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Theta oscillations represent collective dynamics
of multineuronal membrane potentials of murine
hippocampal pyramidal cells
Asako Noguchi 1✉, Kotaro Yamashiro1, Nobuyoshi Matsumoto 1,2 & Yuji Ikegaya 1,2,3

Theta (θ) oscillations are one of the characteristic local field potentials (LFPs) in the hip-

pocampus that emerge during spatial navigation, exploratory sniffing, and rapid eye move-

ment sleep. LFPs are thought to summarize multineuronal events, including synaptic currents

and action potentials. However, no in vivo study to date has directly interrelated θ oscillations
with the membrane potentials (Vm) of multiple neurons, and it remains unclear whether LFPs

can be predicted from multineuronal Vms. Here, we simultaneously patch-clamp up to three

CA1 pyramidal neurons in awake or anesthetized mice and find that the temporal evolution of

the power and frequency of θ oscillations in Vms (θVms) are weakly but significantly correlate
with LFP θ oscillations (θLFP) such that a deep neural network could predict the θLFP wave-

forms based on the θVm traces of three neurons. Therefore, individual neurons are loosely

interdependent to ensure freedom of activity, but they partially share information to col-

lectively produce θLFP.
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Local field potentials (LFPs) are associated with various
aspects of animal cognition and behavior, including atten-
tion, volition, and learning1–4, and are also used as bio-

markers of pathological states5,6. One of the major components of
LFPs in the hippocampi of humans7–9 and rodents10–12 is theta
(θ) oscillations (3–10 Hz). θ oscillations occur mainly during
active exploration, exploratory sniffing, and rapid eye movement
sleep and are essential for the normal functioning of the
hippocampus12–14. Indeed, θ oscillations are correlated with
memory performance15–19, and reduced θ oscillations are asso-
ciated with memory deficits19,20, whereas enhanced θ oscillations
facilitate cognitive function21,22.

As a component of LFPs, θ oscillations are thought to reflect
extracellular currents that arise from the collective dynamics of
subthreshold membrane potentials (Vm)23–25, including synaptic
activity, dendritic integration, action potentials, afterpotentials,
and other channel-dependent neuronal events, in a large number
of neurons26,27. However, it remains unclear how θ oscillations
are associated with the Vm dynamics of multiple neurons in vivo.
Previous studies have examined the relationship between LFPs
and the Vm of a single pyramidal cell and reported both simi-
larities and discrepancies23,28,29. For example, one study with
simultaneous LFP and single intracellular recordings from the
hippocampi of anesthetized rabbits reported that intracellular θ
oscillations (θVm) occurred together with LFP θ oscillations (θLFP)
at similar oscillation frequencies23, suggesting that θVm serve as a
source of θLFP; however, not all neurons exhibited θVm during
θLFP states, and the amplitudes of θVm were also heterogeneous
across cells. Thus, it remains unclear how similar θVm rhythms
are exhibited in different cells during a θLFP period. A more recent
study examined the relationships between θLFP and θVm in head-
fixed running mice28, demonstrating that although θVm tended to
occur together with θLFP, these two types of oscillations often had
inconsistent phases and frequencies. This inconsistency is func-
tionally important for θ phase precession because a θVm rhythm
that is faster than the θLFP rhythm allows the neuron to fire at
earlier phases of θLFP during spatial movement. Nonetheless, it
remains unclear how the diverse θVms of multiple hippocampal
neurons are reflected in unidimensional θLFP. These questions can
be answered, at least in part, by simultaneously recording the
Vms of multiple neurons.

In the present study, we simultaneously recorded the Vms of
up to three CA1 pyramidal cells in mice to directly compare their
Vm dynamics to LFPs. We found that θVm occurred inter-
mittently, often together with θLFP. In some but not all LFP-cell
pairs and cell‒cell pairs, θ oscillations showed similar changes in
power and frequency over time. Specifically, the θLFP power
increased when more CA1 pyramidal neurons simultaneously
emitted θVms. When neurons had similar θVm frequencies, the
θLFP power increased, and the θLFP frequency approached the
average value of the neuron θVm frequencies. As a result, θLFP
was predictable from the θVm dynamics of three CA1 pyramidal
cells using deep learning. These findings provide fundamental
insights into how LFPs are associated with multineuronal Vms
in vivo, demonstrating their collective potential for
predicting LFPs.

Results
Coordinated θLFPs across the dorsal hippocampal CA1 area. To
ensure the θLFP-θVm correlation analyses below, we first verified
whether θLFPs were uniform within our targeted area. LFPs were
simultaneously recorded from four sites in the dorsal CA1 area of
the mouse hippocampus (Fig. 1a-c). The area enclosed by the four
sites encompassed the area for LFP and patch-clamp recordings
in the following experiments. LFPs spontaneously alternated

between periods with and without θLFP at frequencies ranging
from 3 to 10 Hz (Fig. 1d, e). The θLFP power was reduced after
intraperitoneal administration of 50 mg/kg atropine, a muscarinic
receptor antagonist (Supplementary Fig. 1). Therefore, the θLFP
represented type 2 θ oscillations30.

The LFP traces were divided into a time series of 1-s segments,
and the mean θLFP power was calculated for each segment. The
time-dependent changes in the mean θLFP power were plotted in
the space of each pair of simultaneously recorded LFP traces
(Fig. 1f). The more similar the changes in the θLFP power of the
two recording sites were, the closer the data points were to the
identity line in the plot. To quantify this similarity, we calculated
the correlation coefficient for each plot. For all 30 LFP pairs from
5 mice, the correlation coefficients were significant and positive
(Fig. 1g), indicating that θLFP emerged simultaneously at all four
recording sites. Considering that the recording time affects the
correlation, the entire recording period was divided into 1-, 2-, 3-,
5-, 10- or 15-min time windows, and the correlation was
evaluated for each time window. While the correlation increased
slightly with increasing time window lengths, a significant
positive correlation was observed for >90% of the entire recording
period, regardless of the length of the time window (Supplemen-
tary Fig. 2, all time window lengths, P= 1.1 × 10−4, χ2= 25.6;
time windows >2 min, P= 0.049, χ2= 9.6; time windows >3 min,
P= 0.11, χ2= 6.11, chi-square test, n= 900, 450, 300, 180, 90,
and 60 time windows for 1, 2, 3, 5, 10, and 15 min, respectively).
Thus, the time changes in θLFP power were synchronized among
the four recording sites and were minimally affected by the
recording time. To examine the phase relationship between
simultaneously recorded θLFPs, the LFP traces were bandpass
filtered between 3 and 10 Hz, and the cross-correlations were
computed. The time lags were calculated by referencing the θLFPs
recorded from relatively medial or anterior locations for
individual pairs so that the θLFP propagations along the
longitudinal axis of the hippocampus11,31 could be extracted
(Fig. 1h, i). Overall, the θLFPs were highly synchronous between
LFP pairs, regardless of their relative positions (Fig. 1h, i). The
θLFPs recorded from medial positions significantly preceded their
counterparts (Fig. 1j ML, P= 0.0023 vs. time 0, t14=−3.7,
Student’s t-test, n= 15 pairs from 5 mice), while no such effects
were observed between θLFP pairs along the anteroposterior axis
(Fig. 1j AP, P= 0.095 vs. time 0, t13= 1.8, Student’s t-test, n= 14
pairs from 5 mice), which is consistent with a previous report11.
Therefore, θLFPs were synchronized across the entire hippocam-
pal windows targeted in our study, with mediolateral propagation
on a fine time scale.

Next, we divided the entire recording times into θLFP and non-
θLFP periods using a threshold based on the standard deviation
(SD) of the background noise against the power of the θ
frequencies in the wavelet spectrogram (Supplementary Fig. 3).
To determine an appropriate SD threshold, we categorized
putative θLFP and non-θLFP periods using various multiples of the
SD (1 SD, 2 SDs, 3 SDs, and 4 SDs) and calculated the Dice
similarity coefficients to estimate the strength of synchronization
of the detected θLFP periods between two recording sites
(Supplementary Fig. 3a). The distributions of the Dice similarity
coefficients were compared to their statistical chance levels
obtained from 10,000 surrogate data samples in which the
detected θLFP periods were randomly shuffled across time within
each recording site. The difference in the original and surrogate
data distributions was assessed according to the D value of a two-
sample Kolmogorov‒Smirnov test, and the D value reached the
maximum at 2 SDs (Supplementary Fig. 3b). Therefore, in the
following analyses, we defined a θ period as a time period during
which the θ power continued to exceed 2 SDs against the
background noise.
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Characteristics of Vm activity during θVm and non-θVm periods.
To examine the θLFP-θVm relationship, we first characterized the
θVm dynamics. We patch-clamped pyramidal cells in the hippo-
campal CA1 region of urethane-anesthetized mice (Fig. 2a).
Recordings were excluded from subsequent analyses if post hoc
biocytin-based visualizations, their recording sites, and/or their

firing properties failed to identify the recorded neurons as CA1
pyramidal cells (Fig. 2b). As a result, we recorded Vms from 220
patch-clamped cells in a total of 112 mice. The recording periods
ranged from 30 s to 2097 s (median= 180 s).

Similar to LFPs, spontaneous Vm responses alternated between
periods with and without θ oscillations (Fig. 2c); of the total
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recording time, ~34 ± 26% represented θ periods (mean ± SD of
220 cells, ranging from 0.84 to 95%). The frequency of θVm was not
unique to a given cell but varied among θVm periods (Fig. 2d).
Spikes from pyramidal cells were entrained to θVm cycles such that
the firing rates peaked at the θVm phase of 0° (Fig. 2e; P < 10−323,
Z= 3.7 × 103, Rayleigh test, n= 4655 spikes from 220 cells).
Analysis using a generalized linear mixed model demonstrated that
the mean firing rates during θVm periods increased as a function of
θVm power (Fig. 2f, β= 0.22, P= 8.0 × 10−9, t1032= 5.8, n= 1,034
θ periods from 220 cells). The mean firing rates also increased with
increasing θVm frequency (Fig. 2g, β= 0.10, P= 0.035, t1,032= 2.1,
n= 1034 θ periods from 220 cells). The firing rates and power
were Z-standardized in each cell and pooled across all
recorded cells.

Weakly correlated θLFP and θVm. We next compared θ oscilla-
tions between Vm and LFPs. While recording Vm from a single
CA1 pyramidal cell, we recorded LFPs from a single site in the
CA1 region in the same hippocampal window (Fig. 3a–e). The
θLFP power was not correlated with the firing rates of patch-
clamped cells (Supplementary Fig. 4). To examine whether θVm
and θLFP occurred simultaneously, we plotted the time-dependent
changes in the θ powers of Vm and LFPs every 100 ms (Fig. 3c, e).
The correlation coefficients varied among cells; the θVm power
exhibited a significant positive correlation with the θLFP power in
66 (41%) cells out of 160 neurons, whereas the remaining 94
(59%) cells did not exhibit significant correlations (Fig. 3f).
Therefore, the θVm power was correlated, at least in part, with the
θLFP power; however, this correlation was not robust. The cor-
relation coefficients were not associated with the distances
between the LFP recording sites and the patch-clamped cells
(Fig. 3g, R= 0.087, P= 0.43, t-test for correlation coefficients,
n= all 86 cells whose loci were confirmed post hoc), indicating
that even if the cells were located near the LFP recording site or
generated strong θVm, their influence on θLFP was not necessarily
large. In addition, there were no significant relationships between
the correlation coefficients and the recording time length (Sup-
plementary Fig. 5a, R= 0.11, P= 0.19, t-test for correlation
coefficients, n= 160 cells), the mean θVm power (Supplementary
Fig. 5b, R=−0.042, P= 0.60, n= 160 cells), the mean firing rate
(Supplementary Fig. 5c, R=−0.081, P= 0.31, n= 160 cells), the
mean Vm (Supplementary Fig. 5d, R=−0.14, P= 0.076, n= 160
cells), and the standard deviation (SD) of Vm (Supplementary
Fig. 5e, R= 0.068, P= 0.39, n= 160 cells). Furthermore, neither
the cell locations along the proximodistal (Supplementary Fig. 5f,

P= 0.62, one-way analysis of variance (ANOVA), n= 27, 41, 45,
11, 11 for CA1a, a/b, b, b/c, c, respectively) nor the radial (Sup-
plementary Fig. 5g, P= 0.27, t131= 1.1, Student’s t-test, n= 80
and 53 cells for deep and superficial, respectively) axes were
significantly related to the correlation coefficients. Therefore, the
engagement of each cell with the ongoing θLFP might not be
intrinsically predetermined but rather be flexibly modifiable.

During a co-θ period when θ oscillations occurred simulta-
neously in Vm and LFPs, the θVm frequency was positively
correlated with the θLFP frequency (Fig. 3h, R= 0.29, P < 10−323,
t-test for correlation coefficients, n= 2659 co-θ periods from 160
datasets). However, there were also many outlier data points
distant from the identity line in Fig. 3h, indicating that θVm and
θLFP did not always share common frequencies. Consistent with
this notion, the θVm frequencies were, on average, slightly higher
than the θLFP frequencies (P= 8.8 × 10−10, t2,658=−6.2, paired
t-test, n= 2659 co-θ periods). Interestingly, the differences
between θVm and θLFP frequencies during each co-θ period
decreased as the mean θVm and θLFP powers increased (Fig. 3i,
R=−0.094, P= 9.8 × 10−7, n= 2,703 co-θ periods from 160
cells). Moreover, θVm and θLFP were not in phase. We focused on
the coherent periods, during which the difference between θLFP
and θVm frequencies was <0.01 Hz, and calculated their phase
differences. Considering the θLFP propagation along the medio-
lateral axis described in Fig. 1j, the phase differences were plotted
separately for the datasets in which the recorded cells were
located medial to LFP recording sites (Fig. 3j) or vice versa
(Fig. 3k). The phase difference between θLFP and θVm was not
uniformly distributed, and the θVm of the cells medial to the LFP
recording sites preceded the θLFP by 74° on average (Fig. 3j,
P= 8.1 × 10−8, Z= 16.0, Rayleigh test, n= 172 periods from 30
cells). Anatomically reversed datasets showed the opposite result,
i.e., the θVm recorded at lateral positions to the LFP recording
sites followed the θLFP by 30° on average (Fig. 3k, P= 0.038,
Z= 3.25, Rayleigh test, n= 46 periods from 16 cells). The phase
relationship between θLFP and θVm did not differ depending on
the cell locations along the radial axis in the pyramidal cell layer
(Supplementary Fig. 5h, i, P > 0.1, K= 1.8 × 103, Kuiper test,
n= 151 and 74 periods from 26 and 20 deep and superficial cells,
respectively).

We repeated the same series of experiments using awake,
head-fixed mice (Supplementary Fig. 6a, b, n= 22 cells from 17
mice). Neither the durations nor the frequencies of the θLFP
differed between urethane-anesthetized and awake mice (Sup-
plementary Fig. 6c, d), indicating that type 2 θ oscillations

Fig. 1 Synchronized θLFPs across the dorsal hippocampal CA1 area. a Schematic illustration of simultaneous in vivo LFP recordings from four sites in the
dorsal hippocampal CA1 area. b Representative top view schematic of the hippocampus (yellow), hippocampal window (square), recording sites (black
dots), and directions of the inserted glass pipettes used to acquire the data shown in d. c Fluorescence image of the track of an LFP electrode visualized by
DiI (red). The histological section was counterstained with fluorescent Nissl stain (blue). d Representative traces of LFPs recorded simultaneously from
four sites during a θLFP period (left) and a non-θLFP period (right). e Wavelet spectrograms of four simultaneously recorded LFP traces, parts of which are
shown in d. Blue and gray bars indicate θLFP and non-θLFP periods, respectively. f Temporal evolution of the relationship between the θLFP powers of LFP1
and LFP2 shown in e. For a given 1-s segment, the θLFP powers of two LFPs are plotted as a single dot in the space of LFP1 and LFP2; temporally adjacent
dots are connected by gray lines. The significant positive correlation indicates that the two θLFP powers changed similarly over time (R= 0.79, P < 10−323,
t17,992= 172.8, t-test for correlation coefficients, n= 17,994 segments). The black lines indicate the lines of best fit with ordinary least-squares regression.
g Cumulative probability distribution of the correlation coefficients between pairs of θLFP powers, as calculated in f. The correlations were statistically
significant for all 30 pairs of 20 LFP traces recorded from 5 mice. h Cross-correlograms of the 14 pairs of simultaneously recorded LFP traces bandpass
filtered at 3–10 Hz (gray line) and their mean (black). Only the pairs of LFPs for which the relative positions of the electrodes along the mediolateral axis
could be identified were included. In the inset, the time scale is expanded near 0ms, and the plot indicates that the θLFPs recorded from relatively medial
recording sites preceded their counterparts. i Same as h, but for the 15 pairs of LFPs for which the relative positions of the electrodes along the
anteroposterior axis could be identified. Cross-correlations peaked at 0-ms time lags. j Time lags between pairs of θLFPs were calculated for the
mediolateral (ML) and anteroposterior (AP) pairs shown in h and i, respectively. θLFP propagation was observed in the medial to lateral direction
(P= 0.0023 vs. time 0, t14=−3.7, Student’s t-test, n= 15 pairs from 5 mice) but not along the anteroposterior axis (P= 0.095 vs. time 0, t13= 1.8,
Student’s t-test, n= 14 pairs from 5 mice).
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dominated under our experimental conditions, in which
mice were forced to be immobile. The data were analyzed, as
shown in Fig. 3d, revealing that 10 (40%) of the 22 cells showed
significant positive correlations in θ power changes (Supple-
mentary Fig. 6e). This ratio did not differ from that of the
anesthetized mice (P= 0.71, χ2= 0.14, Pearson’s χ2 test). The
differences between θVm and θLFP frequencies decreased as the
mean θVm and θLFP powers increased (Supplementary Fig. 6f,
β=−0.022, P= 0.0018, t2587=−3.13, n= 2589 θ periods from
22 cells).

Therefore, we concluded that θVm and θLFP are partially
correlated with each other and that the correlation strength
depended on the oscillation states, such as θ power or θ
frequency.

Weakly correlated θVms in two CA1 pyramidal cells. The weak
θLFP-θVm coupling described above led to the inference that θVms
of cell pairs are coherent. We obtained simultaneous patch-clamp
recordings from two CA1 pyramidal cells (Supplementary Fig. 7a)
and collected 125 dual patch-clamp datasets (Vm1 and Vm2)

Fig. 2 Variable θVm frequencies in a CA1 pyramidal cell. a Schematic illustration of whole-cell current-clamp recordings from a CA1 pyramidal cell.
b Representative confocal image of a recorded pyramidal neuron visualized with intracellular biocytin (red) and Nissl counterstain (blue). c A raw trace of
Vm in a CA1 pyramidal cell (top trace) was bandpass filtered between 3 and 10 Hz (second row trace) and divided into θVm periods (blue) and non-θVm
periods (gray) based on the 3–10 Hz oscillation power (third row trace). The bottom plot shows the wavelet spectrogram of the Vm trace. d Representative
time course of the peak θVm frequencies during individual θVm periods, demonstrating that a single CA1 pyramidal cell exhibited θVm at various frequencies.
e Cells fired spikes around the peaks of θVm cycles. P < 10−323, Z= 3.7 × 103, Rayleigh test, n= 4655 spikes from 220 cells. f The firing rates increased with
increases in the θVm power. To pool data from different cells, the firing rates were Z-standardized on a logarithmic scale across the entire recording period
of each cell. Each dot indicates the average value in a single θVm period, and the average values of the Z-standardized parameters are superimposed on a
cell-by-cell basis. The black line indicates the line of best fit based on a generalized linear mixed model. β= 0.22, P= 8.0 × 10−9, t1032= 5.8, t-test of the
correlation coefficient, n= 1034 θVm periods from all 136 cells that fired at least one spike. g Same as f, but for the θVm frequencies. β= 0.10, P= 0.035,
t1032= 2.1, n= 1034 θVm periods from 136 cells.
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from 82 mice. The recording periods ranged from 36 s to 2097 s
(median= 150 s). We applied the same analyses as in Fig. 3 to the
dual patch-clamp recording datasets. We first plotted the time
changes in the θVm powers of two cells (Supplementary Fig. 7b–e)
and found that 80 (64%) of the 125 cell pairs showed significant
positive correlations in their θVm power changes (Supplementary

Fig. 7c, f), whereas the remaining 45 cell pairs did not (Supple-
mentary Fig. 7e, f). Compared with the LFP-cell pair results in
Fig. 3e, the proportion of significantly correlated cell pairs was
high, which might reflect the different LFP states in separate
datasets. However, the proportion of cell pairs with positive
correlations did not change significantly from the proportion
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calculated for only the datasets used in Fig. 3 (Supplementary
Fig. 8a, b, P= 0.49, χ2= 0.47, chi-square test, n= 125 (all data)
and 98 (data in Fig. 3 only) cell pairs, respectively). Cell pairs
whose somata were physically closer had a stronger correlation
(Supplementary Fig. 7g, R=−0.24, P= 0.033, n= 78 cell pairs).
The θ frequencies during each co-θ period were significantly
correlated between the two cells (Supplementary Fig. 7h,
R= 0.25, P < 10−323, n= 2027 θ periods from 125 cell pairs),
although they were not fully consistent. The differences between
θVm frequencies decreased as the mean θVm powers of the two
cells increased (Supplementary Fig. 7i, β=−0.011, P < 10−323,
t34,628=−47.3, n= 34,630 θ periods from 125 cell pairs).
Therefore, θVms were correlated between adjacent cells, but again,
these correlations were only partial.

Correlated θ power changes among LFPs and multiple cells.
We expanded our experiments to triple patch-clamp recordings
with CA1 LFP recordings (Fig. 4a, b). We collected 21 triple-
patching and LFP datasets (Vm1, Vm2, Vm3, and LFP) from 15
mice. The recording periods ranged from 31 s to 900 s (med-
ian= 80 s). For the sake of simplicity, we first investigated
the time-dependent changes in the θ power by focusing on the
pairwise correlations between LFPs and the average value of
three Vms (Fig. 4c–e). Of 21 datasets, 9 (43%) had significant
positive correlations between the θLFP power and mean θVm
power (Fig. 4c, e), whereas the other 12 did not (Fig. 4d, e).

We next focused on the instantaneous θLFP-θVm correlations.
The θLFP power became stronger when more cells simultaneously
exhibited θVms (Fig. 4f, P= 0.0060, Z= 2.51, Jonckheere trend
test, n= 13 datasets that included at least one period during
which all recordings simultaneously exhibited θ oscillations).
When all three cells simultaneously exhibited θVms, the θLFP
power was positively correlated with the squared inverse of the
coefficients of variance (1/CV2) of the three θVm frequencies
(Fig. 4g, R= 0.17, P= 0.014, n= 206 co-θ periods from 13
datasets). This result indicates that the θLFP power increased
when the three cells exhibited θVms with more similar
frequencies. Moreover, the difference between the θLFP frequency
and the mean frequency of the three θVms was negatively
correlated with 1/CV2 of the three θVm frequencies, indicating
that the θLFP frequency approached the mean θVm frequency
when the three θVm frequencies were more similar (Fig. 4h,
R=−0.78, P < 10−323, t204= 17.7, n= 206 co-θ periods from 13
datasets).

Machine learning-based prediction of LFPs. These instanta-
neous θLFP-θVm correlations motivated us to hypothesize that
the dynamics of θLFP at each moment can be estimated, at least
in part, from the θVms of three cells. To test this hypothesis, we
sought to predict the θLFP waveforms from three θVm wave-
forms using a machine learning model. Assuming that θVms
are associated with θLFP in a nonlinear manner, we employed a
deep neural network (DNN) with a convolutional layer
(Fig. 5a, Supplementary Fig. 9). Among the 21 triple patch-
clamp recording datasets, we selected 8 datasets with record-
ing periods >3 min to ensure sufficient sample sizes for
training the DNN. In each dataset, the Vm and LFP traces
were bandpass filtered between 3 and 10 Hz, divided into
10 subsets in the recording time, and further divided into 1-s
segments. We trained the DNN using 1-s segments in 9 sub-
sets of the recorded data to predict the θLFP waveforms during
1-s segments in the remaining subset (1/10 subsets), which
were not used to train the DNN (Fig. 5b, real). For each
prediction, the prediction error between the original and
predicted θLFP traces was quantified by the root mean square
error (RMSE). We also trained the DNN using randomized
pseudodata, in which 1-s segments from the training period
were shuffled within each cell. We then predicted the θLFP
waveform (Fig. 5b, shuffle) and computed the RMSEs for the
original θLFP waveform and the θLFP waveform predicted by
the shuffled data. We repeated this procedure so that all seg-
ments in the entire recording period were targeted for pre-
diction. The RMSEs were pooled in a cumulative plot (Fig. 5c).
The prediction performance was evaluated using the D value
of a two-sample Kolmogorov‒Smirnov test; in all 8 datasets,
the RMSEs of the real data were significantly lower than those
of the shuffled data (Fig. 5d, 3 cells). These results indicate
that the DNN predicted θLFP waveforms based on the θVm
dynamics of as few as three cells with accuracy significantly
higher than chance. However, the DNN significantly predicted
zero or only two of the 24 datasets based on the θVm dynamics
of only one or two cells, respectively (Fig. 5d, 1 cell, 2 cells).
The D-values of the predictions based on the θVm dynamics of
three cells were significantly higher than those based on the
θVm dynamics of fewer cells, indicating that the θLFP dynamics
reflect the collective features of multiple θVm dynamics, which
needed to be collected from at least three cells. Supplementary
Fig. 10 summarizes the D-values and their significance in all
datasets.

Fig. 3 Weak correlations between θLFP and θVm. a Schematic illustration of simultaneous recordings of LFPs and Vm from a CA1 pyramidal cell.
b Representative raw traces of simultaneously recorded CA1 LFPs and Vms of CA1 pyramidal cells. The middle of the action potentials was omitted to
enlarge the changes in Vm, and a full action potential for each trace in b and c is shown on the right. c Temporal relationships in the power of θLFP and θVm.
The θ power was plotted every 100ms over the entire recording period in each dataset. No significant correlation was observed (R= 0.0011, P= 0.96, t-
test for correlation coefficients, n= 1999 1-s segments). The black lines indicate the lines of best fit based on least-squares regression. d, e Same as
b, c, but for a dataset in which a significant positive correlation was observed (R= 0.41, P < 10−323, n= 6999 1-s segments). f Cumulative probability
distribution of the correlation coefficients between θLFP and θVm powers for all 160 recorded datasets. Red dots indicate cells exhibiting significant positive
correlations. g The correlation coefficients between the θLFP and θVm powers (calculated in d) were plotted against the spatial distance between the tip of
the LFP recording electrode and the patch-clamped cell. R= 0.087, P= 0.43, t-test for correlation coefficients, n= all 86 cells whose loci were confirmed
post hoc. h Relationships between the frequencies of θLFP and θVm during co-θ periods when θ oscillations occurred simultaneously in LFPs and Vm. Each dot
indicates a single co-θ period. R= 0.29, P < 10−323, t-test for correlation coefficients, n= 2659 co-θ periods from 160 cells. i The difference in the θ
frequencies of θLFP and θVm in a co-θ period was negatively correlated with the geometric average of their powers. Each dot represents a co-θ period. The
black line indicates the line of best fit based on least-squares regression. R=−0.094, P= 9.8 × 10−7, n= 2702 co-θ periods from 160 cells. j, k Circular
distribution of the θ phase difference between LFPs and Vm when θLFP and θVm occurred simultaneously at similar frequencies (Δ frequency < 0.01 Hz).
Because θLFP propagates along the mediolateral axis, the datasets were divided into two groups, in which the locations of the recorded cells were medial to
the LFP recording sites (j) and vice versa (k). Red lines show the mean θ phase differences (−74° and 30° for left and right panels, respectively). The
distribution was significantly nonuniform (j P= 8.1 × 10−8, Z= 16.0, Rayleigh test, n= 172 periods from 30 cells; k P= 0.038, Z= 3.25, Rayleigh test,
n= 46 periods from 16 cells).
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Fig. 4 Stronger correlations of θLFP for more correlated θVms. a Schematic illustration of simultaneous recordings of LFPs and Vms of three CA1 pyramidal
cells (Vm1, Vm2, and Vm3). b Representative raw traces of simultaneously recorded LFPs and Vms of three CA1 pyramidal cells. c, d The θLFP power during
a 1-s segment plotted against the geometric mean of the θVm powers in three cells as a function of time. The triple recording in c exhibited a significant
positive correlation (R= 0.51, P < 10−323, t-test for correlation coefficients, n= 740 segments), whereas the dataset in d did not (R= 0.065, P= 0.66,
n= 470 segments). The black lines indicate the lines of best fit based on least-squares regression. e Cumulative probability distribution of the pairwise
correlation coefficients between θLFP powers and the mean θVm powers of three cells for all 21 datasets. Each red dot indicates a dataset with a significant
positive correlation. f The θLFP power increased as a function of the number of cells that simultaneously emitted θVms. Each gray line indicates a single
dataset, and the black line represents the mean. P= 0.0060, Z= 2.51, Jonckheere trend test, n= 13 datasets. g The θLFP powers were positively correlated
with the similarity of three θVm frequencies. The similarity was defined as the squared inverse of the coefficients of variance (1/CV2) of three θ frequencies
for co-θ periods during which LFPs and three cells simultaneously exhibited θ oscillations. Each dot indicates a single co-θ period. R= 0.17, P= 0.014, t-test
for correlation coefficients, n= 206 co-θ periods from 13 cell triplets. The black line indicates the line of best fit based on least-squares regression. h The
difference between the θLFP frequency and the geometric mean of three θVm frequencies was negatively correlated with the similarity of three θVm
frequencies. Each dot indicates a single dataset. R=−0.78, P < 10−323, n= 206 co-θ periods from 13 cell triplets. The black line indicates the line of best fit
based on least-squares regression.
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The same analysis was conducted using bandpass-filtered traces at
60–100Hz (high gamma), 25–55Hz (low gamma), and 0.5–1Hz
(slow oscillations). In contrast to the findings with the θ frequency
band, significantly higher accuracies were obtained in only a
small proportion of the datasets, regardless of the number of cells
used for the prediction (Supplementary Fig. 11, high gamma: 5/24
datasets for 1 cell and 2/24 datasets for 2 cells; low gamma: 1/24
dataset for 1 cell and 2/24 datasets for 2 cells; slow oscillations, 4/
24 datasets for 1 cell, 4/24 datasets for 2 cells and 2/8 datasets for 3
cells). For all three frequency bands, increases in the number of cells
used for the predictions did not correspond to an increase in
the prediction accuracy (Supplementary Fig. 11a, D1 vs. 2 cells= 0.17,
P1 vs. 2 cells= 0.86, D1 vs. 3 cells= 0.50, P1 vs. 3 cells= 0.066,D2 vs. 3 cells=
0.46, P2 vs. 3 cells= 0.11; Supplementary Fig. 11b, D1 vs. 2 cells= 0.21,
P1 vs. 2 cells= 0.62, D1 vs. 3 cells= 0.25, P1 vs. 3 cells= 0.79, D2 vs. 3 cells=
0.78, P2 vs. 3 cells= 0.29; Supplementary Fig. 11c, D1 vs. 2 cells= 0.46,
P1 vs. 2 cells= 0.0082, D1 vs. 3 cells= 0.33, P1 vs. 3 cells= 0.43,
D2 vs. 3 cells= 0.50, P2 vs. 3 cells= 0.066; two-sample Kolmogorov‒
Smirnov test, n= 24, 24, and 8 datasets for 1, 2, and 3 cells,
respectively). To examine the relationships among LFPs and Vms in
frequency bands other than θ, we calculated the cross-correlograms
between pairs of bandpass-filtered LFPs, the correlation coefficients
between LFP and Vm powers of single cells, and the correlation
coefficients between LFPs and the mean Vm power of three
simultaneously recorded cells for all three frequency bands. Overall,

the correlations among LFPs and Vms were comparable to those in
the θ frequency band (Supplementary Fig. 12a–i). However, the
average power spectra of the LFPs and Vms over the entire recording
period showed that θ power dominated in all other frequency bands
(Supplementary Fig. 12j, k). Therefore, the predictability of LFP
traces from Vm traces was applicable only for physiologically
dominant oscillations, suggesting that the DNN could extract
biologically prominent signals.

If the θLFP dynamics reflected the simple summation of
multiple θVms, the linear summations of the θVm traces were
expected to become more similar to the θLFP traces as the
number of cells increased. As shown in Supplementary Fig. 13a,
we analyzed the correlation between the θLFP traces and the
mean θVm traces of 1, 2, or 3 cells for each 1-s segment used
in the θLFP prediction. However, contrary to expectations,
the correlation coefficients decreased as the number of
cells increased (D1 vs. 2 cells= 0.029, P1 vs. 2 cells= 6.5 × 10−42,
D1 vs. 3 cells= 0.049, P1 vs. 3 cells= 4.1 × 10−59, D2 vs. 3 cells= 0.021,
P2 vs. 3 cells= 1.3 × 10−12, two-sample Kolmogorov‒Smirnov test,
n= 112,740, 112,740, and 37,580 1-s segments from 1, 2, and 3
cells, respectively, in 8 mice). This result indicates that the
mean θVm traces of more cells were less similar to the θLFP trace.
The θLFP and θVm powers were also calculated for each 1-s
segment, and the correlation between the dynamics of the θLFP
power and the dynamics of the mean θVm power of 1, 2, or

Fig. 5 Prediction of θLFP from θVms. a Architecture of our neural network model. The numbers indicate the channel features (bin) in each layer. Conv:
convolutional, FC: fully connected. The model input was three simultaneously recorded Vms (Vm1, Vm2, and Vm3) that were bandpass filtered between 3 and
10Hz (left). The model was trained to output the corresponding bandpass-filtered LFPs (right). In d, one or two Vms were used as the inputs. b Representative
traces of three Vms, the original LFPs (black), and the LFPs predicted from the real data (blue) or shuffled data (gray). The Vm and the original LFP traces were
bandpass filtered between 3 and 10Hz. The shuffled data were created by randomizing the temporal order of all 1-s segments within each cell and used to train
the neural network. c Cumulative probability distribution of the root mean squared errors (RMSEs) between the original LFP waveforms and the LFP waveforms
predicted from real or shuffled data. P= 1.5 × 10−86, D=0.19, two-sample Kolmogorov‒Smirnov test, n= 2310 1-s segments in a single dataset. d Cumulative
probability distribution of the D-values calculated as in c for all 8 datasets with LFPs and Vms of 3 cells, as well as 24 datasets with LFPs and Vms of 1 or 2 cells.
Each dot indicates a single dataset, and red dots indicate significant D-values. The LFP waveforms were better predicted from Vms of 3 cells than those of 1 or 2
cells. D1 vs. 2 cells=0.25, P1 vs. 2 cells=0.39, D1 vs. 3 cells= 1.0, P1 vs. 3 cells= 2.3 × 10−6, D2 vs. 3 cells= 1.0, P2 vs. 3 cells= 2.3 × 10−6, two-sample Kolmogorov‒
Smirnov test.
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3 cells were analyzed in each dataset (Supplementary Fig. 13b).
There were no significant differences among the three distribu-
tions, indicating that the similarity between the dynamics of
the θLFP power and the mean θVm power of multiple cells
did not change significantly depending on the number of
cells (D1 vs. 2 cells= 0.17, P1 vs. 2 cells= 0.86, D1 vs. 3 cells= 0.25,
P1 vs. 3 cells= 0.79, D2 vs. 3 cells= 0.17, P2 vs. 3 cells= 0.99, two-
sample Kolmogorov‒Smirnov test, n= 24, 24, and 8 datasets
from 1, 2, and 3 cells, respectively, in 8 mice). These results
suggest that the ability to predict θLFP traces from the θVm traces
of three cells is not explained solely by the linear sum of multiple
θVms. Taken together, the DNN could predict θLFP waveforms
from the θVm dynamics of three cells based on their nonlinear
relationships.

Discussion
We investigated the temporal correlations in extracellular and
intracellular θ oscillations by directly comparing LFPs with the
Vms of multiple CA1 pyramidal cells in vivo. We found that in
terms of θ powers and frequencies, the θVms of hippocampal CA1
pyramidal cells were loosely correlated with each other and with
θLFP. These correlations were not explained by the anatomical
locations and likely arose due to functionally coherent network
activity. Consistent with this idea, we demonstrated, using a
machine learning technique, that the θLFP waveforms could be
predicted from the θVm waveforms of only three pyramidal cells.
Given that LFPs usually reflect the activity of considerably more
than three neurons, our results suggest that many neurons
simultaneously emit partially correlated θVms and that this loose
simultaneity constitutes hippocampal θ states and is experimen-
tally captured as θLFP.

We first demonstrated that the temporal evolution of θLFP
power was similar across our target area in the dorsal CA1
region. Previous studies have reported that θLFP travel along the
longitudinal axis of the hippocampus11,31,32 and that θLFP phase
shifts monotonically as a function of the distance along the
longitudinal axis, reaching ~180° between the septal and tem-
poral poles31. Consistent with a previous report11, mediolateral
propagation of the θLFP was observed in our study instead of
anteroposterior propagation, despite the different animal con-
ditions, i.e., awake and anesthetized conditions in the previous
and present study, respectively. Therefore, in the present study,
we considered the phase shift when analyzing the phase differ-
ence between θLFP and θVm (Fig. 3h), and the overall transition
of the θLFP power was considered synchronous within our target
area. The difference in the type of θLFP between awake and
anesthetized animals should also be noted in considering the
functional significance of our findings. The θLFP we recorded
from urethane-anesthetized mice were atropine-sensitive type 2
θLFP, which usually have frequencies in the 4–7 Hz range; note
that type 1 θLFP is resistant to atropine, have higher frequencies
of ~8 Hz, and occur mainly during active locomotion and rapid
eye movement sleep13,14. We also recorded θLFP in awake mice.
Although we did not examine the effect of muscarinic receptor
antagonists, the θLFP were also likely type 2 because the mice
were immobile under head-fixed conditions, and their θLFP
frequencies did not differ from those of anesthetized mice.
Under anesthesia, the CA1 region may receive less input from
the entorhinal cortex, but in both urethane-anesthetized and
awake mice, cholinergic and GABAergic inputs from the medial
septum are essential to generate θ oscillations30,33–37. Although
type 1 and 2 θLFPs have different atropine sensitivities and θ
frequency ranges, they share many common features; for
example, both types depend on medial septal afferents and have
similar θ phase distributions in the dorsal hippocampus33,37,38.

Therefore, we believe that the mechanisms underlying the
observed cell-to-LFP or cell-to-cell correlations could be par-
tially shared by type 1 θLFP, at least within the local hippocampal
circuit. Supporting this theory, pairwise θVm coherences during
type 1 θLFP in awake, behaving mice have been reported to range
from 0 to 0.8, regardless of the cell-to-cell distance39, which is
consistent with our findings on type 2 θLFP. However, the
anesthetized condition causes distinct activity in the medial
septum40 and the entorhinal cortex41,42. As a result, instructive
signals for learning-dependent neuronal activity are lacking, as
observed during type 1 θLFP in the hippocampus43–46. Future
experiments recording intracellular activity from multiple hip-
pocampal neurons in awake behaving animals should clarify the
subthreshold coordination of behavior-relevant cell assemblies
in θLFP state.

LFPs are shaped by collecting a myriad of electrical currents
arising from neural events, such as synaptic inputs and action
potentials. Therefore, intuitively, the relationship between LFPs
and Vms might be influenced by the physical distance from the
cell body. However, we did not find that the cell-to-LFP corre-
lations in the θ power or frequency changed with the cell-to-LFP
distance, at least within a radius of ~1,000 µm. One possible
explanation for this discrepancy is that synaptic inputs are
received by dendrites distal from the cell bodies. The dendrites of
many neurons intersect, generating spatially overlapping
synaptic currents. The complexity of individual current sources
may blur the dependency for cell-to-LFP distances. Another but
more plausible possibility is that cell-to-cell coherence arises
from intrinsic cell assembly dynamics. We recorded from only
three cells out of numerous neurons in the dorsal hippocampus.
Even though these cells were selected in a pseudorandom and
blinded manner, their θVms were partially correlated, enough for
our machine learning model to predict θLFP. Therefore, we
believe that the θLFP-to-θVm correlations observed in the present
study did not arise from a direct causal relationship produced by
the neurons we recorded but rather from the activity of other
neurons located closer to the LFP recording site that behaved in a
similar manner to the recorded neurons.

The coordination of θLFP and θVms could be achieved by the
interplay of inhibitory inputs from various types of
interneurons47–49 and excitatory inputs mainly from CA3 pyr-
amidal cells under our anesthetized condition46,50,51, each of
which phase-locks to a specific θLFP phase. Among the various
types of hippocampal CA1 interneurons, soma-targeting par-
valbumin-positive basket cells (PV-BCs) and cholecystokinin-
positive basket cells (CCK-BCs) effectively regulate θVm37,46,52.
Considering that PV- and CCK-BCs differentially innervate
CA1 pyramidal cells in the deep and superficial layers51, i.e., PV-
BCs and CCK-BCs preferentially project onto deep and super-
ficial cells, respectively, the phase relationships between θLFP
and θVm may differ for deep and superficial cells53. However,
Supplementary Fig. 5h indicates that deep and superficial cells
showed similar θLFP phase preferences53. Because deep cells
receive more inputs from the medial entorhinal cortex than
superficial cells, this discrepancy might indicate that excitatory
inputs from the medial entorhinal cortex, which are weakened
under anesthesia, contribute to the shifted phase preference of
deep cells. In addition, the variable holding Vm may have
affected the phase lag between the peaks of θLFP and θVm46,
while the overall phase lags were consistent with those in pre-
vious intracellular studies37,54. Although we did not note any
anatomical bias in the relationship between θLFP and θVm,
presumably due to the anesthesia and the large distance between
the LFP and Vm recording sites (φ < 1,000 µm), the temporally
precise and partially shared excitatory and inhibitory inputs
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among CA1 pyramidal cells may organize multicellular coor-
dination in the θLFP state.

Using a DNN, we predicted the θLFP traces from the θVm
traces of three CA1 pyramidal neurons. Previous in silico studies
have simulated LFPs based on modeled neuronal activity in the
neocortex55–57. However, no studies to date have attempted to
predict real LFPs based on the membrane potentials of multiple
neurons in vivo. This lack of data is partly due to the lack of
simultaneous recordings of LFPs and Vms from multiple neu-
rons, which is technically difficult to accomplish, especially in
the hippocampus. Therefore, the present study provides the first
evidence that θLFP dynamics are predictable from the raw θVm
traces of three neurons in the hippocampus in vivo. It remains
unclear why the predictability increased in a nonlinear manner
when the number of cells used for θLFP prediction was increased
from two to three. One possible explanation is composite factors
among the θVms of multiple neurons, as implied in our triple-
patching datasets (Fig. 4); possible combinations among these
factors could increase in a nonlinear manner as the number of
cells increases. Further investigations are needed to elucidate
latent factors shared across θVms that collectively predict θLFP
dynamics.

One limitation of this study is that our prediction approach
did not reflect the diversity of pyramidal cells embedded in
anatomically and physiologically nonuniform hippocampal
circuits51,58,59. While our study did not observe any anatomical
or physiological biases within our recorded cells (Supplementary
Fig. 5), the θVms of individual pyramidal cells should show
distinct relationships with θLFP according to different input
patterns and intrinsic properties in awake behaving animals53,60.
The DNN used to predict θLFP from θVms may be improved by
considering these biased innervation and intrinsic properties.
Furthermore, the prediction could benefit by including not only
the θVms of pyramidal cells but also the activity of PV- and
CCK-BCs37,46,52 as the inputs to the DNN. On the other hand,
the fact that the DNN significantly predicted θLFP from θVms of
as few as three pseudorandomly selected pyramidal cells might
suggest that the DNN could accommodate the spatiotemporally
biased circuit structure, confirming the potential ability of the
DNN to process higher-order information. Future studies
should combine cell-type-specific recordings of excitatory and
inhibitory neurons with computational approaches such as deep
learning-based analyses to better understand the circuit
mechanisms involved in coordinating network activity at the
single-cell level.

Methods
Animal ethics. Animal experiments were performed with the approval of the
animal experiment ethics committee at the University of Tokyo (approval num-
bers: P29-9) and in accordance with the University of Tokyo guidelines for the care
and use of laboratory animals. These experimental protocols were conducted in
accordance with the Fundamental Guidelines for the Proper Conduct of Animal
Experiments and Related Activities in Academic Research Institutions (Ministry of
Education, Culture, Sports, Science and Technology, Notice No. 71 of 2006), the
Standards for Breeding and Housing of and Pain Alleviation for Experimental
Animals (Ministry of the Environment, Notice No. 88 of 2006) and the Guidelines
on the Method of Animal Disposal (Prime Minister’s Office, Notice No. 40
of 1995).

Surgery and animal preparation. Whole-cell recordings through the hippocampal
window were obtained from male ICR mice (Japan SLC, Shizuoka, Japan) that were
28–45 days old61. Mice were anesthetized with urethane (2.25 g/kg, intraperitoneal
[i.p.]). Anesthesia was confirmed by the absence of paw withdrawal, whisker
movement, and eyeblink reflexes. The skin was subsequently removed from the
head, and the animal was implanted with a metal head-fixation plate. A craniotomy
(2.5 × 2.0 mm2) was performed, centered at 2.0 mm posterior to the bregma and
2.5 mm ventrolateral to the sagittal suture, and neocortical tissues above the hip-
pocampus were aspirated62–65. The exposed hippocampal window was covered
with 1.7% agar at a thickness of 1.5 mm. To obtain recordings from unanesthetized

mice, mice were implanted with metal head-holding plates under short-term
anesthesia with 2–3% isoflurane. After full recovery, the mice received head-
fixation training on a custom-made stereotaxic fixture for 1–2 h per day. The
training continued for up to 5 days until the mice learned to remain calm.

In vivo electrophysiology. Patch-clamp recordings were obtained from neurons
in the dorsal CA1 stratum pyramidale (AP: -2.0 mm; ML: 2.0 mm; DV:
1.1–1.3 mm) using borosilicate glass electrodes (4–7 MΩ). Pyramidal cells were
identified by their regular spiking properties and post hoc intracellular visuali-
zation. For current-clamp recordings, the intrapipette solution consisted of the
following reagents (in mM): 120 K-gluconate, 10 KCl, 10 HEPES, 10 creatine
phosphate, 4 MgATP, 0.3 Na2GTP, 0.2 EGTA (pH 7.3), and 0.2% biocytin. Liquid
junctions were corrected offline. Cells were discarded when the mean resting
potential exceeded −50 mV or the action potentials did not exceed -20 mV. LFPs
were obtained from the CA1 stratum pyramidale using tungsten electrodes
(UEWMGCSEKNNM, FHC, USA) coated with 1,1′-dioctadecyl-3,3,3′,3′-tetra-
methylindocarbocyanine (DiI). The tungsten electrode location was detected by
post hoc observation of fluorescent DiI tracks. Simultaneous quadruple LFP
recordings were obtained by using four glass electrodes (0.5-2.5 MΩ) filled with
artificial cerebrospinal fluid (aCSF), including DiI (4% w/v), Evans Blue (2%), or
Trypan Blue (2%), for post hoc identification of the electrode locations (Fig. 1).
The electrode locations estimated during the stereotaxic experiments were
approximately the same as the post hoc visualized positions. Only the LFPs
recorded in the pyramidal cell layer were included in the analyses. The signals
from the four glass electrodes were amplified using a MultiClamp 700B amplifier,
whereas the signals from the tungsten electrode were amplified using a DAM80
AC differential amplifier (World Precision Instruments). All signals were digi-
tized at a sampling rate of 20 kHz using a Digidata 1440 A digitizer (Molecular
Devices) that was controlled by pCLAMP 10.3 software (Molecular Devices). To
confirm the type of θLFP (Supplementary Fig. 1), atropine was intraperitoneally
injected at a dose of 50 mg/kg at least 120 s after the beginning of the LFP
recordings. The effect of atropine was examined 960–1,080 s after the injection (a
120-s period).

Histology. Following each experiment, the electrode was carefully withdrawn
from the hippocampus. The mice were transcardially perfused with 4% paraf-
ormaldehyde followed by overnight postfixation. The brains were sagittally
sectioned at a thickness of 100 μm using a vibratome. The sections were incu-
bated with 2 μg/ml streptavidin-Alexa Fluor 594 conjugate and 0.2% Triton
X-100 for 4 h, followed by incubation with 0.4% NeuroTrace 435/455 blue
fluorescent Nissl stain (Thermo Fisher Scientific; N21479) for 4 h. The tracks of
the LFP electrodes were also detectable via DiI fluorescence. Fluorescence images
were acquired using an FV1200 confocal microscope (Olympus, Tokyo, Japan)
and subsequently merged. The depth of the soma and the tips of the tungsten
electrodes were estimated in the Z-scan series of an FV1200 confocal micro-
scope. More specifically, the CA1 area was roughly divided into three subareas
along the proximodistal axis, and the locations of the soma and the tips of
tungsten electrodes were visually classified as one of the following five positions:
CA1a, the border between CA1a and b, CA1b, the border between CA1b and c,
or CA1c. Then, the XYZ coordinates of the soma and the tips of tungsten
electrodes in the brain were determined based on the origin located at the
bregma, with the X- and Y-axes representing the mediolateral and ante-
roposterior axes, respectively.

Statistics and reproducibility. Data analyses were performed using MATLAB
(R2017b, Natick, Massachusetts, USA), and the summarized data are reported as
the mean ± SD unless otherwise specified. P < 0.05 was considered statistically
significant. Sample size (the number of triple-patching datasets and single whole-
cell recordings in awake condition) was determined by referencing previous pub-
lications (Jouhanneau et al., 2018, 2019). No statistical methods were used to
predetermine the sample size. All conclusions of this study are based on recordings
of populations of cells.

Data analysis. To detect periods with θLFP, wavelet transformations were first
conducted for each LFP recording, the sampling rate of which was reduced to
500 Hz. Any period was defined as a θLFP period if the mean absolute value of its
wavelet coefficients between 3‒10 Hz exceeded the mean ± 2 SDs of the values
between 1–100 Hz. When the duration of θLFP or non-θLFP periods was <1 s, we
regarded the duration as a non-θLFP or θLFP period, respectively. The 2 SD
threshold for detecting the θLFP period was determined after ascertaining that the
similarity of θLFP periods in the four simultaneously recorded LFPs at this
threshold was most distinguishable from the surrogate data (Supplementary Fig. 2).
θVm periods were also detected using the same threshold. The similarity of θLFP
periods in simultaneously recorded LFP pairs was quantified using the Dice
similarity coefficient, the double union of two independent sets divided by the sum
of the two sets. The surrogate data were created by randomly shuffling the timings
of the individual θLFP periods without changing the duration of each period. The
peak frequency was calculated based on the wavelet power as the absolute value of
the wavelet coefficient. The wavelet power at each frequency was averaged across
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the target period, and the frequency at which the mean wavelet power reached its
maximum value was calculated. The Z score powers of θLFP and θVm were also
calculated based on the wavelet power. We averaged the wavelet power for each
frequency across 1-s bins. The maximum power for each bin and the Z scores of all
bins were subsequently calculated.

Prediction of LFPs from Vms. A custom DNN model was constructed to predict
LFPs from up to three simultaneously recorded Vms using Python. Our DNN
had an encoder-decoder structure. The encoder compressed the input (i.e., 1, 2,
or 3 Vms) to a lower dimensional representation and extracted features from the
input, whereas the decoder reconstructed the final output (i.e., LFP) from the
compressed vector. In our study, the Vms of 1, 2, or 3 cells over 1-s windows (size
500, 2-ms bins) were first passed through a convolutional layer. In this operation,
the input was transformed into a feature matrix of reduced size through con-
volution by kernel matrices. This kernel processing enabled the extraction of
meaningful features from the input into a smaller number of parameters66. Then,
the layer output was flattened to a one-dimensional vector (size 32,000). The one-
dimensional vector was passed through four fully connected layers and finally
compressed to a size of 100. This lower dimensional representation was recon-
structed to a size of 500 via three fully connected layers. Our DNN was imple-
mented using the Python deep learning library Keras and the TensorFlow
backend. The network was optimized by adaptive moment estimation (Adam)
with a learning rate of 0.001. The parameters for the optimizer Adam were as
follows: β1 (an exponential decay rate for the first moment estimates)= 0.9, β2
(an exponential decay rate for the second moment estimates)= 0.999, ε= 10−7,
and decay= 0.0001; the default values were used for the other parameters.
Because our focus was θ oscillations, raw LFP and Vm traces (20,000 Hz) were
downsampled to 500 Hz and bandpass filtered between 3 and 10 Hz in Fig. 5. In
Supplementary Fig. 7, the downsampled traces were bandpass filtered at
60–100 Hz, 25–55 Hz, and 0.5–1 Hz for high gamma, low gamma, and slow
oscillations, respectively. Datasets with recording durations >3 min were used for
prediction (n= 8). Our DNN model was trained to produce 1-s θ-filtered LFPs
(500 bins) from up to three Vms of the corresponding time bins. To assess the
model performance on the entire dataset, 10-fold cross-validations were used.
Each dataset was equally divided into 10 subsets, and during each training ses-
sion, one subset was used as test data, while the remaining 9 subsets were used as
training data. To obtain sufficient numbers of training data, 1-s segments (500
bins) were extracted by shifting a 1-s time window at a step of 2 ms (1 bin) across
the training data. For test data, 1-s segments were extracted by shifting a 1-s time
window at a step of 100 ms. For each cross-validation, the training lasted 50
epochs with a batch size of 256, and the RMSEs were calculated to assess how well
the model predicted new data that had not been used for training. As a rando-
mized control, surrogate data were produced by shuffling the combinations of
three Vms; that is, the time labels for segments were exchanged within each cell.
The DNN was also trained using the shuffled data, and RMSEs were calculated.
To evaluate the significance for prediction, the RMSEs of all 1-s segments in all
10 subsets were pooled for either original or shuffled data in each dataset, and a
two-sample Kolmogorov‒Smirnov test was used to calculate the D-values and P-
values for each dataset.

Model and parameter tuning. The model architecture and training parameters
were optimized on a different dataset before analyzing the main dataset. First, we
compared four model structures with distinct characteristics (Supplementary
Fig. 9a). In Model 1, which became our final model, the input is first passed to a
convolutional layer and then to a series of fully connected layers. The structure of
Model 2 is similar to that of Model 1, but without the first convolutional layer.
Model 3 has only one fully connected layer. Finally, Model 4 has a convolutional
layer and fully connected layers but does not have an encoder-decoder structure.

All models were trained on data that were specially prepared for model tuning
(tuning datasets). Model 1, which was chosen as the final architecture in this work,
showed the lowest RMSE value among all models (Supplementary Fig. 9b, c). In
our model, the convolutional layer learns filters in the temporal dimension. Since
convolutional layers are used to extract meaningful local structures, it is possible
that convolutional layers successfully extracted local oscillations in the input Vms,
which were important for predicting LFPs. The convolutional layer was followed by
a series of deep layers. It is important to note that these fully connected layers have
encoding and decoding architecture. By implementing this feature, the model is
forced to extract and learn only the important features for predicting LFPs.

After the model architecture was selected, the model parameters were optimized
based on the performance of the tuning data. As representative data, the results
from four sets of parameters are shown in Supplementary Fig. 9d, e. Dropout rate
of the dropout layers and learning rate were also optimized to 0.5 and 0.01 so that
the RMSE takes the minimum value; the RMSE was 0.0203, 0.0229, 0.0205 when
dropout rate was 0.5, 0.7, 0.9, and it was 0.0194, 0.112, 0.0201 when learning rate
was 0.01, 0.001, 0.1. The optimal number of epochs was determined similarly based
on the learning curve. The average of all traces shows that the RMSE value of the
validation data hit the lowest at 5 epochs. After that, overfitting was observed as the
RMSE of the validation data began to increase while the value of the training data
continued to decrease.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for the presented figures are provided as Supplementary Data with this
paper. The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability
All offline computational analyses except Fig. 5 and Supplementary Fig. 9 were
performed using MATLAB R2017b. The DNN based analyses in Fig. 5 and
Supplementary Fig. 9 were performed using Python 3.9.1. Each analysis procedure is
described in necessary detail in the Method section for others to execute. Any analysis
code and analyzed data are available by sending a request to the corresponding author.
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