
PERSPECTIVE

Is blood-brain barrier a probable mediator of non-
invasive brain stimulation effects on Alzheimer’s
disease?
Aleksandra Petrovskaya 1✉, Artem Tverskoi1, Angela Medvedeva2 &

Maria Nazarova3,4

Alzheimer’s disease (AD) is a complex neurodegenerative disease with no existing treatment

leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the

advent of first symptoms in AD and accompanies the progression of the disease. At the same

time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain

stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and tran-

scranial direct current stimulation (tDCS), have shown multiple evidence of being able to

alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in

terms of their neuronal effects, while their possible non-neuronal effects, including mitigation

of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the

BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover,

such studies are important considering the safety issues of TMS/tDCS use in the advanced

AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence

of NIBS-induced BBB opening and closing in various models from in vitro to humans, and

highlight its importance in AD.

A lzheimer’s disease (AD) debilitates a large number of older individuals worldwide, and
the affected population is increasing due to greater human longevity, incurring enormous
costs on treatment and palliative care1. Usually initial symptoms of AD, such as memory

loss and slower response times are recognized only when tremendous changes in the brain have
already occurred, that is why the therapeutic strategies usually target highly affected brain2,3.
Several pharmacological approaches are currently applied as prospective tools for AD treatment,
however, the drug therapy is still far from being highly effective in AD4–7. Non-Invasive Brain
Stimulation (NIBS) techniques have been tested both as an alternative and an addition to
pharmacological approaches in AD8,9. In recent years, the number of efforts to shed light on
NIBS mechanisms in AD increased substantially (see for the review10). In the majority of these
studies, primarily neural mechanisms were targeted. However, AD is characterized not only by
the neural mechanisms2,3 but also by non-neuronal changes including the substantial blood-
brain barrier (BBB) breakdown11,12. At the same time, there are ongoing clinical trials (https://
clinicaltrials.gov/ [12/21/2022]) aiming at the BBB opening by focused ultrasound stimulation
(FUS) for better drug delivery in AD. In AD, the most used NIBS approaches are transcranial
magnetic stimulation (TMS) and direct current stimulation (tDCS)10,13, and their effects on the
BBB have not been studied extensively yet. We argue that studies of TMS/tDCS effects on the
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BBB in AD are necessary to better understand their mechanisms
and to boost their effectiveness in AD. Moreover, such studies are
important considering the safety issues of NIBS use in AD stages
when the BBB is damaged. Here, we elucidate the evidence of
NIBS-induced BBB changes in humans, animals, and cellular
models and highlight its importance in AD.

Blood–brain barrier role in Alzheimer’s disease: etiology,
pathophysiology, and modeling
The BBB is a semi-permeable membrane within mature brain
microvessels, protecting neurons from factors presenting in the
systemic circulation. The BBB is formed by the components of
the neurovascular unit—vascular cells (endothelial cells, pericytes,
smooth muscle cells), glia (astrocytes, oligodendroglia, microglia),
neurons and extracellular matrix11,14,15. Endothelial cells form
tight junctions—a physical barrier, whereas other cell types pro-
vide signaling among the cells. The BBB breakdown in AD is an
increase in vascular permeability associated with a decrease in the
expression of tight junction proteins (Fig. 1; ref. 16). The BBB
breakdown accompanies even healthy aging, while in patients
with mild cognitive impairment and AD dementia, the BBB
breakdown is accelerated17. The BBB-associated changes may be
an early AD biomarker18,19. Notably, brain endothelial cells,
among all vascular cells, demonstrate their higher vulnerability in
AD, based on gene expression data20. Although there is no
etiotropic treatment, the search for AD biomarkers at early stages
is important21 because the early diagnosis may serve as a moti-
vation to correct a lifestyle and decrease possibly modifiable risks.
For example, positron emission tomography (PET) studies have
already shown that patients with mild cognitive impairment have
reduced glucose uptake across the BBB and, therefore, disin-
tegrated BBB in young subjects may be considered an early
marker of AD22,23. The BBB leakage is associated with changes in
tight junctions, the overall BBB permeability index, transen-
dothelial resistance, etc24,25., and all such alterations were
reported in AD pathology (Fig. 1)26,27.

Considering the key role of the BBB in pharmacological brain
therapy in general, there are already plenty of approaches
allowing to assess the BBB permeability, such as (1) in vitro
transwell models, allowing BBB permeability assessment to
fluorescent tracers and transendothelial electrical resistance
(TEER)28–31; (2) in vivo techniques like microdialysis, used for
the analysis of the BBB permeability changes during or after an
intervention (e.g., NIBS, drug, injection of a pathogenic AD-
associated protein)32; (3) specific type of positron emission
tomography: F-2-fluoro-2-deoxy-d-glucose-PET in humans33,34.

The BBB disruption and Aβ propagation seem to be inter-
twined, but they are mostly parallel processes. It is known that in
AD, matrix metalloproteinases may digest tight junction and
adherent proteins of the BBB27, decreasing the levels of tight
junction proteins in the brain, and resulting in the physical
breakdown of the BBB26. Aβ in AD also alters the tight junction
proteins content, destroying the BBB29,35. Recent preliminary
data have demonstrated that repetitive TMS (rTMS) simulta-
neously diminishes the matrix metalloproteases level and
improves cognitive functioning in MCI patients36,37. AD-induced
BBB abnormalities associated with changes in matrix metallo-
proteinase (MMP) and tight junction protein content are tightly
connected with amyloid, and it makes these parameters sensitive
to strong therapeutic stimuli. Brain stimulation is supposed to
belong to a number of stimuli that may affect AD progression via
the BBB disruption. Better understanding of the pathogenic
proteins associated with AD—either peripheral or central—is
needed for better understanding of the BBB role in AD. A col-
laborative work between clinicians and scientists is required to

piece together knowledge on AD progression and the BBB
breakdown.

Non-invasive brain stimulation as a possible treatment in
Alzheimer’s disease
Among techniques most widely used to target neuronal dys-
function in neurodegeneration, TMS and tDCS are in precise
focus of the perspective. NIBS-mediated modulation of cognitive
functions in AD is commonly considered to be connected with
the changes in neural activity13,38, while vascular aspects are
mostly overlooked. At the same time, vascular pathology in AD is
highly amyloid-dependent considering (1) probable amyloid
peripheral origin, (2) its high concentration in the brain blood
flow, (3) co-localization of classic and diffuse amyloid plaques
with the brain vessels, and (4) known biochemical and functional
amyloid effects on the BBB cells29,39–41. Thus, NIBS amyloid
targeting may be considered in a tight association with probable
NIBS effects on the brain vascular system. Among attractive
targets for TMS/tDCS application in AD are the frontal lobe,
specifically, Broca’s area, dorsolateral prefrontal cortex, parieto-
temporal lobe (Wernicke’s area), bilateral parietal somatosensory
association cortices, temporal lobe42,43,44,45.

tDCS is a safe and easy-applicable method, which is widely
studied in AD. Different tDCS protocols applied in AD patient
cohorts improved recognition memory and general cognitive
abilities, but the results were variable among studies45–47. A
randomized, placebo-controlled study in AD patients revealed no
effect of temporal cortex tDCS on cognition48, while the studies
confirming temporal lobe tDCS effects in AD differed in study
design, protocols and cognitive tasks45,49.

TMS is another widely used NIBS approach with better spatial
accuracy compared to tDCS. The use of TMS at the earlier stages
of AD was demonstrated as a prospective tool for treatment38,50.
According to Dong and co-authors’ review42, TMS modulates
cognitive functions based on the Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-cog), but does not affect Mini-
Mental State Examination (MMSE) score. The review articulates
the importance of TMS frequency in AD treatment: high-
frequency rTMS shows big effect, at least based on ADAS-Cog
scale. Multiple TMS/tDCS studies both in patients and in healthy
participants were followed by their unsuccessful replications51–54.
We hypothesize that replication failures related to TMS/tDCS
application in AD may be in part connected with our poor
understanding of their non-neuronal effects, including effects on
the BBB.

Possible influence of transcranial magnetic and electric
stimulation on blood-brain barrier in Alzheimer’s disease
Here, we focus on the BBB as a probable mediator of NIBS effects
in AD. The BBB-mediated random NIBS effects may be con-
nected with changes in tight junction protein expression, trans-
endothelial resistance, permeability to molecules, etc. We suggest
that in AD, TMS/TES-induced non-neuronal changes may be an
important mediator of TMS/TES effects. Apart from the
immediate changes of the BBB permeability, there is evidence of
the endothelial intracellular parameters’ change, including mito-
chondria abnormalities and FGF-2-related changes55. Interest-
ingly, magnetic field effects on endothelial cells may be associated
with the same factors56–58. Electric field effects on endothelial
cells are mediated by vascular endothelial growth factor (VEGF)
receptor signaling, activation of ATP-receptor P2Y, Ca2+and NO
concentration transients59–61. These factors are highly involved in
AD pathology62–64. Importantly, in AD mouse model, BBB
endothelial cells produce a variety of factors, such as thrombin,
vascular endothelial growth factor (VEGF), angiopoietin-2, tumor
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necrosis factor (TNF), transforming growth factor, interleukin
(IL) IL-1, IL-6, IL-8, monocyte chemoattractant protein-1,
hypoxia-inducible factor-1, MMPs, and integrins that may pro-
mote AD pathogenesis65. A systematic analysis of NIBS effects on
AD-associated factors in endothelial cells has not yet been con-
ducted, but some data regarding neurons and glial cells are
already available. It was reported, for example, that 10 Hz rTMS
may significantly modulate anti- and proinflammatory marker
expression either in primary astrocytes exposed to oxygen-
glucose deprivation/ reoxygenation and make a neuroprotective
effect66. For instance, the expression of IL-10 gene, associated
with anti-inflammation, significantly increased in the astrocyte

culture after 10 Hz rTMS66. Thus, as interleukin-10 is a sup-
porting factor for the endothelium67, we hypothesize that NIBS
might induce both direct and indirect effects on the endothelial
cells, at least within a neurovascular unit. All this legitimates the
concerns about the necessity to test the BBB integrity before/after
TMS/TES application in AD. As the BBB state and AD pro-
gression are connected11,68, we hypothesize that in the earlier
stages of AD, TMS/TES is applied to a brain with a less
damaged BBB. In contrast, at later stages, TMS/TES influences
already a not-integrative BBB (Fig. 1). Thus, for the early AD
stages, the possibility of short-term NIBS-induced BBB opening
may be helpful for drug delivery, while for the later AD stages,

Fig. 1 Blood-brain barrier in health and in Alzheimer’s disease. a The blood-brain barrier is composed of endothelial cells, forming tight junctions,
pericytes, astrocytes, and neurons. b The blood-brain barrier (BBB) state in a healthy person (left) and in Alzheimer’s disease (AD) patient (right) is shown.
At the top of the image, AD-associated BBB changes are shown, such as microvascular reduction, degradation of endothelial cells, loss of pericyte number,
capillary coverage and capillary basement membrane rearrangement, etc. BBB damage activates the processes of neuroinflammation reflected by the
peripheral macrophage and neutrophil infiltration. At molecular level (in the figure, below), protein homeostasis in health (left) and in AD (right) is given:
decrease in aquaporin 4 (AQP4), low-density lipoprotein receptor-related protein 1 (LRP1), glucose transporter 1 (GLUT1), P-glycoprotein (P-gp) and
increase in receptor for advanced glycation end products (RAGE) levels. For details, see refs. 38,80,84.
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BBB restoration can be considered a goal, and an excessive BBB
opening is a safety issue. Here, we discuss the experimental works
dedicated to the effects of magnetic (Table 1) and electric
(Table 2) stimulation on endothelial cell cultures and the BBB
cells, in vivo animal models, and in humans and argue for their
relevance for TMS/TES neuromodulation in AD.

NIBS effects on blood-brain barrier opening. NIBS-induced
BBB opening may be promising for drug delivery in AD, and it
has already been tested for the hippocampus69,70 and prefrontal
cortex71 using FUS. At the same time, BBB opening may be a
safety concern in AD. Thus, one should test whether TMS/tDCS-
induced BBB opening is not associated with pathological features
of the BBB deterioration characteristic for AD (e.g. pericyte,
endothelial, and neuronal degeneration; the BBB transporter
function abnormalities; inflammation; accumulation of toxic
agents)11. The TMS/tDCS effects on BBB opening are summar-
ized below. The effect of magnetic stimulation on the BBB-
associated mechanisms was investigated from the very beginning
of TMS use. In the early 1990 study, Ravnborg and co-authors
showed that single-pulse TMS in a rat did not change the BBB
permeability72. However, since that time, there were several
successful efforts to open the BBB using TMS73,74. TMS increased
BBB permeability both in animals (in rats, at a low frequency but
not at a high frequency) and in patients with malignant brain
tumors73. Recently, in an attempt to trigger the BBB opening in a
rat model, repetitive low-frequency TMS was applied to the rat’s
right hemisphere, and fluorescent angiography revealed ̴ 18%
increased permeability 15 min after the stimulation onset. After
the other 15 min, vascularization gets normalized74. It is worth
noting that to be effective, NIBS-induced BBB opening inter-
ventions should be developed considering the pharmacokinetics,
as the peak concentration of a drug in the brain may be achieved
only in 2–3 h after the drug administration75. Also, there is sig-
nificant evidence to support that tDCS may also modulate BBB
integrity (see the review76). It was reported that tDCS temporarily
increased the BBB permeability in a rat brain, and this effect was
mediated by NO61. Nitric oxide synthase (NOS) inhibitor ame-
liorated tDCS-induced BBB permeability61. To our knowledge,
there is the only human study, investigating BBB changes after 1
milliampere (mA) tDCS in healthy participants, which did not
reveal any BBB changes using diffusion-weighted MRI77.

NIBS effects on blood–brain barrier closure. Interestingly, there
are also data supporting the BBB closing effect of NIBS. For
instance, in the recent rTMS work on a rabbit eye model, it was
shown that the expression of a tight junction protein ZO-1
increased after repetitive magnetic stimulation78. The main lim-
itation of this study is that stimulation was applied to the cornea
of a rabbit keratopathy model and, thus, targeted corneal epi-
thelial barrier functions, not the BBB. However, the corneal epi-
thelial and endothelial tissues in the brain vessels are similar in
terms of ZO-1 expression, which may indirectly indicate that
TMS might also strengthen the BBB in certain circumstances.
Another study using electroconvulsive therapy on the Gunn rat
model showed an increase in tight junction protein claudin-5
expression and astrocytic coverage of the brain blood vessels after
stimulation79. The limitation of this study is that one may not
directly compare electrical, magnetic, and electroconvulsive
therapy due to the different principles behind them. In the other
recent work on the photothrombotic stroke rat model, the BBB
damage was successfully mitigated by theta-burst TMS: BBB-
associated tight junction protein expression, morphology, and
perfusion of vessels preserved80. However, the direct comparison
of the BBB modulation mechanisms in stroke and in AD is

challenging, as the BBB disruption may be triggered by different
factors81. To our knowledge, there are no studies directly
reporting that NIBS in AD will lead to the BBB closure or may
hamper the transport of pharmacotherapeutic agents to the brain.

There are also a few studies trying to mitigate the BBB disrup-
tion using TMS/TES where no clear effect on the BBB was shown.
In vitro, endothelial cells HUVEC showed a change in their
morphology and increased in number after exposure to static
magnetic fields for 24 h a day; however, no effect was detected
after shorter stimulation82. Although HUVEC cell line is not a
BBB line, it is successfully used in BBB modeling83. An important
marker of the BBB integrity—tight junction proteins expression -
was not evaluated, while endothelial nitric oxide synthase (eNOS)
expression and nitric oxide (NO) concentration—other sensitive
markers in AD—were analyzed. eNOS expression increased after
long-term exposure to the magnetic field, while NO level did not
change82. In another study, to model the effect of tDCS on the
BBB functions, a direct electrical current was applied to
endothelial cells bEnd.384. Anti-ZO-1 immunostaining of the
cells demonstrated no damage to the cell monolayer integrity84.
Probably, the intracellular parameters (e.g., NO, Ca2+) are more
sensitive than physiological parameters (e.g., transendothelial
electrical resistance and BBB permeability to fluorescent tracers),
however, the last ones are more significant as markers for the
assessment of the NIBS effect.

We can conclude that the majority of the NIBS effects on BBB
in the non-pathological model were toward BBB opening. In
those studies when the BBB integrity was increased, pathological
models were used85–87.

Discussion
There are many blind spots in AD pathology, which result in
difficulties in the formulation of a desirable therapeutic effect of
NIBS on the BBB. To answer this question, a translational
approach is needed. However, translational studies of NIBS
effects on the BBB in AD are challenging because, on the one
hand, BBB studies are difficult in humans, and on the other hand,
NIBS studies are difficult in in vitro and in vivo models. Lack of
understanding of non-neuronal NIBS mechanisms in AD leaves
multiple questions unanswered. Should one aim at BBB opening
or closing in AD patients depending on the AD stage? Is the BBB
state associated with the changes in cognitive performance? Is
NIBS-induced BBB opening similar to the mechanism of the BBB
disruption in neurodegeneration? Is NIBS effect in AD similar to
NIBS effect in other conditions where BBB is compromised, such
as multiple sclerosis11,88,89, Diabetes Mellitus90, etc. We believe
that more studies should address the question of NIBS effects on
the BBB as in AD, as well as in healthy aging. We believe that the
parameters of a model should be chosen with an emphasis on its
sensitivity to reveal possible fine NIBS effects on the BBB. We
summarize candidate parameters for the future BBB investigation
in cells, animals, and humans, in Table 3. We argue that in order
to extrapolate the results of in vitro and in vivo animal works to
human participants, one has to study NIBS effects on key com-
ponents of AD pathology such as extra- and intracellular ion
concentration changes, transendothelial resistance, and the pro-
teins, primarily, Aβ and tau. At the same time, NIBS effects on
transendothelial resistance and other in vivo parameters should
be probed not only in intact animals but also in AD animal
models. Yet another point for the NIBS effects on the BBB in AD
is that additional investigation may be needed to assess NIBS-
induced BBB mitigation in advanced AD stages for safety reasons.
Considering that BBB mitigation using transcranial ultrasound
stimulation (TUS) is already performed in clinical studies91,92, we
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believe that the approaches used for the BBB assessment in such
studies may be extrapolated to TMS/TES studies.

Conclusion
NIBS techniques are widely tested as an alternative and an
addition to pharmacological therapy in AD8,9,69. In this paper, we
draw attention to the probable non-neuronal effects of NIBS such
as BBB changes, both its opening and closing, and highlight its
importance in AD. On the one hand, the BBB is vulnerable in
AD, and its further deterioration might aggravate the pathology.
On the other hand, BBB opening may be beneficial in AD in some
cases for the purpose of drug delivery. We illustrate our point
using evidence from human, animal, and cellular models (Fig. 2).
The adaptation of NIBS protocols to re- and de novo investigating
its effects on the BBB may be an important direction of the
research in the field. We suggest that NIBS effects on the BBB
should be investigated more considering that a large pool of
cerebral blood vessels is located on the surface of the cortex, and
is well accessible for NIBS.
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