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A multi-omics integrative analysis based on
CRISPR screens re-defines the pluripotency
regulatory network in ESCs
Yan Ruan1,9, Jiaqi Wang1,2,9, Meng Yu1,3,9, Fengsheng Wang1,4, Jiangjun Wang1,5, Yixiao Xu1, Lianlian Liu1,

Yuda Cheng1, Ran Yang1,2, Chen Zhang1, Yi Yang6, JiaLi Wang1, Wei Wu7, Yi Huang8, Yanping Tian1,

Guangxing Chen 3✉, Junlei Zhang 1✉ & Rui Jian 1✉

A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN)

is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after

a CRISPR/Cas9-based functional genomics screen and integrative analysis with other func-

tional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-

associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By

integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA

expression profiles, the PGRN is resolved to six functionally independent transcriptional

modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal

activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity

in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module

activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results

provide novel insights into elucidating the molecular basis of ESC pluripotency.
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Embryonic stem cells (ESCs) have multilineage differentia-
tion potential, and can proliferate indefinitely under defined
conditions in vitro1. Therefore, ESCs provide an excellent

model system for studying early developmental events of
embryogenesis and abundant biological materials for regenerative
medicine or cell therapy2. Understanding the molecular
mechanisms of pluripotency maintenance not only promotes
advances in the applications of ESCs, but also facilitates the
progress of induction of pluripotent stem cell (iPSC) technology
and cancer research3.

The maintenance of pluripotency and self-renewal of ESCs
require specific extrinsic signals and a hierarchical, interconnected
gene network4. The core transcription factors (TFs) Nanog, Sox2,
and Oct4 act as central units, together with other pluripotency
factors, such as Myc, Esrrb, Klf4, Prdm14, Stat3, Smad and Tbx3,
to form the pluripotency gene regulatory network (PGRN), which
directly controls the ESC-specific gene transcription program5.
These TFs can form large protein complexes by physically inter-
acting with each other and associate with epigenetic factors to
regulate their targets co-operatively6. Therefore, the ESC-specific
gene regulation program is more efficiently explained by complex
regulatory interactions of numerous factors in the PGRN than by
the roles of individual independent genes.

Previous studies have suggested that the PGRN can be divided
into sub-classes, such as the CORE, MYC and PRC classes,
according to co-occupancy targets of TFs and epigenetic factors7.
These sub-classes are functionally independent and serve as hubs
of the PGRN by integrating transcriptional signals to regulate the
specific gene sets and function7,8. Comprehensive analysis and
precise definition of the regulatory sub-units of the PGRN are
crucial for elucidating the regulatory mechanisms of pluripotency
in ESCs. To this end, several attempts have been made to con-
struct a more detailed PGRN. These studies have extended the
PGRN primarily by adding target genes that are highly expressed
in ESCs or that physically interact with previously known
factors6,9–11. However, high expression and physical interactions
cannot guarantee their essentiality in regulating pluripotency.
Additionally, insufficient omics data and analysis methodology
also limit deciphering the gene regulatory landscape. Therefore,
an understanding of the pluripotency regulation network remains
largely incomplete.

Recently, the successful application of CRISPR-Cas9-based
gene knockout in eukaryotic cells has provided a new option for
functional genomics screening12,13. This technology allows direct
modifications of genomic loci, showing high knockout efficiency
and low off-target effects14. Moreover, numerous omics data
available in public databases including transcriptomics, pro-
teomics, epigenomics and chromatin conformation maps, have
facilitated the delineation of protein-protein or protein-DNA
interaction networks and have promoted the identification of
global target genes for TFs15–17. These tools have enabled
researchers to develop a more comprehensive understanding of
transcriptional networks and to clarify the mutual cooperation
and regulation mechanism between genes.

In the present study, through a CRISPR/Cas9-mediated func-
tional genomics screen and multi-omics integrative analysis, we
established a new PGRN containing six independent transcrip-
tional modules (CORE, MYC, PAF, PRC, PCGF and TBX).
Furthermore, we characterized the activity pattern and functions
of the re-defined modules in early embryo development, m/
hESCs and cancer cells.

Results
Genome-scale CRISPR screen to identify regulators that
maintain mESC pluripotency. To establish a function-based

PGRN, we first performed a CRISPR-Cas9 mediated genome-
wide screen to detect genes essential for self-renewal. mESCs were
cultured under Leukaemia inhibitory factors (LIF)/serum condi-
tion (L/S), which was commonly used in similar tasks and confer
a naïve state to pluripotency18,19. For a comprehensive screen, the
Brie library was chosen, which can target 19,674 genes, with high
coverage across the genome20. Cas9-expressing R1 ESCs were
infected with lentiviruses containing the library. The cells were
propagated in L/S culture and collected on day 0 (P.Sc_0d) and
day 14 (P.Sc_14d) post-screen (Fig. 1a). We sequenced the pre-
transfected plasmid library and the P.Sc_0d and P.Sc_14d cell
samples. The results revealed the presence of 99.79% single-
guided RNA (sgRNA) in the plasmid library and a mean of 166
reads per sgRNA (Fig. 1b). In the P.Sc_0d samples, the sgRNA
presentations were 99.49% and 99.40% in two biological replicates
(Fig. 1b), correlating highly with the plasmid representation
(r= 0.73 on average) (Fig. 1c, d). The sgRNA representations of
the P.Sc_14d samples also showed high concordance between
biological replicates (Fig. 1d). The sgRNAs with significantly
increased or decreased abundance were almost exclusively
observed for expressed genes (RPKM > 0.5). The abundances of
the sgRNAs targeting non-/low- expressed genes (RPKM ≤ 0.5)
remained the same as the initial pool (P.Sc_0d) (Fig. 1e).

Using MAGeCK21, we detected 2930 genes whose sgRNAs were
depleted, suggesting those as genes required for mESC fitness, as
well as 1384 genes whose sgRNAs were enriched, indicating genes
harmful to the self-renewal of mESCs (Supplementary Data 1).
Despite statistical differences, the positive selection genes showed
low fold-change values (only 14 genes with log2-Fold Change ≥1)
and were mostly related to growth restriction and lineage
development. Thus, we focused on the negative selection genes
that were essential for self-renewal maintenance of mESCs. These
genes were distributed across all chromosomes without enrichment
in specific chromosomal regions (Supplementary Fig. 1a). A total of
44.3% of the identified genes encoding proteins localized in the
nucleus, 35.2% were located in mitochondria, and the rest were
distributed in the cytosol, and among ribosomes and the
cytoskeleton (Supplementary Fig. 1b). Twenty-five percent of the
genes encoded nucleic acid-binding proteins, TFs and
chromosome-associated proteins, while the rest were metabolic
enzymes and plasma membrane proteins (Supplementary Fig. 1c).
GO analysis of these genes showed that the enrichments were
associated with fundamental cellular processes for cell survival
(Fig. 1f, Supplementary Fig. 1e, f and Supplementary Data 1).
Correspondingly, the majority of the genes involved in RNA
transport, ribosomes and DNA replication were identified and
included in this group (Fig. 1g).

To examine the correlation between the negative selection
genes and pluripotency, we used the low-expression22 and non-
essential genes23 as negative controls, the ribosome genes and
core TFs in ESCs as the positive controls, and compared the
target gene sgRNA abundance in the P.Sc_14d and P.Sc_0d
samples. The results showed that the sgRNAs targeting the
ribosome and core TFs genes were significantly decreased,
whereas little change was observed in those targeting the low-
expression and non-essential genes (Fig. 1h). When compared to
the non-essential genes, the top100 and top1000 targeted genes
ranked by MAGeCK had significantly higher expression levels in
mESCs (Fig. 1i). Enrichment analysis also indicated that the
negative selection genes were enriched in biological processes
and pathways involved in ESC self-renewal (Supplementary
Fig. 1d, g). The highest-ranking genes in the screen included the
core factors Oct4, Nanog and Sox2, and several genes not
previously implicated in ESC self-renewal maintenance, such as
Zpr1, Ykt6 and Zbtb17 (Fig. 1j). These genes were all chosen as
candidates for constructing the PGRN.
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Generation of an extended self-renewal gene set by integrating
different screening data. Since results from a single screen might
be influenced by the specific CRISPR library used or by other
factors, we then compared our list of negative selection genes to
those identified in four previous screens performed under the
same L/S culture conditions but with different mESC lines and
CRISPR libraries13,24–26. Unexpectedly, there was only 1 common
gene between the five screens (Supplementary Fig. 2a). Con-
sidering that the different analysis methodologies used may
influence the readout, we re-analysed the raw data of these
screens with MAGeCK and identified genes that were sig-
nificantly changed (p < 0.05) under negative selection. Pearson
correlation analysis of these normalized data showed high con-
cordance between the Tzelepis and Li screens and our screen.
However, the screens by Zhao and Shohat pointed to a unique set
of genes (Fig. 2a). In total, 457 (11.26%) genes were identified in
all five screens (defined as the “common” gene set), while 3601
(88.74%) genes were identified in four or fewer screens (defined
as the “context-specific” gene set) (Fig. 2b, Supplementary
Fig. 2b). To test whether the context-specific genes were false
positives caused by different screens, we assessed the functional

relevance of these genes in self-renewal by examining their
expression levels in E14 ESCs using RNA-seq data from GEO22.
Comparatively, despite being lower than the core TFs gene set,
both the common and context-specific genes showed significantly
higher expression levels than the non-essential genes (Fig. 2c). To
exclude any bias caused by cell lines and culture conditions, we
analysed the single-cell RNA-sequencing (scRNA-seq) data of
IB10 ESCs27 and inner cell mass (ICM) cells from E4.5d
embryos28. Indeed, we observed high concordance of expression
between the common genes, context-specific genes, core TFs and
highly expressed genes in mESCs (Supplementary Fig. 2c, d).

To further clarify whether the high expression of the common
and context-specific genes was specific to self-renewing mESC,
weighed gene co-expression network analysis (WGCNA) was
performed to analyse the gene expression profiles during mESC
differentiation. As shown in Fig. 2d, six co-expression modules
were constructed. Module-trait relationship analysis indicated
that the blue module, which contains 86.35% of the common and
72.43% of the context-specific genes, had a high correlation with
mESCs (Fig. 2e) and was significantly downregulated during
either embryonic body (EB) formation or directional

Fig. 1 CRISPR/Cas9-based knockout screen in mESC pluripotency maintenance. a Schematic of loss-of-function screening with the Brie library.
b Distributions of the number of reads per sgRNA in the library (grey), and the P.Sc_d0_r1 (blue) and P.Sc_d0_r2 (red) samples. c Scatter plots comparing
the sgRNA read counts in the plasmid library and P.Sc_d0 samples. Red and blue lines indicate that 0.7% and 0.6% of the sgRNAs have undetectable
representations (less than 10 reads). d Heatmap of Pearson correlation coefficients among the library and the P.Sc_d0 (with two biological replicates r1 and
r2) and P.Sc_d14 (with two biological replicates r1 and r2) samples. e Comparisons of gene read counts between the P.Sc_d0 and P.Sc_d14 samples. The
red dots represent expressed genes (>0.5 reads per kilobase per million mapped reads (RPKM)), and the blue dots represent low-/non-expressed genes
(≤0.5 RPKM) in mESCs. f Biological processes enriched in the negative selection genes. Top 10 enrichment terms are presented. g The column chart
indicates the numbers of genes involved in the fundamental cellular processes. Observed, genes identified in negative selection. All, all the genes involved
in the cellular processes (KEGG database). h The fold changes of the sgRNAs targeting the “ribosome”, “core TFs”, “low expression” and “non-essential”
genes (Supplementary Data 4) in the P.Sc_d14 samples relative to the P.Sc_d0 samples. The data are represented as log2 FC (fold change of sgRNA read
count). p values were calculated using the Wilcoxon signed-rank test. i Expression levels of the “core TFs”, “Top 1000” (top 1000 genes ranked by
MAGeCK), “Top 100” (top 100 genes ranked by MAGeCK), “all genes” and “non-essential” genes in mESCs (Supplementary Data 4). The values are
represented as log10(RPKM+ 1). p values were calculated using the Wilcoxon signed-rank test. j A volcano plot of the screen results. The blue/red dots
indicate the negative/positive selection genes with an absolute sgRNA Log2fold change >0.5 and FDR < 10%.
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differentiation (Supplementary Fig. 2e), suggesting a strong
functional relevance in mESC self-renewal.

Functional validation of the candidate genes in maintaining
mESC self-renewal. To prove the veracity of the screening and
integrative analysis, four genes (Ykt6, Polr3a, Adoa,Wdr75) in the
common set and six genes (Serbp1, Zbtb17, Zpr1, Usp8, Pi4a and
Bap1) in the context-specific set were selected to further validate
their functions in mESC self-renewal. For each candidate, two
sgRNAs were designed, and two mESC lines, R1 and CCE, were
used to assess the self-renewal phenotype. Because both sgRNAs
behaved similarly in two cell lines, data is presented for only one.
The silencing level of each sgRNA was measured and confirmed
by qRT-PCR (Supplementary Fig. 3). Compared to the wild-type
(WT) and control (non-targeting sgRNA transduction) cells, all
the target gene knockout (KO) cells, except for the Ykt6 KO cells,
showed significantly reduced proliferation and colony forming
capacity (Fig. 3a, b). Morphological observation and alkaline
phosphatase (AP) staining assays showed that all 10 target gene
KO cells displayed a differentiation-prone phenotype, i.e., flat-
tened colony morphology, more scattered differentiation-like
cells, and fewer AP-positive colonies (Fig. 3c, d). Collectively,
these results suggest that both the common and context-specific
genes are valid hits and required for the maintenance of self-
renewal in mESCs.

Characterization of the integrated self-renewal related gene set.
We next combined the core and context-specific genes and
defined them as the integrated self-renewal related gene set

(iSRGS) (Supplementary Data 6). The enrichment analysis
showed that the iSRGS genes were mainly associated with fun-
damental cellular pathways such as DNA replication, proteasome
degradation, oxidative phosphorylation, and the cell cycle
(Fig. 4a, Supplementary Data 6). To ascertain the cellular path-
ways specific to mESCs, we performed gene set enrichment
analysis (GSEA) to analyses the expression profiles of genes in
enriched pathways. The results showed that genes involved in the
“oxidative phosphorylation”, “ubiquitin proteasome”, “mRNA
processing” and “translations” pathways were highly expressed in
mESCs and downregulated after differentiation (Fig. 4b). Since
these pathways are common across cell types29,30, these results
suggest a possibly specific functional gene set of these cellular
pathways in mESCs.

Signal pathways involved in the pluripotent state, such as the
Wnt, JAK/Stat, TGFβ, p53 and FGF pathways18, were also
significantly enriched. Moreover, our results showed enrichment
of pathways that were not reported to be involved in pluripotency
regulation, such as the androgen receptor signalling pathway and
Epo signalling pathway. In addition, pathways involved in the
immune system, including T/B cell receptor signalling and IL-7/
IL-6 signalling pathways, were also enriched (Fig. 4a).

Reconstruction of the PGRN in mESCs. To re-construct the
PGRN, we incorporated the transcriptional regulators in the
iSRGS into the known regulatory networks, and clustered the
regulatory units according to co-occupancy targets using ChIP-
seq datasets that were available in public databases. As a result, we
obtained nine sub-classes (Fig. 5a). In contrast to previous

Fig. 2 Comparing and integrating the data of other screens. a Heatmap of Pearson correlation coefficients among all pairs of screens. b Venn diagram
depicting the comparison of different screening studies with normalized data. The 457 overlapping genes were defined as the common set, whereas all the
other genes were defined as the context-specific set (Supplementary Data 5). c Expression levels of the “core TFs”, “common”, “context-specific” and
“non-essential genes” in mESCs. The data are represented as log10 (RPKM+ 1). d Cluster dendrogram and module assignment for modules fromWGCNA.
Common and context-specific genes were clustered based on a topological overlap matrix (TOM). The branches correspond to modules of highly
interconnected groups of genes. Colours in the horizontal bar represent the modules. Six modules with 3303 genes were detected. e Heatmap of the
relationships between the modules and samples. Colours in the longitudinal bar represent the modules. The red cells correspond to positive correlation.
The yellow cells correspond to negative correlation. The numbers in the cell indicate the correlation coefficient (upper) and p-value (below). Colour
intensity is proportional to the correlation coefficient.
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reports, the contents of the CORE, PRC and MYC sub-classes
were all significantly increased, whereas regulators in the CTCF,
REST and P53 classes were almost unchanged31. In addition,
three new classes, PCGF, PAF and TBX, were identified and
named based on the representative factors in each class. The
PCGF class consisted of PcG protein-related transcriptional
repressors and methyltransferases. The PAF class included the
PAF1 complex, H3K9me3 binding protein and mRNA methyl-
transferases. The TBX class included TFs of the POU and T-box
family, chromatin looping proteins, nucleosome re-modelling
proteins, histone-related proteins, RNA-related proteins and
DNA methyltransferase (Fig. 5a, Supplementary Data 7).

The peak annotation analysis showed that the majority of
binding peaks generated by factors in the MYC and PRC classes
were more centred at the transcriptional start site (TSS), whereas
the CORE, CTCF, P53 and REST classes generally localized
further away from the TSS (Supplementary Fig. 4a). The peaks of
the newly identified PAF class were located on both promoters
and gene bodies, while the PCGF and TBX classes were localized
mainly on introns and distal intergenic regions, which may
suggest different regulatory modes (Supplementary Fig. 4a).

Since the target site of TFs is often related to specific chromatin
marks32, we then examined the association between factor co-
occupancy and the histone modification signatures in each class.
As shown in Fig. 5b, the CORE class binding regions were highly
enriched with putative enhancer histone signature H3K4me1 and
active histone signature H3K27ac. The factors in the PRC class
harbored both repressive (H3K27me3) and active (H3K4me3)
histone signatures on their binding sites, which indicated bivalent
chromatin33. Targets occupied by the MYC class showed high
levels of the active histone signatures H3K4me3 and H3K27ac.
The occupancies of the P53 and REST classes were associated
with H3K27ac and H3K4me2, respectively. The PAF class targets
were enriched with the active histone markers H3K4me3,
H3K79me2 and H3K27ac, while PCGF and TBX occupied targets
specifically associated with the repression histone markers
H3K9me3 and K4K20me3 (Fig. 5b, Supplementary Fig. 4b).
These results suggested that the CORE, P53, REST, PAF and
MYC classes were mainly involved in the regulation of
transcriptional activation. Among them, the genes in the CORE,
P53 and REST classes generally bound distal regulatory elements,
whereas those in the PAF and MYC classes preferentially bound
to proximal regulatory elements. The PCGF and TBX classes

typically correlated with transcriptional repression, by targeting
distal silencers. The PRC class factors were enriched on poised
genes by occupying proximal promoter regions with bivalent
modifications.

Establishment of individual functional modules based on the
newly defined transcriptional sub-classes. In a sub-class, TFs
and their co-occupied target genes compose a regulatory module,
which represents a co-operative function of factors in the sub-
class. Nearest gene linkage is the commonly used method for
calling target genes. For each binding site identified by ChIP-seq,
this approach usually assigns the nearest gene as its potential
transcriptional target6,7. Because some transcriptional sub-classes
(CORE, CTCF and TBX) were preferentially located in intergenic
regions >10 kb from the TSS of annotated genes (Supplementary
Fig. 4a), we used adaptive sampling and an ensemble model
(AdaEnsemble) to assign target genes. This approach integrated
gene expression profiles with TF binding profiles and chromatin
conformation data to predict high-confidence target genes regu-
lated by both proximal and distal sites34,35. Accordingly, putative
proximal and distal target genes were identified for six major
classes (CORE, PRC, MYC, PAF, PCGF and TBX). The other
classes were not investigated further, as they consisted of non-
specific chromatin looping regulators (CTCF) or just a single
factor (REST and P53). As shown in Fig. 6a, while the PCGF
module contained a similar ratio of proximal and distal targets,
the MYC and PRC modules had more putative proximal target
genes (59.5% and 67.6% respectively), and the CORE, PAF and
TBX modules had more putative distal target genes (69.4%, 60.1%
and 58.2% respectively). These results were in line with the dis-
tribution characteristics of binding sites of the individual sub-
classes (Supplementary Fig. 4a).

Lists of the module gene sets were summarized in Supple-
mentary Data 9. The PRC, PCGF and TBX modules showed clear
separation, whereas the PAF, MYC and CORE modules shared
many targets with each other (Fig. 6b, c). It was shown that there
were 143 intersecting genes between the PAF and MYC modules
and 106 intersecting genes between the PAF and CORE modules
(Fig. 6c). As the CORE, PAF and MYC classes were mainly
involved in the regulation of transcriptional activation, these
results indicate that the promoters of active genes may always be
bound by multiple factors, whereas repressed genes were
regulated by fewer factors. To test whether the modules were

Fig. 3 Phenotypic validation of the candidate gene. a The proliferation rates of WT, Cont (cells infected with control sgRNA) and target gene knockout
cells. The indicated cells (1000 cells per cm2 in 12-well plates) were cultured in L/S for four days, and the cell numbers were counted. b Colony numbers of
the indicated cells. Cells were seeded into 12-well plates at a density of 200 cells per well and grown for 6 days, and colony numbers were counted.
c Morphology of colonies formed by the indicated cells. Scale bar, 200 μm. d Colonies were fixed and stained for AP and then scored as undifferentiated,
mixed, or differentiated. Data in (a, b and d) are represented as the mean ± SD; n= 3.
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Fig. 4 Enrichment analysis of the iSRGS. a Enrichment map networks of pathway terms enriched by the iSRGS. The red nodes indicate pathways that were
reported to participate in pluripotency maintenance. b GSEA showed the expression of fundamental pathway genes in ESCs relative to EBs differentiated
for 14 days.
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Fig. 5 Clustering the sub-classes in the PGRN and identifying their associated histone modification status. a Classifications of sub-classes based on co-
occupancy. Nine sub-classes were unsupervised hierarchical clusters based on Z-scores from 171 genes (total of 374 ChIP-seq data, see Methods section).
All the sub-classes and their contents are shown on the right: PRC (12 genes, 29 experiments), CTCF (7 genes, 17 experiments), PCGF (5 genes, 5
experiments), PAF (6 genes, 6 experiments), TBX (20 genes, 21 experiments), CORE (32 genes, 41 experiments), MYC (43 genes, 47 experiments), P53
(single gene, 2 experiments) and REST (single gene, 3 experiments). b Histone modification status of the nine sub-classes. The average normalized read
count of histone modification (y axis) within ±3 kb from the central peak of the sub-class (x axis) is plotted.
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functionally separable, we performed GO analysis and found that
each module was primarily involved in different biological
processes (Fig. 6d), suggesting that the modules are functionally
independent.

Since the same CORE, MYC and PRC modules were defined in
a previous report6, we examined the similarity of two gene sets in
each module. Comparatively, 454 CORE, 341 MYC and 516 PRC
genes were identified in this study, whereas 111, 503 and 560
corresponding genes were identified by Kim et al. (hereafter
referred to as CORE-Kim, MYC-Kim and PRC-Kim). None-
theless, only 40, 62 and 233 genes overlapped between the
respective modules (Supplementary Fig. 5a). The functional

enrichment analysis also showed that different GO terms and
pathways were identified in each respective module (Supplemen-
tary Fig. 5b–d). Some known pluripotency-associated pathways,
such as the Wnt, PI3K/Akt and Hippo/Yap pathways, were
specifically enriched in the current CORE module. In contrast, in
the CORE-Kim module, more development-related pathways
were enriched (Supplementary Fig. 5b). These results indicate
remarkably different gene compositions and module functions
between the previous and current studies.

For validating the newly defined PAF, PCGF and TBX3
modules, the ChIP assay have been performed using anti-Flag
antibody in Flag-tagged Ctr9 (for PAF module), Tbx3 (for TBX

Fig. 6 Gene composition and functional enrichment analysis of each module. a The percentage of proximal and distal target genes defined by
AdaEnsemble (see Method section) in each module. b Circos plot indicates the overlaps between module genes. The inner circle represents the gene lists
of each module. Genes that hit multiple lists are coloured in dark orange, and genes unique to a list are shown in light orange. The purple curves inside link
identical genes. c Venn diagram demonstrating the gene numbers and overlaps in transcriptionally active modules (left) and transcriptionally repressed
modules (right). d GO analyses of genes in transcriptionally active modules (left) and transcriptionally repressed modules (right) (Supplementary Data 10).
The top10 enrichment terms in each module are shown. The cell colour corresponds to –log2 (p-value).
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module), Dpf2 (for TBX module) and Pcgf6 (for PCGF module)
transfected mESCs. Then 11 target genes in different modules
were chosen for qPCR analysis. The results were consistent with
previous reports36–38 and showed that all the four transcriptional
factors preferentially occupied the targets of their own modules
(Supplementary Fig. 6), indicating the specific and reliable
assignment of target genes for each module. Furthermore,
functional analyses were performed to assess the impact of the
newly constructed modules on mESCs self-renewal. The major
transcriptional factor of each module (Ctr9, Pcgf6 and Tbx3) was
knocked down individually by RNAi in a Nanog-GFP reporter
ESC line39 (Supplementary Fig. 7a). Compared to the WT ESCs,
Ctr9, Pcgf6 and Tbx3 KD cells displayed an impaired self-renewal
phenotype characterized by slower proliferation rate, decreased
proportion of AP-positive colonies and fewer Nanog-GFP
positive cells (Supplementary Fig. 7b–d). These results indicated
that PAF, PCGF and TBX3 modules were essential for mESC self-
renewal. Moreover, we compared the RNA-seq data from mESCs
in which the major component of CORE, MYC, PAF, PRC, PCGF
and TBX3 module were silenced respectively. The GO analysis for
DEGs in each gene KD cells showed that distinct prominent
terms were enriched, despite all of them were involved in
development regulation (Supplementary Fig. 7e), which further
indicated that different module may have separate functions in
mESC self-renewal maintenance.

Mapping the module activity patterns during mESC differ-
entiation and embryo development. Next, we tested the module
activities in mESCs and differentiated cells. GSEA revealed that
the genes in the CORE, MYC, and PAF modules were highly
expressed in mESCs and downregulated after differentiation. In
contrast, the genes in the PRC, TBX and PCGF modules were
repressed in mESCs (Fig. 7a). We additionally tested the activity
of each module during directed ectoderm, endoderm and meso-
derm differentiation of mESCs. As expected, the CORE, MYC
and PAF modules were highly active in mESCs and became
repressed after differentiation, whereas the PRC, TBX and PCGF
modules showed the opposite activity pattern (Fig. 7b).

We then mapped the spatiotemporal module activity patterns
during mouse embryo development from E2.5 to E7.5 based on
published scRNA-seq data40,41. As shown in Fig. 7c, the CORE,
MYC and PAF modules were highly active in pluripotent cells
(MOR in E2.5, ICM in E3.5, epiblast in E4.5-E7.5) and repressed
in differentiated cells (E and M in E5.5-E7.5), whereas the
activities of the PCGF and TBX modules displayed almost
opposite patterns. In comparison, the PRC module genes showed
a similar expression pattern to those of the PCGF and TBX
module genes except for the expression in the early stages of the
pre-implantation embryo (MOR in E2.5 and ICM in E3.5)
(Fig. 7c), suggesting a possible stage-specific function of this
module in early and late embryo development. Together, these
data reveal consistent correlations between the module activities
and the pluripotent states of cells both in vitro and in vivo.

Module activity in hESCs. hESCs have a multilineage differ-
entiation potential similar to that of mESCs42. In addition, core
mESC TFs, such as Oct4 and Tbx3, are active in hESCs and
directly participate in pluripotency maintenance43,44. Using the
gene expression profiles of the hESCs and EB samples, we tested
whether the module activity pattern was similar between mESCs
and hESCs. The results showed that the activities of the six mod-
ules in hESCs were comparable to those in mESCs (Fig. 7d). To
exclude cell line-specific effects, we performed analyses in both H1
and H9, and consistent results were obtained. These observations
suggest conserved roles for these modules in human and mouse

ESCs. Since hESCs are usually believed to be at the primed plur-
ipotent state45, these results are in accordance with the data
obtained from in vivo development and indicate limited variation
in the module activity pattern in different pluripotent states.

Module activity in human cancers. According to previous
reports, human tumours, especially poorly differentiated tumours
display an ESC-like expression signature that may result from re-
wiring of stem cell regulatory circuits46,47. Therefore, ESC-like
gene modules have been widely used in the assessment of cancer
gene signatures. To test the activity of the re-defined ESC mod-
ules and establish relevance with human cancers, we first analysed
the expression profile of 750 gliomas, which included 200 low-
grade gliomas (LGG; astrocytomas and oligodendrogliomas of
grades 2 and 3) and 550 glioblastoma multiforme of grade 4
(GBM). As shown in Fig. 8a, we observed that the average acti-
vation levels of the CORE, MYC and PAF modules were higher in
gliomas than in normal brain samples and showed a positive
correlation with tumour grade. Conversely, the PRC, TBX and
PCGF modules showed low activation in gliomas (Fig. 8a, Sup-
plementary Fig. 8a). In GBMs, the same module activities as in
ESCs were observed, in which the CORE, MYC and PAF modules
were highly active, whereas the other modules were repressed. In
LGG and normal tissues, however, these modules displayed an
opposite activity pattern (Fig. 8b). These results indicate that the
CORE, MYC and PAF modules may also be involved in the
maintenance of the malignant phenotype of cancers.

To assess whether the activity of the modules is associated with
tumour prognosis, we performed Kaplan-Meier analyses of the
progression-free interval (PFI) for patients. As expected, tumours
that displayed the strongest CORE, MYC or PAF module activity
(top 50% of the samples) were associated with significantly worse
survival outcomes than tumours with the weakest module
activity. In contrast, tumours with increased activities of the
TBX and PCGF modules tended to be associated with better
survival outcomes, whereas the PRC module did not show
significant correlations (Fig. 8c).

Next, we examined whether the module activity patterns of
mESCs were present in other cancers. Analyses of the public gene
expression profiling datasets of bladder, breast and non-small-cell
lung cancer revealed that the high-grade tumours displayed high
activities of the CORE, MYC and PAF modules with repressed
expression of the the PRC, TBX and PCGF modules (Supple-
mentary Fig. 8b–f). Together, these results suggest that ESC-
specific signatures are shared by various human cancers. None-
theless, we also observed inconsistent activity of the PRC module
in lung squamous cell carcinoma (LUSC) and lung adenocarci-
noma (LUAD) (Supplementary Fig. 8b), indicating underlying
impacts from tumour origin or cell heterogeneity.

Furthermore, for assessing the function of CORE, MYC and
PAF modules in cancer cells, Nanog (for CORE module), c-Myc
(for MYC module) and Ctr9 (for PAF module) were knocked
down in glioma cell line U87 respectively (Fig. 9a). As expected, all
of the three gene KD cells displayed a decreased proliferation rate
alongside limited colony formation capacity when compared to the
control cells (Fig. 9b–d). Consistently, the same phenotypes were
observed in the respective gene KD lung adenocarcinoma A549
cells (Fig. 9). These findings supported previous analysis results on
clinical tumor samples (Fig. 8), demonstrating the importance of
the CORE, MYC, and PAF modules in cancer progression.

Discussion
Previously, construction of the PGRN was based mainly on
individual functional studies and physical interactions between
genes48. Recently, the application of high-throughput genetic
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technologies has expanded our knowledge of pluripotency reg-
ulators. In contrast to RNAi, CRISPR-Cas9 permits more con-
venient, efficient and precise gene editing14,23. Thus, in this study,
we first performed a CRISPR-Cas9-mediated functional genomics
screen to systematically identify the essential genes for mESC self-
renewal maintenance. Based on these results, we conducted a
series of integrative analyses with another multiple-omics dataset
to re-define the PGRN in mESCs.

Several studies have performed CRISPR-Cas9 functional
genetic screens and obtained essential genes that are closely
related to the maintenance of ESC pluripotency13,24–26. However,
the results between screenings show significant variances, which
may be due to the different sgRNA libraries, cell models or
analysis methodologies used in the different studies (Supple-
mentary Table 1). While previous studies often focused on con-
sensus target genes to rule out false-positive hits26, some
authentic pluripotency genes may be missed. In this research,
comparative analysis of five CRISPR screens performed under
similar culture conditions showed that the consensus genes
(common) accounted for only 10% of the target genes, whereas
90% of the target genes were context-specific. However, through
expression profile analysis and functional validation, both the

common and context-specific genes were found to be necessary
for the maintenance of ESC fitness. Therefore, data from different
screens were integrated for further analysis to obtain more
comprehensive functional genomics information. Consequently,
three new transcriptional regulatory units (PCGF, PAF and TBX)
were established that complemented the previously constructed
sub-networks in mESCs.

The transcription program is controlled by TFs and their co-
factors5. The co-factors lack DNA binding capacities and are
recruited by TFs to regulate gene expression. Generally, co-factors
are necessary for the activation/repression of transcription but are
not pluripotent stem cell specific. Therefore, previous studies have
focused mainly on TFs when analysing transcriptional networks
or sub-classes. However, functional genomics screens in ESCs
have revealed that some co-factors, such asTIP60-p40049,
PAF1C50, Mediator and Cohesin51, are essential for pluripotency
maintenance. On the other hand, the results of ChIP-seq and
liquid chromatography tandem mass spectrometry (LC-MS/MS)
analyses have indicated that the collaboration between TFs and
co-factors is selective. For example, in ESCs, Myc preferentially
constructs a regulatory complex with co-factor Tip60-Ep4007,
whereas Oct4 mainly co-operates with Mediator and Cohesin52.

Fig. 7 Module activity in mouse and human ESCs and early mouse embryos. a GSEA showed the activities of the CORE, MYC, and PAF modules (upper)
and the PRC, TBX, and PCGF modules (lower) in mESCs relative to 12-day EBs. b The boxplots show the gene expression of each module during directional
differentiation of mESCs (endoderm_6 days, mesoderm_6 days, and neuroectoderm_6 days). Boxes show interquartile range, whiskers show fixed
multiples of interquartile range and center line shows average gene expression values (log2) (see the Methods section). c Mapping the module activity
patterns during the mouse embryo development from E2.5 to E7.5 based on spatiotemporal transcriptomic data. The colour of the plot denotes module
activity from low (blue) to high (red). d The boxplots show the gene expression of each module during hESC (WA09) differentiation (hESCs, EB_5 days
and EB_10 days).
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In this study, through efficient functional screening and inte-
grative analysis, we identified a broader range of co-factors
indispensable for maintaining ESC fitness, including factors
involved in nucleosome re-modelling (SWI/SNF family, NuRD
complex), chromatin looping (RNF2, NCAPH2, MED12, TIP60-
P400 complex) and histone modification (MSL complex, CXXC1,
JARID1A, KDM1A, KDM4A). These findings allowed us to
define the sub-classes of the PRGN more exactly.

Identifying the downstream target gene sets of regulators
determines the quality of the constructed functional module.
Previous studies often used the ad hoc approach to identify target
genes, such as assigns TF binding sites to the nearest genes or to
genes within arbitrary genomic distance thresholds (for example,
8 kb upstream and 2 kb downstream of a TSS)6,7,53. However, it
becomes unreliable for the assignment of genes to distant reg-
ulatory elements35. Since several of the sub-classes we defined in
this study (CORE, PAF and TBX) showed preferential binding of
distal sites, it is essential to identify distal target genes of sub-class
factors. Moreover, as physical contact does not always imply
functional regulation by TFs, it is necessary to distinguish func-
tionally relevant target genes. In this study, we used AdaEnsemble
to identify target genes, which predicted both proximal and distal

target genes by combining ChIP-seq and Hi-C data35. Further-
more, functionally relevant candidates were discriminated via
expression profile analysis. Using these data and approaches, a
new PRGN that comprises more detailed functional modules was
defined.

The gene sets in the CORE, MYC and PRC modules were
significantly different from those defined in previous studies7.
This discrepancy could be explained by several reasons. First,
compared to previously defined clusters, the CORE, MYC and
PRC classes were re-established with increased TFs and co-
factors. The occupancy sites in each class were changed corre-
spondingly. Second, different criteria were used to identify the co-
occupancy target genes. For instance, in Kim’s research, the
CORE module targets were identified as genes co-occupied by 7
of 9 factors, but in this study, the CORE targets were identified as
genes co-occupied by 25 of 32 factors. Actually, upon the decrease
in co-occupancy (e.g., 20 of 32 factors in CORE, 25 of 42 factors
in MYC or 7 of 12 factors in PRC), the re-defined modules will
cover nearly all the target genes of previously defined modules,
but not vice versa. Third, different approaches were used to assign
target genes. While previously defined modules focused only on
the proximal targets, both proximal and distal target genes were

Fig. 8 Association of module activity with tumour subtype and prognostic outcome in gliomas. a The boxplots show the gene expression of each module
in normal, LGG and GBM samples. Boxes show interquartile range, whiskers show fixed multiples of interquartile range and center line shows average gene
expression values (log2). LGG, low-grade gliomas. GBM, glioblastoma multiform. b Enrichment patterns of modules in normal, LGG and GBM group
samples. Numbers indicate the enrichment significance (-log2 (p-value)) of module genes within each sample group. Red (positive value) indicates
enrichment for high-expression, and blue (negative value) indicates enrichment for low-expression. Colour intensity corresponds to the -log2 (p-value).
c Kaplan–Meier analyses of the progression-free interval in patients. Patients with high module activities (50% cut-off) are labelled red, whereas patients
showing low module activities (50% cut-off) are labelled blue. p values are calculated using the log-rank test.
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included in our re-defined modules. Fourth, the issues of target
gene expression levels in ESCs were addressed in the
present study.

The PRC module mainly includes development associated
genes and is generally repressed in self-renewing ESCs54. How-
ever, increased PRC module activity was observed in E2.5-E4.5
pluripotent cells. Consistently, the same activity pattern was also
shown for the PRC-Kim module. These results suggest an
unexpected role of this functional module during early embryo
development. We also noted that many target genes were shared
by different modules, suggesting that these genes may be con-
trolled by multiple mechanisms or that different modules may
converge and co-operate to regulate specific biological processes
in ESCs.

The activity of the newly defined PAF module is high in ESCs.
Despite sharing some targets with the MYC and CORE modules,
the PAF module was found to be specifically involved in non-
sense mediated decay (NMD), regulation of translation and
ribonucleoprotein complex assembly. Moreover, as previously
mentioned, the Paf1 complex (the key factor of the PAF class) can
promote the transcription of core factors (Oct4, Nanog and Sox2)
by positively regulating enhancer activity55. Meanwhile, the Paf1
complex can also influence the transcription of Myc target genes

by interacting with Myc56. These results suggest that, importantly,
PAF may also function in connecting multiple modules in the
regulatory network.

ESCs and cancer cells have been reported to have similar gene
expression signatures57. However, the precise nature of the gene
expression regulation mode shared by ESCs and cancer cells still
needs to be clarified. Kim et al7 found that only the MYC module
accounts for the similarity of transcriptional programs between
ESCs and cancer cells. Given that cancer cells and ESCs share
many cellular and molecular features, several core pluripotency
genes, such as Oct4, Sox2, Klf4 and Nanog, are highly expressed
in various types of human cancers, and some “NOS target gene
sets” are enriched in high-grade tumours47,58.It could be specu-
lated that other gene modules may reflect stemness in cancer. In
this study, using the newly defined modules as analytical tools,
we observed that at least the CORE and PAF modules, as well as
the MYC module were all shared by ESCs and cancer cells.
Additionally, we observed different module activity patterns
between different tumour sub-types. As it has become a con-
sensus that cancer stem cells are responsible for the initiation and
progression of tumours, it is urgent to discriminate and establish
the stemness gene regulatory network of different types of
tumours.

Fig. 9 The functional analysis of CORE, MYC and PAF modules in cancer cells. a qRT-PCR analysis for the knocking down of indicated gene expression in
A549 and U87 cells. The major transcriptional factors of each module, Ctr9 (PAF), Nanog (CORE) and Myc (MYC), were chosen for functional analysis.
Cells were infected with lentivirus carrying control and shRNAs targeting the indicated genes respectively. All data is normalized to Gapdh and shown
relative to WT ESCs (set at 1.0). b The indicated cells (2000 cells per cm2 in 6-well plates) were cultured for six days and cell numbers were counted.
c The morphology of colonies formed by the indicated cell lines. Cells (1000 or 2000 cells in 48-well plates) were grown for 10 days. Scale bar, 50 μm.
d Quantitative analysis of the colony formation assay in the indicated cell lines. Experiments were repeated three times and a representative result is
shown. Data in (a–c) represent the mean ± SD; n= 3.
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In conclusion, based on a functional genome-scale CRISPR
screen and integrative analysis of multi-omics data, we re-defined
the PGRN in ESCs. The newly constructed PGRN contains more
comprehensive gene classifications and precise regulatory rela-
tionships. Whether and how these functional modules are coor-
dinated to maintain the self-renewal of ESC needs to be further
investigated. Nonetheless, these results will improve our under-
standing of the molecular mechanisms of pluripotency main-
tenance. Along with the advancement of cell tracing and
bioinformatics technology, it is also anticipated that elaborate
regulatory networks in other stem cells will be constructed.

Materials and methods
Plasmid construction. All sgRNA and shRNA targeting sequences (Supplemen-
tary Tables 2, 3) and primers (Supplementary Tables 4, 5) were designed and
BLASTed to ensure specificity. The sgRNAs were cloned into the pLentiCRISPR v2
vector (Addgene plasmid # 52961)59. The lentiCas9-Blast was a gift from Feng
Zhang (Addgene plasmid # 52962)59, and the Brie pooled library was a gift from
David Root and John Doench (Addgene plasmid #73633)20. The shRNAs were
cloned into the pLL3.7zeo vector60.

The full-length ORFs of Tbx3, Ctr9, Pcgf6 and Dpf2 were PCR amplified from
mouse ESC cDNA using KOD-Plus- (TOYOBO) and cloned into pGEM-T Easy
(Promega). After DNA sequence verification, the ORFs were subcloned into
pPyCAGIH60. The 3×FLAG fragments were obtained via PCR, and subcloned in-
frame into the expression vectors39.

Lentiviral production. Viral particles were produced in 293FT cells by co-
transfection with the lentiviral vector, pSPAX2 and pMD2G (4:3:1) by calcium
phosphate transfection and concentrated by ultracentrifugation at 70,000 g for
2 h60.

Cell lines and culture conditions. Mouse ESC line R1 (American Type Culture
Collection) was cultured on plastic dishes precoated with 0.1% (w/v) gelatine with
Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 5% ES cell-
qualified foetal bovine serum (FBS), 15% KSR, 2 mM GlutaMAX, 1 mM sodium
pyruvate, 0.1 mM non-essential amino acids, 0.1 mM β-mercaptoethanol (all from
Invitrogen) and 10 ng ml−1 LIF (Millipore)60. Cancer cell lines A549 and U87
(Cobioer) were cultured with Dulbecco’s modified Eagle’s medium (DMEM),
supplemented with 15% FBS. The cells were routinely propagated by trypsinization
and re-plated every two to three days.

Generation of Cas9 expression cells. Stable Cas9-expressing R1 cells (Cas9/R1)
were generated by infecting R1 cells with lentiviral vectors containing lentiCas9-
Blast and selected with blasticidin (5 μg ml−1) for 7 days. The resistant colonies
were pooled and expanded for further analysis.

Functional screen using the Brie library. As shown in Fig. 1a, Cas9/R1 cells were
transfected with lentiviral vectors containing the Brie library at an MOI= 0.4. The
cells were selected with puromycin (2 μg ml−1) for 2 days and then propagated in
L/S culture supplemented with puromycin for 14 days. The cells were passaged
every 2 days. At every passage, approximately 4.0 × 107 cells were seeded in new
tissue culture plates (~400 cells per sgRNA). A total of 4.0 × 107 cells were retained
on day 0 and day14 post-screening for sequencing.

DNA extraction, amplification, sequencing and statistical analysis. Genomic
DNA (gDNA) was isolated using Blood & Cell Culture Mini Kits according to the
manufacturer’s protocol (Qiagen). The extracted DNA and plasmid library were
amplified as previously described12. For each DNA sample from cells, we per-
formed 30 separate 100 μl reactions with 7 μg genomic DNA in each reaction using
KOD FX DNA Polymerase (TOYOBO) and then combined the resulting ampli-
cons. Primer sequences to amplify the sgRNAs were Crispr seqF: 5’- TTGTGGAA
AGGACGAAACACCG-3’ and Crispr seqR: 5’- TCTACTATTCTTTCCCCTG-
CACTGT-3’. The PCR products were purified using a gel extraction kit (Omega).
Samples were sequenced on a NextSeq machine (Illumina) at BIOZERON Co., Ltd.
(Shanghai, China). Reads were counted by first locating the CACCG sequence that
appears in the vector 5’ in all gRNA inserts. The next 20 bases are the gRNA insert,
which were then mapped to a reference file of all possible gRNAs present in the
library using Bowtie 2.3.4.161. Positive and negative selection genes were analyzed
using MAGeCK software62 with a threshold of p value < 0.05.

Chromosome localization. Chromosome localizations of genes of interest were
retrived from the NCBI database (https://www.ncbi.nlm.nih.gov/), in which the
number of genes at different chromosome regions is available. The R package
(RIdeogram)63 was used to display this information.

Sub-cellular localization. Localizations of proteins into cellular compartments
were retrieved from the GO cellular component data source of the g:Profiler
website (http://biit.cs.ut.ee/gprofiler/gost)64. The cellular components were divided
into 9 compartments according to the sub-cellular localization: nucleus, mito-
chondrin, golgi, cytosol, ribosome, vesicle, peroxisome, endoplasmic reticulum. If
one gene was enriched in multiple cellular components, we assigned it to all the
associated compartments equally.

Functional enrichment analysis
Functional categorization of protein. Functional categorization of the negative
selection genes was performed using the PANTHER website (http://www.
pantherdb.org/)65.

Gene Ontology. Molecular function (MF), cellular component (CC) and biological
process (BP) analyses were performed by using the g:Profiler website64. GO terms
significant at an FDR-corrected p value <0.05 were summarized (Supplementary
Data 1), and the top 10 terms are shown. The detailed BP enrichment results are
presented as a network diagram using the Cytoscape app ‘Enrichment map’66,67.

Signalling pathways. Curated pathways categories of the Gene Set Knowledgebase
(GSKB, https://bioconductor.org/packages/gskb/) were identified by using GSEA
software68.

Comparing the screening results with previously published datasets. The raw
data from four screening studies were obtained from the supplemental of the
references (Supplementary Data 2). To exclude any bias caused by different ana-
lysis methodologies, we re-analysed the raw data from the shohat26, Tzelepis13 and
Zhao24 studies with MAGeCK62. For Li’s research25, we used the result (GFPplus-
d15_vs_Plasmid. txt) calculated from MAGeCK provided by the author directly.
The normalized results are summarized in Supplementary Data 3. Pearson cor-
relation analysis was performed based on the normalized log2-fold change (LFC) of
genes in each screening result.

WGCNA. WGCNA69 was performed to construct a gene co-expression network
across different samples, including ESCs, EB differentiation and three germ layer
directional differentiations. First, to calculate the adjacency matrix, weighted co-
expression relationships were evaluated by using paired Pearson correlations.
Second, we converted the adjacency matrix into a topological overlap matrix
(TOM). Then, genes with high expression correlations were clustered into modules
based on TOM. Finally, a heatmap was drawn to show the correlation between
different co-expression modules and samples. The data used for WGCNA were
RPKM standardized format and all downloaded from public database. Among
them, the data describing the gene expression of EB differentiation (GSE120224)70

was downloaded from the GEO database. The RNA-seq data of three germ layer
directional differentiation samples (E-MTAB-4904)71 was downloaded from the
BioStudies database (https://www.ebi.ac.uk/biostudies/). The RPKM processed
expression data of mESCs (GSE53387) were from the supplemental data of
reference72,73.

Cell proliferation and colony formation assay. For the proliferation assay, the
mESC cells were plated at a density of 1000 cells per cm2 in gelatine-coated 12-well
plates and cultured for 4 days, the cancer cells were plated at a density of 2000 cells
per cm2 in 6-well plates and cultured for 6 days. Viable cells were determined by
Trypan blue exclusion and counted with an automated cell counter (Countstar
BioTech).

For the colony formation assay, ESCs were plated at clonal density (50 cells per
cm2) and cultured for 6 days. Colonies were stained with a BCIP/NBT AP
detection kit (Beyotime) according to the manufacturer’s instructions and scored in
three categories: undifferentiated, mixed (partially differentiated) and
differentiated60. Cancer cells were plated at a density of 1000 or 2000 cells per well
in 48-well plates and cultured for 10 days.

Enrichment analysis of the iSRGS. The enrichment analysis of the iSRGS was
performed using GSEA68. GSEA has a robust ability to find more consistent results
from independent datasets obtained with different platforms than from a single
dataset68. We further performed GSEA on the five screen results individually.
Enrichment pathways that met any of the requirements were selected: (1) the
enrichment terms in the iSRGS with a q-value <0.05; (2) the enrichment terms in
the iSRGS with a q-value ≥0.05 but were enriched in more than 2 out of the
5 screen results with q-value <0.2; and (3) the enrichment terms in the iSRGS with
a q-value ≥0.05 but were enriched in more than 3 out of the 5 screen results with a
q-value <0.5 (Supplementary Data 6). The detailed enrichment results are pre-
sented as a network diagram using the Cytoscape app ‘Enrichment map’
(Fig. 4A)65,67.

Classifications of the sub-classes in the PGRN based on co-occupancy
ChIP-seq data download and processing. A total of 374 ChIP-seq datasets (Sup-
plementary Data 7) for 145 transcriptional regulators (59 genes in the known
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network31 and 86 newly identified genes in iSRGS) were downloaded from the
public database. All the data were from mESCs cultured under L/S conditions.
ChIP-seq data were downloaded from the Sequence Read Archive (SRA) in the
National Center for Biotechnology Information (NCBI) database. FASTQ files were
extracted from SRA files by SRA-Toolkit 2.9.2 (https://hpc.nih.gov/apps/sratoolkit.
html). FASTQ quality was checked by FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), and low-quality bases of FASTQ were removed
by Trim_Galore 1.18 (https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). FASTQ files were aligned onto the mouse genome (mm10) using Bowtie
2.3.4.161. Binding sites of DNA-binding proteins and histone marks were both
identified by model-based analysis of ChIP-seq peak caller (MACS) 2.1.474. For
each peak calling, if one experiment had control ChIP-seq data, the control data
were used to remove the background noise; if the experiment was without control
data, we chose GSM30715475 as universal control data. For technical replicates in
the same laboratory, only intersection regions of peaks from all replicates were used
based on the intersect command in BEDTools software76.

Gene co-occupancy. The degree of co-occupancy between two genes was calculated
by the Z-score value as previously described31. The Z-score matrix is presented as a
heatmap. A total of 126 genes (with 171 ChIP-seq datasets) were clustered into
nine sub-classes (Fig. 5a), whereas the other 19 genes were excluded because of low
co-occupancy degrees. Of note, the P53 and REST classes were included in the nine
classes as previously reported31 despite low co-occupancy degrees. The genomic
annotation and distance distribution of each peak file were visualized by using the
ChIPseeker R package77 (Supplementary Fig. 3a).

Acquisition of co-occupancy binding sites. To acquire high-degree co-occupancy
binding sites (HDBS), we first merged all the binding sites of the genes in one sub-
class using the merge command in BEDTools software. Then the intersection
command was used to calculate the number of genes occupied at each site. The
sites with the top co-occupancy degree were selected76. In total, the CORE class
targets were identified as sites co-occupied by 25 of 32 factors, the MYC class
targets were identified as sites co-occupied by 36 of 43 factors, the PRC class targets
were identified as sites co-occupied by 11 of 12 factors, the CTCF class targets were
identified as sites co-occupied by 7 of 7 factors, the PCGF class targets were
identified as sites co-occupied by 4 of 5 factors, the PAF class targets were identified
as sites co-occupied by 5 of 6 factors, the TBX class targets were identified as sites
co-occupied by 12 of 20 factors, the P53 class targets were identified as sites co-
occupied by 1 of 1 factor, the REST class targets were identified as sites co-occupied
by 1 of 1 factor(Supplementary Data 8).

Identification of the histone modification status. The RPGC of ten histone
marks was normalized by using bamCoverage tools in deepTools software (3.1.3)78.
The chromatin modification degrees on each co-occupancy binding site were
calculated using computeMatrix tools in deepTools software78. Visualization was
realized by using plotHeatmap tools in deepTools software78.

Defining the target genes of the sub-class
Predicting putative target genes. The proximal target genes (TSS ± 5 kb) were
obtained by using the ChIPseeker R package’s seq2gene function77. The chromatin
interactions between distal regulatory elements (REs) and promoters were deter-
mined based on a published Capture Hi-C (CHi-C) dataset in ESCs79. Genes with
distal REs occupied by the sub-class regulators were considered putative distal
target genes. The proximal and distal target genes were combined as putative target
genes of the sub-class.

Acquisition of the final target genes. AdaSampling was used to optimize the putative
target genes as previously reported34,35. To reduce the false-positive rate (FPR), we
set the AdaSampling prediction threshold to 1. Histone modifications were
quantified for each gene by calculating the RPKM in 5 kb region around the TSS.
Finally, the sub-class target genes with similar transcriptional patterns and epige-
nomic features were discriminated based on the expression profiles (time-course
RNA-seq data of EB formation) and epigenomic data (ChIP-seq data of 10 histone
markers) (Supplementary Data 9).

Chromatin immunoprecipitation (ChIP). ChIP was performed using the ChIP
Assay Kit (Millipore) according to the manufacturer’s instructions. DNA fragments
with an average size of 500 bp were immunoprecipitated using anti-Flag (Beyo-
time) monoclonal antibodies. Quantitative PCR analyses were performed using the
Eco real-time PCR System (Roche) and SYBR green master mix (Roche). All the
ChIP-qPCR primers are listed in Supplementary Supplementary Table 5.

RNA-seq. Total RNA was extracted using Trizol Reagent according to the man-
ufacturer’s manual. RNA samples were sent to Sangon Biotech Co., Ltd. (Shanghai,
China) for mRNA sequencing on Illumina Hiseq platform (Illumina) with 6 Gbps.

Module expression activity analysis. RNA-seq datasets were collected and pro-
cessed as follows. The RNA-seq data of hESCs (GSE143371)80 were downloaded from

GEO. The RNA-seq data of lung cancer and gliomas as well as the clinical survival data
of gliomas were downloaded from the Xena dataset (https://xenabrowser.net/datapages/
)81. SRA file download, FASTQ extraction and quality control processes of RNA-seq
data were the same as those of ChIP-seq data, as described before. FASTQ files were
aligned to the mouse genome mm10 using HISAT2 2.1.082. We used featureCount
software to calculate gene expression from aligned bam files83. First, gene expression
levels were calculated as counts of the exon model per million mapped reads (CPM) to
remove interference from sequence depth. Second, the mRNA expression of a gene i
was standardized across all the samples:

S i; j
� � ¼ log 2

G i; j
� �

�G ið Þ ð1Þ

where for each gene G i; j
� �

is the expression level of mRNA at sample j and �G ið Þ is the
average expression of each gene i across all the samples. After standardization, the
centralized expression of genes C i; j

� �
at sample j was calculated as the centralized and

standardized expression values at each sample. Positive values represent up-mean
expression and vice versa.

C i; j
� � ¼ S i; j

� �� �S ið Þ ð2Þ

To quantify the average expression activity of the module, we first extracted the
local data Cðix ; jyÞ from the total data C i; j

� �
, where the gene ix belongs to the

specified module ðx 2 moduleÞ, and sample jy belongs to the specified tumour
pathological sub-type ðy 2 subtypeÞ. Next, we summed the local data Cðix ; jyÞ and
divided this by summation of all the genes gx in all the samples sy , where gx and sy are
the total number of genes ix and total number of samples jy , respectively. The data are
represented by a bar graph to show the average expression activity of the module.

ix ¼ i x 2 moduleð Þ
jy ¼ j y 2 subtype

� �

E x; y
� � ¼ ∑ 1≤ ix ≤ gx

1≤ jy ≤ sy

Cðix ; jyÞ � 1
gx �sy

8
>>>>><

>>>>>:

ð3Þ

Mapping the module activity patterns in early embryos. To analyze the module
activities in E2.5-E7.5 mouse embryos, we downloaded the single cell RNA-seq
data from public database (E2.5-E4.5: E-MTAB-2958 and E-MTAB-295941; E5.5-
E7.5: GSE12096340), the activity score of each module in each sample was com-
puted using AUCell (https://bioconductor.org/packages/release/bioc/vignettes/
AUCell/inst/doc/.html) as previously described40. Finally, corn plots were gener-
ated based on the activity score of each module.

Spatial coordinates in the corn plot are as follows: anterior (A); posterior (P);
left lateral (L); right lateral (R); anterior left lateral (L1); anterior right lateral (R1);
posterior left lateral (L2); posterior right lateral (R2); divided epiblast (Epi1 and
Epi2); whole mesoderm (M); anterior mesoderm (MA); posterior mesoderm (MP);
divided endoderm (En1 and En2); anterior endoderm (EA) and posterior
endoderm (EP).

Survival analysis. All the clinical survival data of cancer were downloaded from
the public databases. The patient samples of each cancer were divided into the top
50% and bottom 50% groups according to the module activities. Then, the survival
R package was used to do the Kaplan–Meier analyses of the progression-free
interval in patients. p values are calculated using the log-rank test.

Analysis of gene set enrichment pattern. The gene set enrichment patterns were
analysed as previously reported46. Briefly, for each sample, we first scored the genes
whose expression was at least 2-fold over or under the average expression level and
defined them as over- or under-expressed gene sets. Next, we assessed the fraction
of over- and under-expressed genes in each sample belonging to a particular
module and calculated the p value based on hypergeometric distribution. We used
a threshold of p < 0.05 for significant enrichment. If both the over- and under-
expressed genes were significantly enriched, we chose the gene set with the smaller
p value and displayed it in the heatmap. Third, patient samples were clustered into
different groups by clinical classification criteria. We assessed the fraction of
samples enriched in the over- or under-expressed gene sets belonging to a parti-
cular group and calculated the p value based on hypergeometric distribution. The
normalized expression data files and sample annotations were found at http://jura.
wi.mit.edu/bioc/benporath/46.

Statistics and reproducibility. The statistical analyses of the data are noted in the
respective section describing the methods details. The figure legends give full
information about the number of independent biological replicates (n) analyzed.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of the four screening studies, Shohat (2019)26, Tzelepis (2016)13, Li
(2018)25, and Zhao (2017)24, were downloaded from the supplementary material of these
references. RNA-seq data were downloaded from GEO with accession number
GSE120224 for EB differentiation of mESC (0d versus EB12d)70 (Fig. 2e; Fig. 7a);
GSE143371 for EB differentiation of hESC80 (0d, 5d,10d) (Fig. 7d); and GSE4406722

(Fig. 1i; Fig. 2c) and GSE5338773 (Fig. 2e) for mESCs cultured in LIF/serum. RNA-seq
data were downloaded from EMBL-EBI with accession number E-MTAB-4904 for three
germ layer directional differentiation of mESCs71 (Fig. 2e; Fig. 7b) and E-MTAB-2958
and E-MTAB-2959 for E2.5-E4.5 mouse embryos41 (Fig. 7c). scRNA-seq data were
downloaded from GEO with accession number GSE65525 for mESCs cultured with LIF/
serum27 (Supplementary Figure 2d); GSE116165 for mouse E4.5 embryos28

(Supplementary Figure 2c) and GSE120963 for mouse embryo spatiotemporal scRNA-
seq (E5.5-E7.5)40 (Fig. 7c). Microarray data were downloaded from GEO with accession
number GSE374984 for mESC EB differentiation (Fig. 4b), GSE418985 for mNanog KD
mESCs, and GSE2788186 for mMax KD mESCs. Microarray data of mSuz12 KD mESCs
was downloaded from the supplementary material of reference87 (Supplementary
Figure 7e). mESC histone ChIP-seq data were downloaded from GEO with accession
number GSE11724 for H3K79me275; GSE12241 for H4K20me388; GSE24164 for
H3K27ac89; GSE25532 for H3K27me390,91; GSE27827 for H3K4me292; GSE29218 for
H3K4me393; GSE29413 for H3K9me394; GSE30203 for H3K4me195; GSE31284 for
H3K9ac96; and GSE41589 for H3K36me397. RNA-seq data for lung cancer and gliomas
as well as the clinical survival data of gliomas were downloaded from the Xena dataset
(https://xenabrowser.net/datapages) (Fig. 8a–c; Supplementary Figure 5a-b). The breast
and bladder normalized expression data files as well as sample annotations were found at
http://jura.wi.mit.edu/bioc/benporath/ (Supplementary Figure 5c–f). The ChIP-seq data
for transcriptional regulators were downloaded and are listed in Supplementary Data 7.
RNA-seq data for Tbx3 KD, Ctr9 KD and Pcgf6 KD mESCs have been deposited in the
GEO under the accession numbers GSE219206.

Code availability
The scripts used for data analysis were uploaded to github (https://github.com/Jack123-
Wang/A-multi-omicsRuan).
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