM from healthy, COVID(−), and
COVID(+) patients. b, e three samples were excluded due to critically low CD8+TM count; in (a, c, d), one sample was excluded due to critically low
CD8+TM count. Two-tailed student’s t test was used. *p < 0.05, **p < 0.01, and ***p < 0.001.

Fig. 6 Metabolic dysregulation triggers functional impairment in CD8+TM. Freshly isolated PBMCs were evaluated for cellular function and metabolic
phenotype by flow cytometry. a, b Representative histogram and summary graphs demonstrating the expression abundance of lag-3+ CD8+TM (n= 8 HD,
12 C−, 19 C+) (a) and grzmB expression (n= 3 HD, 9 C−, 8 C+) (b) in CD8+TM from healthy, COVID(−), and COVID(+) patients. c Representative
contour plot and summary paired graph demonstrating IFNy+ cells in MTRlow and MTRhigh CD8+Tc from COVID(+) patients (n= 11). d Summary paired
graphs demonstrating glucose dependence and FAO/AAO capacities of lag-3low and lag-3high CD8+TM from COVID(+) patients (n= 5). b, d three
samples are excluded due to critically low CD8+TM count; in a, one sample was excluded due to critically low CD8+TM count. Two-tailed student’s t test
was used. *p < 0.05, **p < 0.01, and ***p < 0.001.
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correlation of FAO-coding transcripts and HIF1A expression
(Fig. 7c) indicated that impaired mitochondrial metabolism is a
result of hypoxia during SARS-CoV-2 infection. Strikingly,
Pearson analysis revealed a negative correlation (R=−0.73,
p= 0.011) between module scores for glycolysis and FAO
(Fig. 7d), which further emphasizes a potential association
between prolonged anaerobic glycolysis and reduced mitochon-
drial fitness. In support of this, a strong positive correlation
between module scores for glycolysis and exhaustion (R= 0.85,
p= 0.00026) (Fig. 7d) validates that excessive glycolytic depen-
dence is tightly associated with CD8+TM exhaustion. Genes
involved in cellular senescence and mitophagy were upregulated
in severe COVID-19 CD8+TM (Fig. 7a), implying that CD8+TM

metabolically switch to these pathways in response to impaired
mitochondrial metabolism. Likewise, glutaminolysis was used as
an alternative pathway, evidenced by upregulation of glutamate
oxidation-regulating genes (GLUD1, DGLUCY) in COVID-19(+)
CD8+TM (Fig. 7a).

PCA analysis performed on 30 differentially expressed
metabolic genes (Supplementary Table 3) showed distinct
clustering of CD8+TM across different groups, further high-
lighting metabolic disorder during SARS-CoV-2 infection
(Fig. 7e). Pearson correlation analysis showed a positive
correlation between expression of genes- regulating glycolysis,
mitophagy, senescence, and glutaminolysis (Fig. 7f). These genes
were inversely correlated with transcripts regulating FAO and
NADH oxidation (Fig. 7f). Increased CD38 expression in severe
COVID-19 CD8+TM was closely clustered with exhaustion-
coding genes (LAG-3, TIGIT) (Fig. 7b) suggesting CD38
expression is associated with metabolic reprograming, memory
impairment, and cellular exhaustion of CD8+TM in the lung
of COVID(+) patients. Together, these data demonstrated
that the hypoxia/anaerobic glycolysis axis mediates CD8+TM

cellular dysfunction and exhaustion at transcriptomic level in
COVID-19.

Pharmacological inhibition of mitophagy enhances cellular
function of SARS-CoV-2-specific- CD8+Tc. SARS-CoV-2
antigen-specific CD8+Tc in acute patients governs the intensity
of adaptive immune response against SARS-CoV-2 infection59.
We thus activated COVID(+) PBMCs with a CD8a SARS-CoV-2
spike peptide megapool60 (Methodology). We found that SARS-
CoV-2 CD8a peptide induced glut-1 expression in CD8+Tc from
severe COVID(+) patients, suggesting that glucose metabolism is
associated with SARS-CoV-2-specific CD8+Tc during infection
(Fig. 8a). Given increased mitophagy has been found in CD8+Tc
from PBMCs (Fig. 2g) and BALFs (Supplementary Fig. 6a, c) of
COVID-19 patients, we investigated whether treatment with
mitophagy inhibitor mdivi-1 could enhance the cellular function
of CD8+Tc and CD8+TM after activation with SARS-CoV-2
peptide megapool. Indeed, we found that mdivi-1 improved the
generation of SARS-CoV-2-specific CD137+ cells (Fig. 8b),
induced proliferation (Fig. 8c), and increased IFNy- secreting
capacity CD8+Tc (Fig. 8d). Interestingly, mdivi-1 treatment
augmented CD8+TM proliferation (Fig. 8e). Glut-1 expression
was reduced in CD8+TM under mdivi-1 treatment (Fig. 8f),
suggesting that inhibition of mitophagy may reverse dysregulated
glucose metabolism and normalize memory differentiation in
CD8+Tc. Collectively, these results demonstrate that pharmaco-
logical inhibition of mitophagy may restore metabolic dysregu-
lation to improve the efficacy of the CD8+Tc response in
COVID-19.

Aberrant metabolism causes NKT dysfunction in COVID-19.
NKTs, expressing CD56 and CD8, are intermediate between the

Fig. 7 Metabolic reprogramming in BALF CD8+TM during SARS-CoV-2 infection. a Heatmap displaying the expression of key metabolic genes of
CD8+TM. b–c GSEA enrichment and hierarchical clustering plot for glycolysis (b) and TCA and Respiratory Electron Transport (c) to compare severe
COVID-19 vs. healthy patients. d Linear regression and Pearson correlation analysis between module scores for glycolysis and exhaustion or FAO. e UMAP
projection of CD8+TM clustered on 42 differentially expressed metabolic genes, circles were manually drawn to highlight clustering f. Pearson matrix
showing a correlation between differentially expressed genes.
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CD8 and NK cell lineages19. NKTs play critical roles in pre-
venting pneumonia during chronic pulmonary disease61. SARS-
CoV-2 infection impairs NKTs effector functions and hinders the
effective clearance of virally infected cells19. Circulating NKT
frequency has been implicated as a powerful prognostic bio-
marker of COVID-19 severity18. Consistently, in our current
cohort, NKT lymphopenia was observed in both PBMCs and
BALF from COVID(+) patients (Fig. 9a, b). Examination of the
metabolic profile of NKTs from patient PBMCs revealed a sig-
nificant increase in the expression of glut-1 in NKTs from
COVID(+) patients compared to those from both healthy and
COVID(−) counterpart (Fig. 9c), suggesting that augmented
glucose utilization by NKTs has selectively occurred during
SARS-CoV-2 infection. SCENITH analysis validated a trending

increase in the glycolytic flux of COVID(+) NKTs (Fig. 9d).
Consistently, enhanced ROS accumulation was accompanied by a
concurrent upregulation of VDAC, indicative of impaired mito-
chondrial fitness was detected in COVID(+) NKTs (Fig. 9e, f).
Accordingly, mitochondrial membrane potential was found
reduced in NKT from COVID-19 patients (Fig. 9g). NKTs exhibit
protective activity against viral infection via the secretion of
cytolytic molecules such as grzmB62. Consequently, decreased
expression of grzmB in COVID(+) NKTs indicated reduced
effector function of this cell subset during SARS-CoV-2 infection
(Fig. 9h). To further probe the perturbed metabolism in NKTs
from COVID-19 patients, we characterized gene expression
profiles of BALF NKTs. Co-expression of CD8A and KLRD1 was
used to define NKT lineage (Supplementary Table 4). A

Fig. 8 Mitophagy inhibition restores CD8+Tc and SARS-CoV-2-specific CD8+Tc function. PBMCs from COVID-19(+) patients were activated with
SARS-CoV-2 megapool CD8a peptide (see Methods) in the presence or absence of mdivi-1 (20 µM). One sample was excluded from analysis due to
critically low CD8+Tc count. a Representative histogram and summary graphs demonstrating the expression of glut-1 in CD8+Tc from healthy and
COVID(+) patients (n= 3 HD, 4 C). b–d Representative histogram/density plots and graphs demonstrating the abundance of antigen-specific (CD137+)
(n= 4 C) (b), Ki-67+ (n= 4 C) (c), and IFNy+ (n= 4 C) (d) cells among CD8+Tc of vehicle or mdivi-1 vs vehicle-treated samples. e, f Representative
histogram and summary graphs demonstrating the abundance of Ki-67+ (n= 4 C) (e) and glut-1+ (n= 4 C) (f) cells amongst CD8+TM of vehicle or mdivi-
1-treated samples. Two-tailed student’s t test was used. *p < 0.05, **p < 0.01, and ***p < 0.001.

Fig. 9 Circulating NKTs exhibit dysfunctional immunometabolic phenotype in COVID-19. a Summary graph demonstrating the frequency of NKT in
PBMCs from healthy, COVID(−), and COVID(+) patients (n= 3 HD, 3M, 4 S). b Summary graph demonstrating the frequency of NKT in the BALF from
healthy, moderate, and severe patients (n= 3 HD, 9 C−, 11 C+). c Summary graphs and histograms demonstrating the expression of glut-1 in NKTs from
healthy, COVID(−), and COVID(+) patients (n= 8 HD, 12 C−, 20 C+). d Histograms and graphs demonstrating glycolytic flux of NKTs from COVID(−)
and COVID(+) patients from the SCENITH assay (n= 6 C−, 4 C+). e–h Histograms and graphs demonstrating the expression of ROS (n= 8 HD, 12 C−,
20 C+) (e), VDAC (n= 8 HD, 12 C−, 20 C+) (f) TMRM (n= 3 HD, 9 C−, 7 C+) (g), and grzmB TMRM (n= 3 HD, 9 C−, 7 C+) (h) in NKTs from
healthy, COVID(−), and COVID(+) patients. d, f, g, h Four samples were removed from analysis due to a critically low NKT cell count. Two-tailed
student’s t test was used. *p < 0.05, **p < 0.01, and ***p < 0.001.
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transcriptional program associated with hypoxia-induced meta-
bolic reprogramming was seen in NKTs from severe COVID-19
patients (Supplementary Fig. 8a). Consistent with increased glut-1
expression (Fig. 9c), upregulation of anaerobic glycolytic meta-
bolism involving genes (LDHA, TPi, PGAM1, ALDOA) were
identified in severe COVID-19 NKTs (Supplementary Fig. 8a).
GSEA analysis validated a strong, concomitant increase in gly-
colysis genes (Supplementary Fig. 8b). Importantly, a substantial
increase in the expression of genes- regulating TCA and
respiratory electron transport was also seen (Supplementary
Fig. 8b). Under normal conditions, activated NKTs will expect-
edly use pyruvate dehydrogenase (PDHA1/2) to supply acetyl-
CoA for mitochondrial TCA cycle metabolism63. However, under
reduced oxygen saturation in the lung of COVID-19 patients,
downregulation of genes encoding lipid uptake, FAO, and NADH
oxidation (NDUFB8, NDUFA11, NDUFA13) was found in severe
COVID(+) NKTs (Supplementary Fig. 8b,c) suggesting mito-
chondrial dysfunction in NKTs during SARS-CoV-2 infection.
This observation may illustrate that glycolysis-derived pyruvate is
converted into lactate rather than oxidized in TCA cycle, leading
to a lack of materials for sufficient OXPHOS to support NKT
effector function during SARS-CoV-2 infection. Alternatively,
increased levels of GADD45B and SLC25A5 transcripts (Supple-
mentary Fig. 8a) suggest metabolic adaptation via enhancement
of mitophagic activity in NKTs during SARS-CoV-2 infection.

Metabolic dysregulation impairs immune surveillance and
increases pro-inflammatory response in lung epithelial cells
during SARS-CoV-2 infection. Epithelial cells (ECs) secrete
cytokines and help mediate antigen presentation to modulate
immune cells' function during viral infection64. Differential
expression analysis revealed overexpression of key immune sig-
naling pathways in COVID-19 ECs (Supplementary Fig. 9a).
Induction of a pro-inflammatory cascade including type 1 IFN,
toll-like receptor, NF-kB, and chemokine signaling was observed
in COVID-19 ECs (Supplementary Fig. 9b). Glucose metabolism
mediates type I IFN secretion through enhancing NF-kB
expression65 and epigenetic acetylation66. Indeed, we found a
positive correlation between module scores for glycolysis and type
1 IFN signaling (Supplementary Fig. 9c) as well as for glycolysis
and NF-kB signaling (Supplementary Fig. 9d). Chronic pre-
sentation of viral antigens to CD8+Tc by ECs may cause cellular
dysfunction67. We observed that genes encoding HLA class 1
(HLA-E, PSMA-6, TAP1, IFI30) were enriched in COVID-19 ECs
(Supplementary Fig. 9a). GSEA analysis further confirmed the
upregulation of HLA class 1 antigen presentation in bulk ECs
(Supplementary Fig. 9e). In contrast, downregulation of genes
encoding HLA class 2 (HLA-DRA, HLA-DPA1, HLA-DMA,
DYNLL1) was found in COVID-19 ECs (Supplementary Fig. 9a)
which was further confirmed by GSEA analysis (Supplementary
Fig. 9e). Glycolysis was reported to repress functional response of
antigen-presenting cells during infection68. We indeed observed a
negative correlation between glycolysis and genes encoding HLA
class 2 machinery (Supplementary Fig. 9f). These results revealed
potential links between dysregulated EC metabolism with cyto-
kine release syndrome and immune dysfunction in COVID-19.
Network analysis demonstrated a connection of SARS-CoV-2
infection with attenuated transcriptional factor network demon-
strated by downregulation of the transcriptional factors
ZKSCAN1 and CSNK2B, and upregulation of KLF6, NEAT1, and
JUND (Supplementary Fig. 9g).

BALF ECs were next identified and subsetted for downstream
analysis (Supplementary Fig. 10a–c). Differential expression
analysis revealed key differences in the expression of transcripts
governing key metabolic pathways (Supplementary Fig. 10d).

Additionally, UMAP performed solely on differentially expressed
metabolic genes revealed distinct clustering of bulk epithelial cells
along disease severity (Supplementary Fig. 10e). Pearson correla-
tion analysis performed on ECs revealed a strong positive
correlation between HIF1A and key glycolytic transcripts,
suggesting a hypoxia- induced glycolytic metabolic reprogram-
ming (Supplementary Fig. 10f). ECs were then divided into
pseudostratified ciliated and nonciliated subtypes based on the
expression of canonical genes associated with cilia production
(CFAP126, and DNAAF) (Supplementary Fig. 10b). The ratio of
pseudostratified ciliated ECs to nonciliated epithelial cells was
inversely correlated with COVID-19 disease severity (Supple-
mentary Fig. 10c). This finding suggested that SARS-CoV-2
infection produced direct injury to the ciliated EC compartment.
Overexpression of glycolytic transcripts (ENO1, ADH1A3,
GAPDH, ALDOA, PCK2) was noted in both ciliated and
nonciliated EC subsets from COVID(+) patients (Supplementary
Fig. 10g, i). These results were validated by GSEA analysis, which
demonstrated enrichment of glycolysis genes (Supplementary
Fig. 10g, i). We also observed decreased expression of FAO
regulating genes to different extents in ciliated and nonciliated
ECs from severe COVID(+) compared to healthy control
(Supplementary Fig. 10h, j). HIF-1A and anaerobic glycolysis
gene expression was strongly correlated with reduced expression
of the OXPHOS and TCA cycle genes in these EC subsets from
severe COVID-19 (Supplementary Fig. 10h, j). GSEA analysis
demonstrated enrichment of glycolysis, as well as a large
downregulation of OXPHOS and TCA cycle regulating genes in
ciliated and nonciliated ECs of severe COVID-19 patients
(Supplementary Fig. 10h, j). Collectively, these results suggested
that oxygen-deprived conditions in the COVID-19 lung mediates
a metabolic switch from aerobic FAO and OXPHOS towards
anaerobic glycolysis in ECs, which is strongly linked to
mitochondrial dysfunction.

Discussion
Metabolic comorbidities have been identified as key risk factors
for COVID-19 severity and mortality5,69. However, how meta-
bolic dysregulation in patients is linked to worsened immuno-
pathology during SARS-CoV-2 infection remains unclear. A more
comprehensive understanding of the mechanisms underlying this
link would provide critical insight for the prognosis and ther-
apeutic treatment of COVID-19. Here, using a tripartite combi-
nation of multiparametric flow cytometry, SCENITH single-cell
metabolomics, and scRNA-SEQ re-analysis, we show immune
dysregulation in SARS-CoV-2 infection is associated with meta-
bolic reprogramming in CD8+Tc and NKTs, both of which have
critical roles in the anti-viral adaptive immune response18,70.
Notably, this metabolic dysfunction was absent in patients
negative for COVID-19 who demonstrated COVID-19-like upper
respiratory symptoms, validating that these altered immunome-
tabolic profiles were not merely a consequence of increased
inflammation, but rather uniquely specific to SARS-CoV-2
infection.

Despite CD4+Tc lymphopenia having been reported in severe
COVID-19 patients in a number of studies70,71, it is highly
controversial whether this phenomenon occurs in CD8+Tc. In
this study, using high-dimensional flow cytometry to validate and
decipher highly resolved CD8+Tc subsets, we demonstrated clear,
decreased cell frequency amongst CD8+TM and NKT subsets
during SARS-CoV-2 infection. Interestingly, we observed an
increase in the percentage of effector CD8+Tc in both COVID-19
patient PBMCs and severe BALFs compared to healthy indivi-
duals, indicating that the initial differentiation of effector
CD8+Tc is not impaired in COVID-19. However, this is in stark
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contrast to the frequency of CD8+TM, which was found to be
heavily decreased compared to healthy and COVID(−) patients.
Thus, our results suggest that dysfunction in both CD8+Tc and
effector CD8+Tc leads to a severe impairment in CD8+TM dif-
ferentiation. Mechanistically, pseudo-temporal modeling and
trajectory inference analysis demonstrated that CD8+Tc are
stalled on their differentiation trajectory towards memory cells in
severe SARS-CoV-2 infection. Noticeably, CD8+TM and NKT
lymphopenia was not identified in COVID(−) patients, suggest-
ing that a reduced abundance of CD8+TM and NKTs are specific
predictive biomarkers for COVID-19.

Hyperglycemia during hospital admission is a strong predictor
of COVID-19 mortality5,72. Consistently, increased activity of
LDH, a gate-keeping glycolytic enzyme, is associated with pul-
monary dysfunction during COVID-1973. These evidence high-
light the lung dysfunction-induced hypoxia/anaerobic glycolysis
axis as a key mechanism mediating dysregulated host immuno-
metabolism during SARS-CoV-2 infection. Noticeably, Cossar-
izza et al. failed to detect metabolic changes in CD8+Tc using
Seahorse bioenergetics analysis74. Additionally, using scRNA-
SEQ and flow cytometry, the Powell group did not observe
attenuation in glucose metabolism of CD8+Tc75. This dis-
crepancy can probably be attributed to the fact that Tc were
stimulated with αCD3/CD28 polyclonal activation under nor-
moxic conditions which may result in nulling of any potential
metabolic differences present in COVID-19. Another potential
explanation arises from the fact that cellular metabolism in these
studies was assessed for entire Tc populations, which are highly
heterogeneous amongst subsets with respect to their metabolism.
To this end, in our current study, using SCENITH single-cell
metabolomics to evaluate the bioenergetics flux of freshly isolated
COVID-19+ PBMCs, we successfully elucidated a systematic
metabolic reprogramming characterized by excessive glucose
metabolism accompanied with impaired mitochondrial fitness,
resulting in subsequent cellular exhaustion specific to CD8+TM

and NKT cells. Our single-cell metabolomics approach allowed us
to directly probe the metabolism of exhausted CD8+Tc and to
validate a large overdependence on glucose metabolism as a
hallmark of CD8+Tc exhaustion in COVID-19. Moreover, a
strong increase in CD8+Tc hif-1α expression in patients with
metabolic syndrome, as well as mild correlations between lag-3
and VDAC-1 expression with serum glucose level, may a
mechanistic justification for impaired antiviral immunity against
SARS-CoV-2 infection in hyperglycemic and diabetes patients.
Importantly, a metabolic shift towards increased anaerobic gly-
colysis occurred selectively in COVID-19 patients, compared to
other COVID(−) patients with similar respiratory symptoms.
Recently, Siska et al. reported that SARS-CoV-2 infection med-
iates increased hypoxia-induced mitochondrial ROS through the
enhancement of basigin CD147 expression, resulting in mito-
chondrial stress and cellular dysfunction in Tc of patients with
severe SARS-CoV-29. In contrast, our current study demon-
strated that augmented cytosolic ROS level was the most apparent
in CD8+Tc from COVID(−) patients, suggesting that ROS
accumulation in CD8+Tc is a more general feature of increased
lung inflammation. Presumably, the combination of ROS accu-
mulation with a COVID-19-specific hypoxia triggered a shift to
anaerobic glycolysis, which is a primary factor driving immuno-
metabolic dysfunction in CD8 lymphocytes during SARS-CoV-2
infection.

CD8+TM are critical for long-term protection against viruses
and strongly correlate with immune protection76. However, little
is known about the SARS-CoV-2-specific Tc immunity in prior,
virally exposed individuals, such as how CD8+TM are generated
post-acute infection. Normally, CD8+TM depend on OXPHOS
and oxidation of intracellular lipids in mitochondria to sustain

their energetic demands77,78. However, in the current study, as a
consequence of reduced oxygenation due to COVID-19 lung
dysfunction, both CD8+TM and their upstream effector pre-
cursors were found to be phenotypically and functionally glyco-
lytic, suggesting a metabolically linked impairment in CD8+TM

function and differentiation. Accordingly, CD8+Tc activated by
SARS-CoV-2- specific peptide showed significantly upregulated
glucose uptake. Given that healthy, functional SARS-CoV-2-
specific CD8+Tc are associated with milder, recovered, and
convalescent COVID-19 patients79, targeting the hypoxia/anae-
robic glycolysis may potentially improve the function of SARS-
CoV-2 antigen-specific CD8+Tc during re-exposure to viral
antigens, and rescue impaired memory cell differentiation. Sup-
porting this hypothesis, cyclophilin A was found to restore SARS-
CoV-2-specific CD8+Tc function through normalizing cellular
metabolism9. Further, a recent stage-2 clinical trial using 2-DG, a
competitive inhibitor of glycolytic flux, as a therapeutic treatment
for COVID-19 was successful in improving patient outcomes80.

The current study strongly implicates mitophagy as a potential
therapeutic target for COVID-19 treatment. Mitophagy is the
cellular process involved in selective autophagic degradation of
dysfunctional mitochondria81. Depletion of impaired mitochon-
dria via mitophagy redirects metabolism towards increased glu-
cose utilization82,83. Accordingly, ablation of mitophagy may
potentially attenuate CD8+Tc exhaustion and improve memory
cell differentiation. Indeed, pharmacological targeting of mito-
phagy by mdivi-1 restored the proliferation, activation, and
memory formation of CD8+Tc and CD8+TM, as well as
enhanced the generation of SARS-CoV-2- specific CD8+Tc via
the attenuation of glucose metabolism. Furthermore, unlike gly-
colysis, mitophagy is not critical for initial Tc activation and
effector cell differentiation84; thus, mitophagy-targeting approa-
ches can potentially be used immediately after infection. Addi-
tionally, virus have been found to hijack intracellular mitophagy
to attenuate innate immune response activity and promote viral
proliferation85. Indeed, mdivi-1 has been shown to effectively
reduce SARS-CoV-2 replication in virally infected cells17. Thus,
therapeutic use of mdivi-1 for COVID-19 may have a dual effect
of 1) improving the efficacy of the adaptive Tc immune response
via metabolic restoration and 2) directly inhibiting viral replica-
tion in the host.

NKT abundance is a strong predictive biomarker for COVID-
19 outcome86. NKTs have been proven to have a key role in the
prevention of COVID-19-induced pneumonia19. As a key bridge
between innate and adaptive immunity, it is critical to understand
the function and role of NKTs during SARS-CoV-2 infection.
However, little is known about how NKT metabolism during
infection. Consistently, in current study, NKT lymphopenia was
evident in both the BALFs and PBMCs. Furthermore, COVID-
19(+) NKTs demonstrated augmented hypoxia-mediated anae-
robic glycolytic activity, accompanied by elevated mitochondrial
impairment. However, unlike CD8+Tc, a strong increase in
OXPHOS was seen in NKTS from severe COVID-19 patients.
This differential metabolic response can be explained by the
observations that NKT cells are considerably more dependent on
mitochondrial metabolism after activation in comparison to
conventional Tc21,22. Whereas conventional Tc exhibit a tre-
mendous Warburg-like upregulation of aerobic glycolysis upon
activation87, NKTs remain heavily reliant on mitochondrial
respiration21,22. Thus, upon the onset of systemic hypoxia after
initial lymphocyte activation, OXPHOS-dependent NKTs are
likely unable to sustain mitochondrial activity and thus also
upregulate glycolysis to sustain their bioenergetics demands. Our
results thus highlight that this metabolic reprogramming is
associated with a decrease in the frequency of NKTs, as well an
impairment in cytolytic function.
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Interestingly, we found that SARA-CoV-2 derived EC damage
creates oxygen-deprived conditions in the lungs that not only
induce metabolic reprogramming of various immune cell subsets,
but also themselves. We found that during COVID-19 infection,
differential metabolism drives lung ECs towards senescence and
towards acquiring a SASP phenotype, leading to secretion of pro-
inflammatory cytokines, reduced HLA class 2 mediated immu-
nosurveillance, and increased HLA class 1 machinery. Prolonged
stimulation of exhausted lymphocytes, which demonstrate atte-
nuated effector function and cytokine secretion in nutrient-
depleted microenvironments, by antigen presenting cells via HLA
class 1 leads to increased cellular exhaustion88, which further
impairs the capacity of cells to differentiate into memory phe-
notypes. Our results, therefore, show that the immunometabolic
rewiring of ECs in the BALFs can be a potential mechanism for
organ-specific lymphocyte exhaustion and memory cell dys-
function. Further, this observation thus highlights that uncon-
ventional antigen presentation on non-hematopoietic ECs via
HLA class 1, in addition to conventional antigen presentation by
professional APCs (monocyte, DC, and macrophage), can be
considered as a potential target for therapeutic development.

In summary, in the current study, we show that CD8+Tc,
NKTs, and ECs undergo a global metabolic reprogramming
towards anaerobic metabolic processes including glycolysis,
mitophagy, and glutaminolysis. As a result, specific CD8+Tc
subsets and NKTs demonstrate profound metabolically- linked
exhaustion and effector function, as well as impaired differ-
entiation into memory cells. We further validate mitophagy as
potential target for therapeutic treatment of severe SARS-CoV-2.
Our current study therefore sheds important light on the key
molecular and cellular mechanisms by which immunometabolism
regulates pathobiology in SARS-CoV-2 infection and validate the
concept of targeting immunometabolism to treat acute COVID-
19 severity or enhance the efficacy of COVID-19 vaccination
therapies.

Shortcomings of our study included a small sample size leading
to weak statistical power in analyses, as well as an inability to
stratify for disease severity in the analysis. In addition, given the
limited amount of blood received for patient per analysis and the
high degree of lymphopenia amongst the samples, it was not
possible to perform every experiment with all the patients in our
cohort. We also report a limited sample size for analysis of BALF
transcriptomic data, along with a lack of proteomic data for our
study of lung ECs.

Methods
Sample acquisition. Blood from healthy donors was ordered from Research Blood
Company. Blood samples from hospitalized COVID-19 patients or patients with
COVID-19-like symptoms, however, testing negative for COVID-19 (COVID(−)
patients), were collected at AdventHealth Hospital under protocols IRB# 1668907
and #1590483 approved by AdventHealth IRB committee. Informed consent was
taken for all patients, in addition to maintenance of strict confidentiality in
accordance with HIPAA confidentiality. COVID-19 positivity/negativity was
confirmed by a PCR test at AdventHealth. Blood was used for human PBMC,
plasma, and serum isolation.

Patient classification criteria. Our cohort consisted of hospitalized COVID(+)
and COVID(−) patients requiring either emergency admission or acute IP care.
The classifier “severe respiratory impairment” was used to describe patients
recorded as having either “dependence on respirator (ventilator)”, “Supplementary
oxygen”, “acute respiratory failure”, “acute respiratory distress syndrome”,
“hypoxia”, “hypoxemia”, “acute and chronic respiratory failure”, “chronic
respiratory failure”. Additionally, the classifier “presence of dysfunctional lung
symptoms” was used to describe patients who are recorded as having any of the
above described symptoms of “severe respiratory impairment” as well as “pneu-
monia”, chronic obstructive pulmonary disease”, “pneumonitis”, “pulmonary
fibrosis”, “bronchiectasis”, “acute pulmonary edema”, “interstitial pulmonary dis-
ease”, “chronic pulmonary edema”, “dependence on other enabling machines and
devices”. Patients considered as having metabolic syndrome/disorder were diag-
nosed as having either “obesity”, “morbid obesity”, “type 2 diabetes mellitus”,

“other unspecified diabetes mellitus”, “prediabetes”, “diabetes insipidus”, “type 1
diabetes mellitus”, “metabolic syndrome”. Patients considered as having prior
transplantation and or/immunosuppression/dysfunction were diagnosed as having
either “organ transplant status/failure”, “bone marrow transplant”, “stem cell
transplant”, “disorder involving the immune mechanism”, “immunodeficiency”,
“history of immunosuppression therapy”, “human immunodeficiency virus (HIV)
disease”.

PBMC isolation. PBMCs were isolated by density-gradient centrifugation using
Ficoll-PaqueTM. Briefly, blood specimens were centrifuged at 700 × g for 7 min at
room temperature (RT) for serum collection. The pellets were resuspended in
phosphate buffer saline (PBS). Cell suspensions were carefully overlayed on the top
of 4 mL of Ficoll in 15 mL conical tube, followed by centrifugation at 700 × g at RT
for 25 min without break. PBMCs were collected from interphase between plasma
and Ficoll layers. Cells were then washed twice with PBS to remove any Ficoll
residue. All procedures were approved at the BSL2+ level by University of Central
Florida Environmental Health and Safety.

Antibody staining and flow cytometry. The concentrations of all antibodies/dyes
in flow cytometric staining were used in accordance to the manufacturers’
recommendations (Supplementary Table 5). PBMCs (0.5 × 106 cells) were first
stained with live/dead in PBS for 15 min, washed with Flow Cytometry Staining
Buffer (FACS Buffer), and stained with surface markers in ice-cold FACS buffer at
4 °C for 30 min. PBMCs were then washed twice with FACS buffer and stained
with secondary antibodies for 15 min. Samples were fixed and permeabilized using
Fixation/Permeabilization buffer (20 min) at room temperature and washed with
ice-cold FACS buffer. PBMCs were then stained with intracellular antibodies at
37 °C for 45 min in permeabilization buffer. Samples were washed once with
permeabilization buffer before being resuspended in FACS buffer for flow cyto-
metric analysis using Cytoflex system. Data were then analyzed by FlowjoTMv10.

Single-cell metabolism uptake assay. Mitochondrial membrane potential, pro-
tein translation, mitochondrial mass, and cytosolic ROS were assessed via uptake of
TMRM, puromycin; mitotracker (MTR); and 2′,7′-dichlorofluorescein diacetate
(DCFDA). Cells were incubated with fluorescent dye for 15 min at 37 °C before
being washed with ice-cold FACS buffer followed by downstream flow cytometric
staining in accordance to aforementioned description.

Single-cell metabolomics assay (SCENITH). PBMCs were incubated for 2 h
followed by a 20 min treatment with either 100 mM 2-deoxy-glucose (2-DG), 1 µM
oligomycin (O), or a sequential combination of both drugs 37 °C, 5% CO2. Sub-
sequently, puromycin (10 µg/mL) was added to the culture for additional 30 min.
Afterwards, cells were washed with ice-cold PBS and subjected to downstream flow
cytometric staining. Cells were fixed, permeabilized, and stained intracellularly with
the monoclonal anti-puromycin antibody for 45 min. Fluorescence was recorded in
the FITC channel.

Values for “glucose dependence” and “FAO and AAO capacity” were calculated in
accordance to the original SCENITH protocol89. Briefly, “glucose dependence” was
calculated as 100*(CTLPuroMFI - 2-DGPuroMFI)/(CTLPuroMFI - 2-DG+OPuroMFI).
“FAO and AAO capacity” was calculated as 100 - 100*(CTLPuroMFI - 2-DGPuroMFI)/
(CTLPuroMFI - 2-DG+OPuroMFI). Additionally, for direct investigation of the
dependence of overall cellular energy production on glycolysis, we calculated values for
“glycolytic flux” as the percent decrease in puromycinhigh cells after treatment with
2-DG compared to control as reported previously by Hong et al.90. The formula used
for this was 100*(%Puro+CTL - %Puro+2-DG)/(%Puro+CTL). Likewise, we also
calculated values for “mitochondrial flux” as percent decrease in puromycinhigh cells
after treatment with oligomycin compared to control. The formula used for this was
100*(%Puro+CTL - %Puro+Oligomycin)/(%Puro+CTL).

Similar to the guidance provided by Arguello et al.89, if the MFI value of
puromycin is higher in the inhibitor treatment (either 2-DG or O) compared to the
control, we considered the glucose/mitochondrial dependence value to be 0%.
Additionally, if the percent of puromycin-positive cells is higher in the inhibitor
treatment compared to the control, we considered the glycolytic/mitochondrial flux
to be 0%. Likewise, if the MFI value of puromycin is lower in the singular inhibitor
treatment (either 2-DG or O) compared to the combination treatment (2-
DG+O), we considered the dependence to be 100%.

CD3/CD28 polyclonal activation. 96 well flat-bottom plates were coated with
5 µg/mL anti-CD3 for 2 h at 37 °C, 5% CO2. PBMCs (5 × 105) were activated with
plate bound anti-CD3 and soluble anti-CD28 (5 µg/mL) in complete culture media.
After 48 h, cells were stimulated with 50 ng/mM PMA and 1 µg/mL ionomycin,
followed by 3 h incubation with GolgiStop to evaluate intracellular cytokine
secretion. Cells were then subjected to flow cytometric staining as described above.

SARS-CoV-2-specific peptide activation. PBMCs (5 × 105) were stimulated with
1 mg/mL of CD8a SARS-CoV-2 megapool peptide91 in the presence or absence of
20 µM mdivi-1 at 37 °C, 5% CO2 for 96 h.
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High-dimensional flow cytometry analysis. First, traditional bivariate gating
using FlowJoTMv10 was performed to identify major cell types. CD8+Tc and NKTs
from each sample were identified, isolated, and exported to new fcs files. The
flowCore package in R was used to read concatenated CD8+Tc and NKT fcs files
into the R environment92. Next, an arcsinh transformation was applied for data
normalization. Data from all of the samples were then merged into one catalyst
object, upon which downstream analyses were performed93. PCA was then run on
bulk sample-aggregated data and the top three principal components were plotted.
FlowSOM clustering was performed on only cell surface markers used for phe-
notypic identification with the number of expected populations set at 3094. Clusters
were then annotated based on canonical marker expression. Differential abundance
of cell-type proportions and differential expression of MFI values were then
conducted.

BALF scRNA-SEQ data acquisition. Single-cell RNA-seq data from the BALF of
6 severe COVID patients, 3 moderate patients, and 4 healthy donors were used for
analysis32. This study defined moderate and severe COVID-19 patients as those
with pneumonia experiencing respiratory distress and hypoxia and with critical
condition, requiring ICU care, and having been placed under mechanical venti-
lation, respectively. Prefiltered expression matrices with UMI counts were down-
loaded from the GEO Database with accession number GSE145926. Additionally,
as suggested by the original study, data from an additional BALF sample derived
from a healthy donor from a separate study was used as a ref. 95. Prefiltered
expression matrices with UMI counts were downloaded from the GEO Database
with accession number GSE128033 and sample number GSM3660650.

PBMC scRNA-SEQ data acquisition. Single-cell RNA-seq data from a total of 8
COVID-19 patients and 4 healthy donors were reanalyzed from an existing study
published by Lee et al.49. For three out of the eight COVID-19 patients, two
separate samples were collected at different time points for total 11 samples
(6 severe COVID-19, 5 mild COVID-19, and 4 healthy) present in the cohort for
analysis. The authors defined COVID-19 disease severity as either moderate or
mild using metrics from the National Early Warning Score methodology, where
“respiratory rate, oxygen saturation, oxygen supplement, body temperature, sys-
tolic blood pressure, heart rate, and consciousness” were used as evaluating
criteria49,96. Prefiltered expression matrices with UMI counts were downloaded
from the GEO Database with accession number GSE149698. Metadata was
downloaded from the Supplementary information provided in the original article49.

Quality control and preprocessing of BALF and PBMC scRNA-SEQ Data.
Quality control and data preprocessing were conducted using Seurat97,98. First,
cells for which more than 10% of reads were mitochondrial transcripts were dis-
carded. Next, we removed cells that had 1000 detected transcripts. Cells with less
than 200 and greater than 6000 unique genes were also filtered. Filtered data from
different 14 patient samples were integrated in Seurat. Individually, data from each
sample was log2 normalized and the top 2000 variable genes were identified using
the “vst” method in Seurat. Data from each sample was next scaled and PCA was
run with percentage of mitochondrial DNA and number of detected unique genes
regressed out. Alignment and batch effect correction was done using reciprocal
PCA and canonical correlation analysis (CCA) (in accordance to standard Seurat
integrated analysis workflow) on the first 30 dimensions of the data. Next, a shared
nearest-neighbor graph was constructed and Louvain-based optimization was run
to perform unsupervised clustering. UMAP was next run on the first 30 dimen-
sions. Data was next log 2 normalized and scaled in the “RNA” assay for expression
analysis, with percentage of mitochondrial DNA and number of detected unique
genes regressed out. The top 2000 variable genes were determined by the “vst”
method in Seurat. Expression of canonical markers were used to define cell
populations. For each identified cell population, SCTransform was done on the
“RNA” assay to improve normalization and aid in visualization purposes.

Tc reintegration and secondary clustering in BALFs. Tc were subsetted and split
according to samples. Data from healthy control 1 and severe 1 were excluded from
analysis due to low Tc count. To further correct for batch effect, Tc were then
reintegrated using canonical correlation analysis in Seurat run on the first 30
dimensions. SCTransform was next implemented on the “RNA” assay and stored
in a new “SCT” assay to better normalize counts across samples for visualization
purposes with percentage of mitochondrial DNA regressed out. Standard log 2
normalization and scaling was then performed on the “RNA” assay. Subpopula-
tions of Tc were next identified based upon canonical marker expression.

Trajectory inference and pseudo-temporal ordering. Monocle 3 was used to
construct a trajectory upon UMAP embeddings and order cells in pseudotime99.
Analysis was performed on both CD8+ and CD4+Tc. Seurat wrapper function
“asMonocle” was used to create Monocle CellDataSet object from an existing Seurat
object. “learn_graph” function was used to construct trajectory mappings onto
transferred UMAP embeddings. “order_cells” was used to estimate and order cells in
pseudotime. All samples for CD8+ and CD4+Tc populations were ordered together
and were split by disease state after ordering for differential comparison of pseudotime.

Metabolic phenotype-based clustering. To investigate whether metabolic phe-
notypes of certain cell populations could be used as predictive indicators of disease
severity, dimensionality reduction at both a single-cell and sample-wide resolution
was done only on key identified differentially expressed metabolic genes to see if
cells/samples would cluster according to disease severity. For sample-wide analysis,
principal component analysis was conducted and the first three principal com-
ponents were visualized. For analysis at single-cell resolution, UMAP was done and
the first two components were visualized.

Network analysis. For construction of gene pathway enrichment network, net-
workanalyst.ca was used100. All statistically significant genes were inputted along
with log fold change values to construct enrichment network. Transcription
factor–gene interaction network was also constructed using networkanalyst.ca100.
Statistically significant genes along with log fold changes values were inputted. The
“degree” filter was first set to 100 and then the “betweenness” filter was set to 170.

Downstream analysis. For heatmap visualizations, scaled SCTransformed values
were used and the Complexheatmap package was used to generate visualization100.
Hierarchical clustering and dendrogram generation were performed using default
settings of the package. Outliers with extremely high-scaled expression values (» 2)
were set to a maximum value of 2 without distorting the rest of the Figures. For
dotplot visualization, first a euclidean distance matrix was generated for which
hierarchical clustering was then applied. Ggtree was next used for dendrogram
construction101. ReactomePA package was used for functional GSEA102. All unique
detected genes in the cell subset were sorted by log fold change values to create
ranked list that was inputted for GSEA analysis. enrichR was used to determine
over and under expressed pathway from differential expression analysis
(Kuleshov)103. Corrplot package was used for generation of correlation matrices.
Volcano plots were constructed using EnhancedVolcano. Other graphical visuali-
zations were created using ggplot2, ggpubr or plotly. All further downstream
analysis was done in base R.

Statistics and reproducibility. Differential expression analysis of transcript
abundance was assessed using Seurat’s implementation of the nonparametric
Wilcoxon rank-sum test. Genes were generally defined as statistically significant by
Bonferroni adjusted p. value <0.05 and log fold change greater than 0.25. For NKT,
a non-adjusted p. value was used to define differentially expressed genes due to very
small sample size.

For comparison of cell-type proportion and MFI (either mean, median, or
geometric median fluorescent intensity based upon the distribution) values, a two-
tailed Student’s t test was performed to indicate statistical significance. Fisher’s
exact test was used for all comparisons of categorical variables in Supplementary
Table 1. Additionally, Pearson correlation coefficient was used to indicate strength
of measured correlations. For correlation statistics involving categorical values,
categorical or factorial variables were converted to binary “dummy” variables
(either 0 or 1) for the purpose of statistical calculations.

Given the tremendous degree of lymphopenia in patient samples, in flow
cytometric analysis, samples in which the total cell count of a cell population of interest
was critically low to the point where it was not comparable to the other samples in the
dataset were systematically excluded from downstream analysis. For a given cell
population in a dataset, a set cell number cutoff was determined and all samples with
cell numbers below that cutoff were excluded. For data that was combined between
different datasets, values were normalized by multiplication of a common factor to
align the means between the different datasets. Additionally, in the BALF scRNA
sequencing re-analysis, samples with too low T-cell count, healthy control 1 and severe
1, were excluded in accordance to guidance given by Liao et al. in the original paper.

All dots present on scatter plots and summary graphs are representative of a
separate biological duplicate, indicative of a unique patient sample. Any technical
duplicates found between datasets were averaged after normalization.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Main source data used to generate figures were deposited to figshare and can be accessed
under the accession number https://doi.org/10.6084/m9.figshare.22251151.

Code availability
The source code used to reproduce our analysis can be accessed upon reasonable request
from the corresponding author.
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