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A neurophysiological perspective on the integration
between incidental learning and cognitive control
Adam Takacs 1,2 & Christian Beste 1,2✉

Adaptive behaviour requires interaction between neurocognitive systems. Yet, the possibility

of concurrent cognitive control and incidental sequence learning remains contentious. We

designed an experimental procedure of cognitive conflict monitoring that follows a pre-

defined sequence unknown to participants, in which either statistical or rule-based regula-

rities were manipulated. We show that participants learnt the statistical differences in the

sequence when stimulus conflict was high. Neurophysiological (EEG) analyses confirmed but

also specified the behavioural results: the nature of conflict, the type of sequence learning,

and the stage of information processing jointly determine whether cognitive conflict and

sequence learning support or compete with each other. Especially statistical learning has the

potential to modulate conflict monitoring. Cognitive conflict and incidental sequence learning

can engage in cooperative fashion when behavioural adaptation is challenging. Three repli-

cation and follow-up experiments provide insights into the generalizability of these results

and suggest that the interaction of learning and cognitive control is dependent on the mul-

tifactorial aspects of adapting to a dynamic environment. The study indicates that connecting

the fields of cognitive control and incidental learning is advantageous to achieve a synergistic

view of adaptive behaviour.
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Changing the course of action to meet our goal requires
effort, therefore, it is paramount to recognise when it is
necessary to do so1–4. A collection of functions, often

labelled as cognitive control, can be recruited to meet one’s
goal5,6. For instance, when stimulus properties trigger incompa-
tible stimulus-response (S-R) representations or response ten-
dencies, detection of the cognitive conflict typically evokes
higher-order cortical processes to redirect behaviour in a goal-
directed manner1,2,7. Cognitive control’s main function is to
adjust the engagement of effortful, task-related mechanisms in
accordance with the mentally held task set2. Monitoring cognitive
conflict is not an isolated process, as it is also influenced by
contextual cues3,7–12. Through repetition, regularities in the
context can be learnt and subsequently used to build predictions
on the upcoming demand for cognitive control9,10,13. Here we
investigated how incidental learning influences cognitive control
at the levels of behavioural adaptation and neurophysiological
signatures. The current study aimed to connect current trends in
the fields of cognitive control and incidental learning, and by
doing so we promote an integrated view between the implications
of intentional and incidental forms of adaptive behaviour14.

Imagine that you learn a new dance with a partner. As you gain
more expertise, your moves follow a predefined sequence of steps
and executing them will not require much attention. At the same
time, you also need to anticipate when your partner would like to
change directions and adapt your steps accordingly. If you are
preoccupied with how and when to make changes, the dance will
never be smooth. If you do not notice the changes at the right
time, one of yours might leave the dance floor with an
aching foot.

In a lab environment without a dance floor, a typical paradigm
to study cognitive control is the colour-word Stroop task15. Here,
participants are asked to respond to the colour of the stimulus
while ignoring the meaning of the word. The congruency between
the perceptual and semantic information (i.e., the word “blue”
written in blue colour) facilitates response selection compared to
a neutral condition (i.e., blue colour target without a semantic
association). However, incongruency between the task-relevant
colour and task-irrelevant semantic stimulus dimensions (i.e., the
word blue written in yellow colour) leads to more errors and
slower responses.

Contextual cues can modulate performance in a Stroop task.
For instance, the list-wide proportion congruence (LWPC)
effect7,8 is observed through the manipulation of the overall ratio
between congruent and incongruent trials. If the trials are pre-
dominantly incongruent (high level of conflict), conflict-related
response cost is reduced in comparison to a predominantly
congruent set of trials (low level of conflict)7,8. That is, dis-
tributional statistics of the stimuli influence cognitive control. An
example of trial-by-trial contextual adaptation is the congruency
sequence effect (CSE). Smaller conflict-related response cost is
observed after a high conflict trial (incongruent) than after a low
conflict event (congruent)7,10. That is, recent memory on the
conflict level has predictive power on subsequent conflict detec-
tion and response control10. The robustness of CSE raises the
question of whether transitions between Stroop trials can be
learnt and if yes, does learning of conditional probabilities con-
tribute to cognitive control? In a modified Stroop task, when
sequential probabilities predicted the next stimulus’ colour, a
smaller congruency effect was detected compared to a random
series of trials16. Thus, incidental acquisition of transitional
probabilities and cognitive control may engage in a cooperative
fashion. Consequently, both distributional and conditional
probability information could influence cognitive control by
building predictions on conflict demand to reduce the related
response cost.

This cooperative mode has been put forward by the notion of
control state associations10. It has been proposed10 that coop-
eration between cognitive conflict and incidental learning pro-
cesses occurs through abstract categories or “control states”.
Control states (C) represent the allocation of top-down resources,
such as visual attention or response inhibition17. A control state
can integrate (i) internal models of the task goal, (ii) implicit
memories associated with the current S/R/C features, and (iii)
pre-existing biases (i.e., habits, stereotypical responses, etc.)17.
Control states are represented in an associative S-C network
similar to the network of S-R associations9,10,18. Through these
networks, a specific stimulus can activate a context-appropriate
control state13. Whenever predictions based on S-R properties are
sufficient to guide the behaviour, the control state representation
does not need to be involved. However, if the original (lower
level) predictions fail, the association between the appropriate
control state and stimulus contingency has to be used8–10,13.
These bindings between contextual information (stimulus) and
control state are the so-called S-C event files or “episode files”10.
Incidental learning of S-C contingencies can potentially predict
the need for top-down engagement and alleviate response adap-
tation. Conflict detection can also serve as a teaching signal to
promote learning by modifying the focus of attention or prior-
itising the sensory input4,9,19. In sum, S-C representations allow
cooperation between incidental learning and intentional control
processes.

In a recent study20, Stroop trials were presented according to
either colour-based (S-R) or congruency-based (S-C) sequential
regularities. Interestingly, the two groups showed comparable
effects of conflict. However, predictability facilitated responses
only in the S-R group, and this effect was independent of con-
gruency. Thus, the study20 did not support cooperation between
learning and control through S-C predictability. However, it is
possible that the brief training did not allow the participants to
form statistical memories that are more complex than the dis-
tribution of congruent and incongruent conditions. Therefore, the
current study followed training protocols in which participants
were able to learn transitional relations incidentally21,22. Another
consideration was that conditional probabilities can define rela-
tions not only between adjacent sequential items (first-order
transitions) but also between non-adjacent ones (second-order
transitions)23–26. The two forms of learning also involve different
neurocognitive mechanisms: since the processing of non-adjacent
relations necessitates the suppression of the interleaving item, it
has been thought that learning of non-adjacent dependencies
requires an engagement of top-down processes24. In contrast,
learning of the more simple adjacent dependencies is a purely
automatic, bottom-up mechanism24,27,28. In the current study,
S-C relations were defined as non-adjacent, second-order tran-
sitions in contrast to the adjacent dependencies used by Jimenez
et al.20. Figure 1 provides details about the experimental
approach.

Multiple coding of regularities: statistical and rule-based
learning. Sequence learning is not a unitary construct, but
involves different processes that detect, encode and retrieve
sequentially presented regularities24,27,29–31. A prominent dis-
tinction is between the acquisition of probabilistic information
(statistical learning) and sequential order22,26,27,30. This latter
process is called higher-order sequence learning21,22, order-based
learning32 or rule-based learning26,30. Within sequence learning,
statistical learning can be operationalized as the differentiation
between high- and low-probability elements that otherwise carry
indistinguishable information about the serial order22. In con-
trast, rule-based learning is the differentiation between elements
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that are defined by the serial order and those that are presented
randomly, while the probability of occurrence remains the
same22,26. While statistical learning enables the acquisition of
distributions and probabilistic interdependence in the stimulus
stream, rule-based learning controls and integrates learning
results into higher-order regulations27.

These learning functions operate in overlapping time windows,
however, they have different time courses32,33: fast estimation of
statistics reaches its plateau early in contrast to the more gradual
curve of rule-based learning. In other words, a larger rule-based
learning effect can be expected at the end of the task than at the
beginning. In contrast, statistical learning shows less variability
over time. Moreover, the two learning processes have different
interdependence on other cognitive functions27,30,34, they are
related to different neural sources26, and are thought to generate
differentiable expectations about upcoming events30. Statistical
learning is considered to be a more bottom-up process that
develops fast in the presence of recurring patterns in the sensory
experience26,27,35. In contrast, rule-based learning operates with
the gradual accumulation of sequential rules, and the learnt
associations are also available for top-down processes22,26,27.
Considering the simultaneous nature of statistical and rule-based
learning, the current study will investigate the potential
contribution of both processes to cognitive control. The two
forms of sequence learning may have different capacities to
interact with cognitive control. Due to their simultaneity, it is
often hard to disentangle the two processes at the behavioural
level, however, the analysis of the concurrent neurophysiological
signal can provide confirmation of the behavioural effects and
further insights into the mechanisms behind them26,32,33,36–38.
The current study investigated concurrent incidental sequence
learning and cognitive control by considering neurophysiological

information that are differentially related to cognitive control and
contextual learning.

Cascade of processes in the neurophysiological signal. In a
Stroop task, a frontocentral negative deflection is typically
observed with a peak of approximately 450 ms after stimulus
presentation39. This so-called N450 event-related potential (ERP)
component’s amplitude is larger in incongruent than in con-
gruent trials, therefore, it is an ideal candidate to study conflict
detection39–41. Therefore, the N450 was selected as a more spe-
cific marker of conflict detection in the current study. Another
benefit of using the ERP approach is the potential to differentiate
between a cascade of processes39,42. For instance, conflict detec-
tion and the retrieval of previously learnt stimulus-response (S-R)
associations can be separated by ERPs. Namely, the P3 compo-
nent, a positive deflection that typically occurs on parietal
channels 300–600 ms after stimulus presentation43 is sensitive to
stimulus probability, habituation, and the time since the last
target presentation, which are all implicated in contextual
(sequence) learning44. In incidental sequence learning, the P3
amplitude is larger for less predictable than for more predictable
targets38. Moreover, it reflects the retrieval of S-R associations
both in incidental learning38,45–47 and cognitive conflict
tasks48–50. Specifically, retrieving a less accessible S-R link would
attenuate the P3 amplitude, which then reflects the difficulty of
response selection51 and the amount of processing resources
needed42,43. The analyses of both N450 and P3 are useful to
distinguish between the processing stages of conflict detection
(N450) and decision-making/response selection (P3) and how
incidental sequence learning modulates them, respectively. Since
both increased conflict and increased task difficulty prolong
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Fig. 1 Schematic illustration of the alternating sequential Stroop task in Experiments 1 and 2. Participants saw a word or coloured “XXXX” characters in
the middle of the screen. a The stimulus presentation followed an eight-element sequence, in which pattern and random (R) elements alternate. Numbers
denote the four possible conflict conditions (1—congruent, 2—incongruent, 3—word naming, 4—colour naming). The timing of the task is presented on the
left side of the figure. b Some series of consecutive elements (triplets) were more probable in the task than others. High-probability triplets could either
end with a pattern or with random elements, while low-probability triplets always end with a random element. Two types of sequence learning performance
can be calculated in the task. Statistical learning is the difference between high- and low-probability random elements. Rule-based learning is the difference
between pattern elements (presented according to the serial order) and random elements (not determined by the sequence).
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responses, the two stages would not be differentiable by using
behavioural measures alone.

Hypotheses. In the current study, RT, accuracy, and mean
amplitude of the N450 and P3 components will be analysed
separately for statistical learning and rule-based learning. If
sequential S-C links develop independently from the level of
conflict20, learning effects would be observed on the P3 but not
on the N450, similar to S-R-based sequences38,45–47. However, if
S-C sequence learning modulates behaviour only in case of high
conflict9,10,16,52, learning effects would be expected on the N450
but not on the P3. We have expected that learning and integrating
abstract information into S-C representations is more effortful
than similar processes based on S-R associations9,10. Therefore,
switching from local binding of S-R features to global binding of
S-C episodes is only expected to happen if efficiency in predicting
the next event necessitates it8,10.

Considering the nature of simultaneous learning functions and
their potential predictive value in cognitive control, we had the
following expectations. If task complexity leads to frequent errors,
participants can learn both statistical and rule-based regularities
of S-C episodes10, that is, response times will be shorter when
statistical or rule-based regularities have high predictability on the
trial’s congruency compared to low predictability trials. As
statistical learning develops faster than rule-based learning, we
expected the statistical learning effects at the behavioural level
already in the beginning (first half) of the task. We expected that
P3 amplitude in high predictability conditions will be smaller
than in low predictability (i.e., statistical learning effect and rule-
based learning effect). We expected that N450 amplitude in high
predictability conditions will be larger (more negative) than in
low predictability conditions if the cognitive conflict necessitates
it (i.e., in incongruent condition).

After the analysis of Experiment 1, follow-up behavioural studies
were conducted to confirm the replicability and generalisability of
the findings of Experiment 1 (see Supplementary Results).
Specifically, Experiment 2 was performed as an internal replication
effort of Experiment 1. We have expected that learning-related
benefit on cognitive control in Experiment 1 can also be observed
in an independent group in Experiment 2. Additionally, we have
performed Experiment 3 to investigate the generalisability of the
findings of Experiments 1 and 2 to other control state constella-
tions. Namely, the task was modified to eliminate the potential
effect of switching between dominant response dimensions.
Experiment 3 is presented as an exploratory analysis. Finally,
Experiment 4 was performed to investigate the generalisability of
the findings of Experiments 1 and 2 to another sequence.

Results
We analysed the interaction between learning of predictabilities
and experimental conditions. First, the full factorial design of the
experiment was analysed with the within-subject factors of pre-
dictability (as triplet types: high-probability pattern, high-
probability random, low-probability random), condition (con-
gruent, incongruent, word naming, colour naming), and period
(first half and second half). The main effects and interactions are
summarised in Tables 1–3. For the sake of brevity, only sig-
nificant results are described in detail in the Results section. In
case of a significant interaction that involved both predictability
and condition, follow-up analyses were conducted to quantify
how predictability could affect RT, accuracy, or mean amplitude
of the N450 and P3 components in different types of conflict
situations. This was done according to previous studies with the
ASRT paradigm22,26,32,53,54, to limit the number of pair-wise
comparisons. Specifically, we analysed whether the difference

between high-probability random and low-probability random
trials (statistical learning) and the difference between the high-
probability pattern and high-probability random trials (rule-based
learning) was dependent on the condition. All post hoc com-
parisons are Bonferroni-corrected.

In these follow-up ANOVAs, we analysed whether the differ-
ence between high-probability random and low-probability ran-
dom trials (statistical learning) and the difference between the
high-probability pattern and high-probability random trials (rule-
based learning) was dependent on the condition. Please, note, that
this step has the same purpose as conducting post-hoc tests on
the omnibus (full factorial) ANOVA. The follow-up ANOVAs
have the advantage to provide results that can be directly linked
to the hypotheses (e.g., statistical learning in incongruent vs
statistical learning in colour naming condition) and omit con-
trasts that are not planned or meaningful in the design (e.g., all
possible differences between the high-probability pattern and
low-probability random trials). In the text, average and standard
error are provided as descriptive values.

Accuracy data inform about task difficulty. Please note, that
RTs and ERPs were quantified by using correctly responded trials
only, therefore a direct relationship between accuracy and ERP
effects were not central to the hypotheses33,38. Nevertheless, we
report the accuracy results for the sake of completion and to
describe the varying level of difficulty that participants faced in
the different conditions. Accuracy rates (percentage of correctly
responded trials) were analysed in a three-way repeated-measures
ANOVA with predictability, condition, and period as within-
subject factors. The main effects and interactions are summarised
in Table 1. The main effects of condition (F(3, 90) = 48.51,
ε= 0.591, p < 0.001, ηp2= 0.618) and period (F(1, 30) = 24.66,
p < 0.001, ηp2= 0.451) were significant. The accuracy rate was
lower in incongruent (70% ± 0.1) than in colour naming (81% ±
0.1, p < 0.001) or in congruent trials (85% ± 0.1, p < 0.001).
Additionally, participants were less accurate in word naming
(70% ± 0.1) than in colour naming (p < 0.001) or congruent trials
(p < 0.001). The accuracy rate was lower in colour naming than in
congruent trials (p < 0.001). The accuracy did not differ sig-
nificantly between incongruent and word naming conditions
(p= 0.999). Participants became more accurate for the second
period (82% ± 0.1) compared to the first one (72% ± 0.1,
p < 0.001). The interaction of condition by period was significant
(F(3, 90) = 7.85, p < 0.001, ηp2= 0.207). In the first period,
participants had a lower accuracy rate in incongruent (65% ± 0.1)
than in colour naming (76% ± 0.1, p < 0.001) or in congruent
trials (82% ± 0.1, p < 0.001). Additionally, participants were less
accurate in word naming (64% ± 0.1) than in colour naming
(p < 0.001) or congruent trials (p < 0.001). Accuracy was lower in
colour naming than in congruent trials (p < 0.001). The accuracy
did not differ significantly between incongruent and word nam-
ing conditions (p= 0.999). Similarly, in the second period, par-
ticipants made more errors in incongruent (75% ± 0.1) than in
colour naming (85% ± 0.1, p < 0.001) or in congruent trials (89%
± 0.1, p < 0.001). Additionally, participants were less accurate in
word naming (78% ± 0.1) than in colour naming (p < 0.001) or
congruent trials (p < 0.001). Accuracy was lower in colour naming
than in congruent trials (p < 0.001). The accuracy did not differ
significantly between incongruent and word naming conditions
(p= 0.548). The predictability by condition interaction was sig-
nificant (F(6, 180) = 4.44, p= 0.008, ηp2= 0.103). In the word
naming condition, participants were less accurate in high-
probability random trials (68% ± 0.1) than in high-probability
pattern trials (71% ± 0.1, p= 0.028) and in low-probability ran-
dom trials (73% ± 0.1, p= 0.005). High-probability pattern trials
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of word naming did not differ significantly from low-probability
random word-naming trials (p= 0.054). Other pair-wise differ-
ences in all other conflict conditions did not differ significantly
from each other (ps > 0.164). In the case of statistical learning
(Table 2), participants showed more learning in word naming
(−0.05% ± 0.2) than in colour naming (0.001% ± 0.01, p= 0.035)
and more learning in word naming than in incongruent trials
(0.16% ± 0.01, p= 0.016). None of the other pair-wise compar-
isons was significant (ps > 0.565). In rule-based learning, there
were no significant pair-wise differences.

RT data reveal an interaction between stimulus conflict and
sequential regularities. The RT data are shown in Fig. 2.

First, RTs were analysed in a three-way repeated-measures
ANOVA with predictability, condition, and period as within-
subject factors. The main effects and interactions are summarised
in Table 1. The main effects of condition (F(3, 90) = 114.90,
ε= 0.811, p < 0.001, ηp2= 0.793) and period (F(1, 30) = 59.60,

p < 0.001, ηp2= 0.665) were significant. Participants responded
slower in word naming (520.7 ms ± 5.6) than in incongruent
(501.9 ms ± 6.8, p < 0.001), congruent, (483.8 ms ± 6.3, p < 0.001),
or colour naming trials (496.9 ms ± 6.5, p < 0.001). Reaction times
were longer in incongruent than in congruent trials (p < 0.001)
which suggests a general congruency (Stroop) effect. Additionally,
participants responded slower in colour naming than in congruent
trials (p < 0.001). Colour naming and incongruent trials did not
differ significantly from each other (p= 0.798). Participants
became faster for the second period (498.2 ms ± 6.2) compared
to the first one (515.2 ms ± 5.9, p < 0.001). Importantly, both the
predictability by condition interaction (F(6, 180) = 4.68, p < 0.001,
ηp2= 0.135), and the three-way interaction between predictability,
condition and period were significant (F(6, 180) = 3.80, p= 0.001,
ηp2= 0.112). The interaction effects were further analysed below.

Evidence for enhanced statistical learning but not rule-based
learning under high cognitive conflict. In the case of statistical
learning (Table 2), the difference between high-probability ran-
dom colour naming and low-probability random colour naming
trials decreased from the first period (15.9 ms ± 3.4) to the second
one (−3.7 ms ± 3.9, p < 0.001). In the first period, high-
probability random colour naming trials (514.9 ms ± 7.8) were
slower than low-probability random trials (499.0 ms ± 6.5,
p < 0.001), which is considered an inverse statistical learning

Table 1 Results of three-way repeated-measures ANOVAs with predictability, condition, and period as within-subject factors for
RT and accuracy data.

Factor F ε p ηp2

Behaviour RT Predictability 0.30 0.787 0.688 0.010
Condition 114.90 0.811 <0.001 0.793
Period 59.60 – <0.001 0.665
Predictability × Period 0.83 – 0.440 0.027
Condition × Period 0.77 – 0.515 0.025
Predictability × Condition 4.68 – <0.001 0.135
Predictability × Condition × Period 3.80 – 0.001 0.112

Behaviour accuracy Predictability 3.38 0.728 0.057 0.101
Condition 48.51 0.591 <0.001 0.618
Period 24.66 – <0.001 0.451
Predictability × Period 2.31 0.705 0.127 0.071
Condition × Period 7.85 – <0.001 0.207
Predictability × Condition 4.44 – 0.003 0.103
Predictability × Condition × Period 0.60 – 0.734 0.019

Significant main effects and interactions are boldfaced and detailed in the main text.

Table 2 Results of the condition by period follow-up
ANOVAs for statistical learning and rule-based learning for
the RT and accuracy data.

Factor F p ηp2

Statistical
learning

Behaviour RT Condition 3.09 0.031 0.093
Period 1.38 0.250 0.044
Condition × Period 5.46 0.002 0.154

Behaviour
accuracy

Condition 4.53 0.005 0.131
Period 3.06 0.090 0.093
Condition × Period 1.03 0.382 0.033

N450 mean
amplitude

Condition 2.67 0.052 0.082

Rule-
based
learning

Behaviour RT Condition 1.71 0.170 0.054
Period 0.59 0.449 0.019
Condition × Period 2.07 0.110 0.064

Behaviour
accuracy

Condition 2.11 0.105 0.066
Period 0.93 0.343 0.030
Condition × Period 1.03 0.382 0.033

N450 mean
amplitude

Condition 2.93 0.038 0.089

Below the behavioural results, follow-up ANOVAs are reported for statistical learning and rule-
based learning for the N450 main amplitude data (without the factor period). Significant main
effects and interactions are boldfaced and detailed in the main text.

Table 3 Results of three-way repeated-measures ANOVAs
with predictability and condition as within-subject factors
for P3 main amplitude and N450 main amplitude and onset
latency data.

Factor F ε p ηp2

P3 mean
amplitude

Predictability 0.15 – 0.857 0.005
Condition 10.15 0.884 <0.001 0.253
Predictability × Condition 0.66 0.775 0.646 0.021

N450
mean
amplitude

Predictability 1.11 0.705 0.319 0.036
Condition 2.65 0.764 0.070 0.081
Predictability × Condition 2.47 0.876 0.032 0.076

N450
onset
latency

Predictability 1.33 0.884 0.272 0.042
Condition 0.60 0.776 0.577 0.020
Predictability × Condition 2.00 0.475 0.123 0.062

Significant main effects and interactions are boldfaced and detailed in the main text.
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effect. None of the other conditions showed significant changes
between the periods (ps > 0.070). Importantly, statistical learning
was larger in incongruent (−12.7 ms ± 6.1) than in colour
naming condition (15.9 ms ± 3.4, p= 0.002) in the first period.
There were no other significant pair-wise differences between
conditions in the two periods (ps > 0.165). Thus, statistical
learning was larger in incongruent (high conflict) than in colour
naming (neutral) trials at the beginning of the task, however, this
difference was not significant in the second period. In the case of
rule-based learning, there were no significant pairwise compar-
isons (ps > 0.074). Thus, the analyses showed enhanced statistical
learning when the demand for cognitive conflict was high (i.e., in
the incongruent condition).

In sum, RT analyses showed that conflict levels affected
participants’ behaviour: compared to the neutral condition, the
overlap between stimulus dimensions facilitated responses
(congruency effect), while a switch between the dominant
response dimension (from perceptual to semantic) led to slower
responses. Neither statistical nor rule-based regularities showed a
significant effect on RTs, however, the presented regularities
interacted with the Stroop conditions. At the beginning of the
task, statistical learning was larger in the incongruent condition.
In the second half of the task, statistical learning was not
modulated significantly by conditions (see Table 3).

Additionally, follow-up experiments were conducted to test the
replicability and generalisability of the behavioural results. The
results of Experiments 2–4 can be found in the Supplementary
Materials (Supplementary Results and Tables 1–3).

Neurophysiological data: N450 amplitude was modulated by
the interaction between stimulus conflict and sequential reg-
ularities. Mean amplitude on channel P1 (see Supplementary

Fig. 1) in the time window of 280–380 ms was analysed in a two-
way repeated-measures ANOVA with predictability and condi-
tion as within-subject factors. The main effects and interactions
are summarised in Table 3. The main effect of condition was
significant (F(3, 90) = 10.15, ε= 0.884, p < 0.001, ηp2= 0.253).
The P3 amplitude was smaller in word naming (7.00 µV/
m2 ± 2.03) than in congruent (10.60 µV/m2 ± 2.30, p < 0.001) and
incongruent (9.40 µV/m2 ± 2.22, p= 0.019) trials. The other pair-
wise differences were not significant (ps > 0.073). That is, the P3
amplitude was lower in the condition in which a semantic deci-
sion was required (word naming) as opposed to the other two
conditions with a perceptual (colour) decision.

Next, the mean amplitude of the N450 in the time window of
380–460 ms was analysed in a two-way repeated-measures
ANOVA with predictability and condition as within-subject
factors. Grand averages of N450 waveforms on the channel FCz
are presented in Fig. 3. The main effects and interactions are
summarised in Table 3. The predictability by condition (F(6, 180)
= 2.47, ε= 0.876, p= 0.032, ηp2= 0.076) interaction was
significant. The interaction effect was further analysed below.

Statistical and rule-based learning effects on the N450. The
main effects and interactions are summarised in Table 2. The
statistical learning effect on the N450 was larger in incongruent
(−2.94 µV/m2 ± 1.26) than in colour naming (1.44 µV/m2 ± 1.09,
p= 0.046) condition. The other pair-wise differences (ps > 0.281)
were not significant. In case of rule-based learning, the pair-wise
differences were not significant (ps > 0.066). That is, the statistical
learning effect in the N450 was larger in incongruent than in the
colour naming (neutral) condition (cf. RT results).

In sum, ERP analyses showed that conditions were differ-
entiated from each other in different processing stages: switching

Fig. 2 Behavioural results of the main experiment. Individual and group reaction times as a function of predictability, condition, and period (Period 1 and
Period 2). Group level RTs are presented as box plots, where the central vertical bar denotes the median. The bottom and top edges denote the 25th and
75th percentile. The kernel probability density of the data is presented as violin elements. Individual RTs are presented as scatterplots. Period 1 and 2 are
shown separately. Within each period, RTs are organised as triplet types: high-probability pattern (purple), high-probability random (blue), and low-
probability random (green). Stroop conditions are marked on the X axis: COL: colour naming, CON: congruent, INCON: incongruent, WORD: word naming.
The presented result is based on N= 31 participants’ data.
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between the perceptual and semantic response dimensions
presented a significant effect on the P3 but not on the N450,
while stimulus conflict (condition) was a significant effect on the
N450 but not on the P3. Crucially, the N450 was modulated by
the interaction between predictability and condition. The follow-
up analysis showed larger statistical learning in incongruent trials
Thus, the ERP analyses confirmed the behavioural results of
interaction between predictability and condition. The interaction
effect was significant only in N450 but not in P3, which suggests
that the interaction is specific to the type of regularity (statistical
learning), conflict condition (incongruent), and processing stage
(N450). Next, the onset latency of the N450 in the time window
of 380–460 ms was analysed in a two-way repeated-measures
ANOVA with predictability and condition as within-subject
factors. No significant effects were obtained (Table 3).

Discussion
We have investigated how incidental learning modulates cogni-
tive control at the levels of behavioural adaptation and related
neurophysiological signatures. It was suggested that regularities in
the stimulus stream modulate cognitive control through binding
between stimulus and control states8–10,13,16,52. This is the first
study to provide evidence for this account by testing specific
stages of cascaded processes (i.e., the components of N450 and
P3) coded in the neurophysiological signal. We suggest that it is
crucial to consider the type and functionality of the learnt reg-
ularities in the interaction between incidental learning and cog-
nitive control. According to follow-up experiments
(Supplementary Results), the interaction between learning and
control functions may be smaller or absent under certain con-
ditions, which supports the multifactorial nature of this
relationship.

Participants performed a Stroop task in which the task-relevant
colour information was presented alone (colour naming), in line
with the semantic information (congruent), or in conflict between
them (incongruent). Response speed for the semantic information
alone was also assessed (word naming). Compared to neutral
colour naming, responses were slower if perceptual and semantic
stimulus dimensions were in conflict (incongruent) or if the
response dimension needed to be shifted from colour to semantic

information (word naming). In contrast, an alignment between
the two dimensions (congruent) facilitated the responses. Slower
reactions in incongruent than in congruent trials suggest that a
general congruency effect (i.e., the Stroop effect) was observable
in the experiment15,39,55. Unexpectedly, incongruent trials were
not significantly slower than colour naming trials, which could be
explained by these conditions’ involvement in the interaction
effect (see below).

Unbeknown to the participants, trials were presented according
to two kinds of regularities. The first one determined an alter-
nating position in the stimulus sequence (rule-based learning),
while the second one predicted the probability of non-adjacent
transitions (statistical learning, see also Fig. 1). Importantly, when
the demand for cognitive control was the largest, participants’
responses differed between low-probability and high-probability
stimulus continuations. This interaction between incidental
sequence learning and cognitive conflict was specific to statistical
learning and for the first half of the experiment. This specificity
might suggest that there is no universal information exchange
throughout the task between sequence learning and cognitive
control. Namely, statistical learning but not rule-based learning
significantly modulated responses in incongruent trials. This
difference between the two forms of sequence learning is sur-
prising, considering that statistical learning is a more bottom-up,
automatic process compared to rule-based learning27. According
to our expectations, rule-based learning was a more likely can-
didate to interact with (top-down) cognitive control. Two aspects
of how statistical learning was implemented in the current study
might explain the results. It was suggested that the complexity of
the probabilistic relations could involve additional processes
beyond statistical learning. Specifically, non-adjacent dependen-
cies require the partial inhibition of the intervening item24. As
statistical learning scores in the current study were based on non-
adjacent transitions, an interaction between statistical learning
and cognitive control might be plausible. Additionally, statistical
learning typically evolves faster than rule-based learning in
probabilistic sequences26,33. It is possible, that longer exposure to
the sequence is needed to induce interaction between rule-based
learning and cognitive control. Notably, statistical learning
modulated incongruent responses in the first half of the task only.

N450 results on FCz
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Fig. 3 N450 data on channel FCz. Time point zero represents the stimulus presentation. The analysed time window (380–480ms) is marked with a
shaded area. The N450 is organised into four conditions: colour naming, congruent, incongruent, and word naming. The data is presented as a function of
triplet types: high-probability pattern (purple), high-probability random (blue), and low-probability random (green). The scalp topography plots show the
distribution of the mean activity of each presented condition. The presented result is based on N= 31 participants’ data.
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As the response cost of incongruent trials also decreased from the
first to the second half of the experiment, it is possible that the
functionality to predict incongruent trials also attenuated.

The interplay between control states and regularities has been
further analysed at the level of neurophysiology. The P3 and the
N450 components were sensitive to different aspects of task
demands, which confirms their interpretation as different stages
in the chain of processing the control-related information39,42,56.
The P3 amplitude was smaller in word naming than in congruent
or incongruent conditions. Word naming was the only condition
in which the predominant response dimension was semantic
instead of perceptual. As this condition was also characterised by
slower responses and a lower accuracy rate than in the other
trials, we suggest that P3 amplitude modulations reflected the
increased effort to retrieve the less frequently used S-R
associations48–50. However, the learning and retrieval of S-C
associations did not modulate the P3, unlike the S-R associations
in sequential regularities38,45–50. In previous sequence learning
studies, the P3 amplitude differed between more predictable and
less predictable trials28,38,45–50. The lack of significant effect of
predictability either alone or in interaction with the conflict
conditions signals caution on interpreting learning effects in the
current study. At the same time, it is feasible that S-C learning
does not involve the same ERP modulations as S-R learning. In
sum, P3 amplitude changes did not reflect learning effects,
however, the component’s amplitude decreased as an indication
of the increased difficulty of response selection42,43,51.

In contrast, changes in the N450 amplitude followed multiple
task dimensions. The sensitivity to the cognitive conflict was
confirmed by an increased amplitude in incongruent trials. The
incongruent effect on the N450 was larger and conflict detection
more pronounced when events could be predicted by statistical
learning. Next, we discuss these findings in regard to the interplay
between sequence learning and cognitive control.

Some accounts promoted that incidental sequence learning and
cognitive control compete for the same neural resources, and
therefore, neither function can benefit from the other53,57–61. At
first blush, both the behavioural and neurophysiological results
support competition between learning and conflict processes.
Participants showed engagement of cognitive conflict as evi-
denced by the Stroop effect. However, neither the predictability
main effect nor the predictability by period interaction was sig-
nificant. Traditionally, these effects were taken as markers of
learning S-R contingencies in an alternating sequence learning
task21,22. In the current study, sequential regularities predicted
the upcoming control state but not the colour of the stimuli.
Therefore, participants could not anticipate the response itself,
however, learning could have prepared them for the type of
response selection and the associated demand for top-down
engagement. That is, predictable trials presented a cognitive
advantage in terms of response preparation for all control states.
However, this advantage did not manifest as an effect of pre-
dictability. Thus, one might conclude that in presence of an
intentional (overt) cognitive control task, parallel processing of
incidental (covert) sequence learning is not possible. Nonetheless,
two aspects should be considered before this conclusion can be
reached: (i) the circumstances under direct evidence of compe-
tition that were shown in previous studies, and (ii) the type of
representations that should be detected in a learning effect. Ori-
ginally, a competition was suggested between memory systems:
automatic processes mediated by the striatum and voluntary,
attention-dependent processes mediated by the prefrontal and
medial temporal lobes14,57,60,62. Later, this competition theory
was extended to a resource conflict between cognitive control and
procedural sequence learning53,58,59,61,63. Notably, sequence
learning improved when control-related prefrontal functions

were attenuated by hypnosis59 or brain stimulation53,58,63. In
contrast, the current study investigated the interplay between
sequence learning and conflict without an attempt to attenuate
either learning or control functions. Moreover, competition in
previous research was demonstrated by measuring the two
functions separately53,58,59,61,63. It is conceivable that interaction
could only be detected when sequence learning and cognitive
control are measured in the same task or situation7,10. This dif-
ference directly leads us to the second important aspect: what is
being learnt in a sequence.

In the current study, the sequence could be used to predict the
next control state. Since the importance of an S-C event file is in
recognising the need for cognitive control10, it is not necessarily
expected to be shown as a predictability effect or predictability by
period interaction. Rather, the type of predictability, the Stroop
condition, and the task period should determine together whether
incidental sequence learning can benefit from the control state
and vice versa. Thus, the obtained three-way interaction (also in
the replication study, see Supplementary Results) support our
hypothesis that participants can learn both statistical and rule-
based regularities of S-C episodes. However, the P3 component
did not show learning effects, as we expected based on previous
studies38,45–50. This difference might indicate that learning of
abstract regularities involves other neurophysiological mechan-
isms than learning of physical properties, hence, the P3 is not
sensitive to both types of memories. Alternatively, since S-C
learning is not expected to be expressed without the presence of
conflict, and the P3 was not sensitive to stimulus conflict, this
component also cannot be sensitive to the different types of
regularities. In this scenario, contrary to our original expectations,
the conflict-related N450 should be considered sensitive to
learning S-C associations on the neurophysiological level. In
contrast to the P3, the N450 showed an interaction between
sequence learning and cognitive conflict.

Interactions between learning and cognitive conflict occurred
both in the behavioural and neurophysiological data. Thus, the
current results are in line with the notion that by binding goal
representations (C) and contextual information (S) together, S-C
associations modulate behaviour1,9,10,13. It has been proposed,
that S-C associations have a role in control functions only when
less demanding processes (such as response priming, S-R pre-
dictions, etc.) are not sufficient to direct response selection8,10.
Therefore, the current study investigated this prediction under
challenging conditions. Namely, the Stroop task had four con-
ditions and four related control states, therefore, predicting the
correct state might have reduced the cost of adaptation more than
in binary-outcome (congruent vs. incongruent) versions of the
task. Indeed, when S-C associations were highly predictive (80%
probability) but participants only needed to switch between two
control states, error rates were minimal20. Moreover, half of the
trials were incongruent which might have prevented the partici-
pants from effectively altering their response preparations. If the
possibility of a conflict is always high, there is little benefit in ever
letting the guard down. Consequently, S-C learning did not
occur20. Of note, the current study did not aim to test the design
of Jiménez et al.20 with four instead of two conflict conditions.
Nevertheless, the difference in task difficulty and error rate should
be mentioned given its potential significance in cooperative
interaction between learning and cognitive control8,10. Along
these lines, in Experiments 1 and 2, learning and control func-
tions showed interactive effect only when a high level of control
was necessary (incongruent condition) and therefore, response
selection was challenging. This pattern did not only confirm our
hypothesis but is also similar to previous studies showing that the
incongruent response cost is smaller in predictable than in
unpredictable trials16 and sequence learning is enhanced when
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S-R mapping is incompatible in contrast to compatible
configurations52. Importantly, this similarity between how S-R
and S-C predictions contribute to the congruency effect supports
the idea that lower and global level of binding represents com-
patible representation systems that respond to experimental
effects in similar ways10.

Importantly, the obtained interaction in the behavioural and
neurophysiological data between statistical learning and cognitive
control highlights the potential complexity of integrating S-C
associations. Previously, predictability was quantified in Stroop
tasks as a first-order transition between two consecutive
trials16,20. The current study investigated the role of non-adja-
cent, second-order transitional probabilities. Control states were
predictable as a condition of the previous two events (high vs low-
probability triplets). Triplet probabilities were quantified as
moving dependencies throughout the stimuli. That is, a sequence
item could always be categorised as the first part of the triplet
(predictor item), as a second part (interleaving item), or as a final
part (predicted item). Interestingly, learning of non-adjacent
transitions was effective in enhancing conflict detection for
incongruent trials (i.e., larger N450) and consequently, reducing
response cost. That is, the detection and acquisition of second-
order transitions seemed to allow the interplay with prefrontal
functions, which further promotes the view that this type of
dependency calls for inhibitory activity24.

The current results fit into a larger picture of statistical infor-
mation modulating attention, inhibitory control, or linguistic
processes. For instance, learning the distributional statistics of
conflict levels modulate the allocation of attentional resources
during distractor suppression17,64–67. Similarly, the distribution
of different task conditions can be used to prepare for a potential
change in task switching68. Mediating between inhibition and
sequence learning is also important in processing complex syl-
lable strings24 or syntax69,70 with non-adjacent interrelations, or
other aspects of nested predictabilities in language29. In sum,
learning probability information contributes to various forms of
top-down engagement. The current study provides expands this
list by showing an interaction between statistical learning and
conflict monitoring at the neurophysiological level.

The follow-up studies outlined in the Supplementary Materials
provided important details on the generalisability of the results.
While the main finding was replicated in Experiment 2, different
control conditions in Experiment 3 or a different sequence in
Experiment 4 did not yield significant interaction between pre-
dictability and cognitive control. In general, the differences (and
similarities) across the experiments might be related to the rela-
tively small interaction effect. Notably, a large effect was not
expected given that participants were unaware of the learning
task; the sequence followed a complex alternating structure; and
the sequence consisted of abstract items (congruency) instead of
easily learnable physical features (e.g., colours). Further studies
are warranted to dovetail the nature of the interaction between
statistical learning and conflict monitoring, including the aspects
that might enlarge the interaction.

One such aspect is the length of exposure to the sequential
regularities. It is possible that the amount of time needed to detect
rule-based learning effects in S-R sequences is not enough when
more abstract features need to be integrated. It is worth noting
that even when S-R contingencies are to be learnt, better detec-
tion of rule-based learning is often boosted by cues on the serial
order22. However, to keep the covert nature of the sequence, we
did not introduce differences between the presentation of pattern
and random events. Notably, explicit pre-cues on trial con-
gruency modulate cognitive control in the upcoming trial71,
which suggests that control processes can occur before the sti-
mulus onset. Nevertheless, longer training and cued sequences in

future studies would provide an important contribution to the
behavioural dissociation between statistical and rule-based con-
trol state predictions.

Another aspect is the potential process-specific relationship
between cognitive control and incidental sequence learning. In
Experiments 1 and 2, the interaction occurred between cognitive
control and statistical learning but not with rule-based learning.
In Experiment 3, no interaction was observed, however, sig-
nificant statistical learning occurred without a rule-based learning
effect. Crucially, cognitive control is also non-unitary6. The sig-
nificant interactions in Experiments 1 and 2 occurred in a con-
figuration that included not only the manipulation of stimulus
conflict but also switching between the frequent perceptual and
the rare semantic response dimension. In contrast, no interaction
occurred in Experiment 3, when the fourth condition also
required perceptual decision-making. The differences between
Experiments 1 and 2 and Experiment 3 may suggest that the
nature of stimulus conflict and response inhibition determines if
and how statistical learning interacts with cognitive control.
However, switching the word naming condition to object colour
naming did not only change the conflict configuration of the task,
it also decreased the overall complexity. In Experiment 3 parti-
cipants were the fastest and the most accurate compared to
Experiments 1 and 2. As a challenging environment is thought to
induce an interaction between sequence learning and cognitive
control8,10, it is unclear whether Experiment 3 can be interpreted
as a process-specific or an effort-related difference to Experiments
1 and 2. Another noteworthy difference occurred between
Experiments 1-2 and Experiment 4, which tested the gen-
eralisability of the original findings to another sequence and
revealed no significant interaction between predictability and
condition. Importantly, the difference between Experiments 1-2
and Experiment 4 was not limited to the significance of the
interaction but was also present in the main effects. Specifically,
the predictability main effect was significant in Experiment 4
unlike in Experiments 1-2. Post-hoc tests showed significant
statistical learning but not rule-based learning effect. The con-
dition was also significant. However, the pair-wise comparisons
did not show response cost for incongruent trials. Thus, while
there was no significant interaction effect in the last experiment,
the significant main effects also did not appear to be typical: rule-
based learning without statistical learning and a congruent
response benefit without an incongruent response cost. Also
considering the smaller sample size in Experiment 4, this leaves
the question of sequence-specificity inconclusive.

In sum, main finding was that predictability of a sequence
influenced cognitive control, but the strength of the effect varied
across different experiments. In Experiment 2, the main finding
was replicated, suggesting that it was reliable. However, in
Experiment 3 and Experiment 4, the interaction between pre-
dictability and cognitive control was not significant, indicating
that the relationship may be weaker or absent under certain
conditions. Differences (and similarities) across the four experi-
ments might suggest that the duration of the task, the complexity
and type of the conflict conditions, and tentatively the sequence-
specific interrelations can modulate the interaction between
incidental sequence learning and cognitive control. The experi-
ments presented in the current study fit into the larger picture of
how multifactorial can be a real-life adaptation to an ever-
changing environment10,54.

We tested possible interrelations between incidental sequence
learning and cognitive control. To achieve this, we designed a task
in which control demands could be predicted by sequential reg-
ularities. Participants’ responses adapted to the conflict between
perceptual and semantic information; however, they did not
express control-independent learning of the S-C regularities.
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Statistical learning of S-C associations was enhanced in high
stimulus conflict at the levels of response times and the amplitude
of the conflict monitoring-related neurophysiological signal.
Thus, the nature of conflict, the type of sequence learning, and the
stage of information processing determine together whether
cognitive conflict and sequence learning support or compete with
each other. Specifically, statistical learning has the potential to
modulate conflict monitoring. Follow-up experiments demon-
strated the limits of the interaction’s generalisability suggested
that the relationship between cognitive control and statistical
learning may be process-specific and influenced by the nature of
stimulus conflict and response inhibition. The experiments fit
into a larger framework of how people adapt to an ever-changing
environment and advocate that real-life adaptations are multi-
factorial. We suggest that connecting the fields of cognitive
control and incidental learning is essential to achieve a synergistic
view of adaptive behaviour.

Methods
Participants. N= 33 young adults participated in Experiment 1, who were
recruited from the voluntary pool for behavioural studies at the TU Dresden (26.6
years ± 6.6, 13 female, 18 male). Since the hypotheses concerned the detection of
the learning effect, this parameter was decisive in sample size. Previous reliability
analysis showed that stable learning effects can be detected from N > 21 in the case
of alternating sequence presentation72. However, since the paradigm was combined
with a Stroop task in a novel way, we aimed to increase this number, and have at
least 30 participants for the final analysis. We estimated a 10% loss in an EEG
experiment, therefore, 33 participants were recruited. Due to incomplete testing in
one case and low data quality in another case (see EEG recording and analysis),
N= 31 participants’ data were analysed. Experiment 2 was conducted to internally
replicate the behavioural results of Experiment 1 (see details in Supplementary
Results). N= 30 participants were recruited, from which N= 28 participants’ data
were analysed (due to incomplete testing in two cases). Experiment 3 (Supple-
mentary Results) was conducted with N= 20 newly recruited participants.
Experiment 4 was conducted with N= 20 newly recruited participants to investi-
gate the generalisability of the findings of Experiments 1 and 2 to other sequential
regularities. There is no overlap between the groups of Experiments 1–4. All
participants in Experiments 1–4 had a normal or corrected-to-normal vision,
including colour discrimination. None of the participants reported taking centrally
acting medication or having a history of neurological or psychiatric conditions.
Participants were either native in German or had a similar level of proficiency
(based on self-reports). Written informed consent was provided prior to enrol-
ment, and participation was rewarded with 10€. The study was approved by the
local ethical review committee and was conducted in accordance with the
Declaration of Helsinki.

Stimuli, task, and procedure. Participants completed a paradigm that combined
an overt (Colour-Word Stroop-Task)73,74, and a covert task (Alternating Serial
Reaction Time, ASRT)21,75. The task is shown in Fig. 1.

Participants saw either colour words in German (ROT: red, BLAU: blue, GELB:
yellow, GRÜN: green) or coloured asterisks on the centre of the display.
Participants were asked to press a button on the keyboard corresponding to the
colour of the word or asterisks, irrespective of the meaning of the word. However, if
the word was presented in black, they were asked to press the button that
corresponds to the meaning of the word. In 25% of the trials, the word was written
in the corresponding colour (i.e., ROT in red, congruent condition). In 25% of the
trials, the word was written in a mismatching colour (i.e., ROT in blue, incongruent
condition). In 25% of the trials, the word was presented in black (word naming
condition), and in the remaining trials only coloured asterisks were presented
(colour naming condition). These trial types are henceforth referred to as
conditions. In each trial, one of the four possible colours was randomly selected.

The covert task followed the structure and timing (including the response
window) of a previous version of the ASRT task that had been optimised for EEG
recordings33. Unbeknown to the participants, stimuli were presented according to
an eight-element sequence. Within the sequence, pattern (P) and random (r) items
alternated with each other. That is, a sequence of 1-r-2-r-3-r-4-r determined the
order of the trial types [1 = congruent, 2 = incongruent, 3 = word naming, 4 =
colour naming], interleaved by randomly selected trial types. One of the possible
permutations of these of the stimulus sequence was selected for the study and
presented to the participants in a pseudo-random manner21,33,38. Importantly, the
alternating structure used in the current study leads to probability differences
between chunks of three successive trials (triplets). In the case of the above-
mentioned example sequence, a triplet starting with 2 and ending with 1 is a high-
probability triplet that either occurred as a result of a P-r-P or an r-P-r structure. In
contrast, a triplet starting with 1 and ending with 2 is a low-probability triplet that
could only have an r-P-r structure (see Fig. 2). The distinction between low-

probability and high-probability triplets does not only describe the distributional
but also the second-order transitional probabilities in the task. That is, a final item
of a high-probability triplet is a highly predictable continuation of the first item,
while a low-probability triplet’s first item does not carry such anticipatory
information. For instance, a triplet starting with 1 has a 62.5% probability of ending
with 2, while a triplet starting with 2 has only a 12.5% probability of ending with 1.
As a consequence of the continuous stimulus presentation and the unmarked
triplet structure, each trial can be categorised as the third item of a high-probability
or a low-probability triplet. Furthermore, triplets were organised as moving chunks
across the stimuli: the third item of a triplet was also a second item of the next
triplet and the first item of the subsequent one54,75. The task consisted of 16 high-
probability triplets, which individually occur five times more often than the 48 low-
probability triplets. Moreover, the combination of triplet probability (high-
probability versus low-probability) and position in the sequence presentation
(pattern versus random) leads to three trial types of sequence regularities: high-
probability pattern (50% of all trials), high-probability random (12.5% of all trials),
and low-probability random triplets (37.5% of all trials). The trial types of cognitive
conflict were equally distributed among the trial types of sequence regularity, that
is, 25% of high-probability triplets were congruent, 25% incongruent, 25% word
naming, 25% colour naming, etc.

The timing of the task followed previous EEG studies of the ASRT (Kóbor et al.,
2018; 2019)33,38. Participants saw either a colour name or a string of coloured
asterisks on the centre of the screen for 200 ms. It was followed by a blank screen
for 500 ms or until the participant pressed a response button. If the response was
incorrect, a blank screen was presented for 500 ms after the response onset,
followed by an “X” on the centre of the display for another 500 ms. If the
participant did not respond in the trial, the 500 ms-long blank screen was followed
by an “!” in the centre of the screen for 500 ms. After a correct response or the
incorrect/missed response feedback, a 700-ms-long RSI was introduced.

The task presentation was organised into blocks, each of them containing 85
trials. Each block started with 5 warm-up trials that were excluded from the
analyses, and 10 repetitions of the eight-element sequence. After completing a
block, participants received feedback about their mean RT and accuracy in the
block, which was presented for 4000 ms. Between blocks, participants could take a
short break. The task consisted of 20 blocks in total. During the behavioural
analysis, the first 10 blocks were collapsed as first half of the task, and the
remaining 10 blocks were collapsed as the second half of the task. The experiment
lasted about 1–1.5 h, including dimming and removing the EEG cap. Task
presentation was written and controlled by Presentation software (Neurobehavioral
Systems). Stimuli were displayed on an LCD screen with a viewing distance
of 80 cm.

EEG recording and analysis. The EEG was recorded from 60 Ag/AgCl electrodes
mounted in an equidistant way on an elastic cap (EasyCap, Germany). The ground
and reference (Fpz) electrodes were placed at coordinates θ= 58, φ= 78 and
θ= 90, φ= 90, respectively. A BrainAmp amplifier and the Brain Vision Recorder
1.2 software (Brain Products, Germany) were used with a sampling rate of 500 Hz.
Offline, data were down-sampled offline to 256 Hz. Impedances were kept below
5 kΩ. The recorded EEG signal was pre-processed using “automagic”76 and
EEGLAB77 in Matlab 2019a (The MathWorks Corp.). First, flat channels were
removed and the EEG data were re-referenced to an average reference. Next, the
“PREP pipeline”78 was applied to remove line noise at 50 Hz by using a multitaper
algorithm. PREP also removed contaminations by bad channels and consequently
created a robust average reference. Next, EEGLAB’s “clean_rawdata” was applied.
This included detrending the EEG data with an IIR high-pass filter of 0.5 Hz (slope
80 dB). Flat-line, noisy, and outlier channels were detected and removed by
“clean_rawdata”. Time periods with abnormally strong power (i.e., larger than
15 SD relative to calibration data) were reconstructed by using Artefact Subspace
Reconstruction (ASR; burst criterion: 15)79. Time windows that could not be
reconstructed were removed. A low-pass filter of 40 Hz (sinc FIR filter; order of
86)80 was applied. EOG artefacts were removed using a subtraction method81.
Muscle, heart, and remaining eye artefacts were automatically classified and
removed by using an independent component analysis (ICA) with ICLabel82.
Removed and missing channels were interpolated (average of 0.82 channels)
according to the spherical computation. As a final step of pre-processing, the data
were inspected visually and epochs with bad data were removed. This step was only
necessary if non-repeating noises (e.g., due to movement) remained in the data.
Segmentation of the continuous EEG data was performed in two consecutive steps.
First, segments were created separately for the first and second half of the task, each
consisting of 10 blocks. The length of these acquisition periods corresponds to
previous EEG analyses that used the ASRT task and showed reliable learning
effects37,83,84. Subsequently, segments were averaged for all combinations of the
sequence regularity (predictability in the ASRT) and Stroop conditions, namely
(average and standard deviation of the numbers of trials reported): high-probability
pattern congruent (164 ± 25), high-probability pattern incongruent (123 ± 33),
high-probability pattern word naming (138 ± 29), high-probability pattern colour
naming (156 ± 27), high-probability random congruent (32 ± 6), high-probability
random incongruent (33 ± 9), high-probability random word naming (30 ± 8),
high-probability random colour naming (43 ± 7), low-probability random con-
gruent (82 ± 13), low-probability random incongruent (66 ± 17), low-probability
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random word naming (73 ± 14), low-probability random colour naming (73 ± 13).
These combinations were named event types. Group-level ERP waveforms were
calculated separately for each event type in the acquisition phases. These wave-
forms were visually inspected to determine if typical ERP correlates of a Stroop
task39 emerged and to determine the latency range that might vary as a function of
event types. This was necessary since the combination of an ASRT and a Stroop
task was unprecedented, and therefore, the characteristics of the ERP correlates
were unknown. Based on the known characteristics of the components, parietal
channels were considered for the P338,51 and frontocentral channels for the
N45039,85,86. The P3 was quantified as mean amplitude between 280 and 380 ms
after stimulus onset on channel P1. The N450 was quantified as mean amplitude
between 380–480 ms after stimulus presentation on the channel FCz.

Statistics and reproducibility. Statistics were performed in JASP version 0.16.2
(JASP Team). We analysed the interaction between learning (predictability) and
cognitive control (condition) by performing repeated measures ANOVAs. First, the
full factorial design of the experiment was analysed with the within-subject factors
of predictability (as triplet types: high-probability pattern, high-probability ran-
dom, low-probability random), condition (congruent, incongruent, word naming,
colour naming), and period (first half and second half). If a significant interaction
occurred that included the factors of predictability and condition, follow-up ana-
lyses were conducted to quantify how predictability could affect RT, accuracy, or
mean amplitude of the N450 and P3 components in different types of conflict
situations. These post-hoc analyses were done in accordance with previous studies
that used the ASRT22,26,32,53,54. Specifically, we analysed whether the difference
between high-probability random and low-probability random trials (statistical
learning) and the difference between the high-probability pattern and high-
probability random trials (rule-based learning) was dependent on the condition. If
the omnibus ANOVA showed a significant interaction between predictability and
condition, repeated measures ANOVAs were performed with condition (con-
gruent, incongruent, word naming, colour naming) as a within-subject factor and
either statistical learning or rule-based learning score as a dependent variable.
Similarly, if the omnibus ANOVA showed a significant interaction between pre-
dictability, condition, and period, repeated measures ANOVAs were performed
with condition (congruent, incongruent, word naming, colour naming) and period
(first half, second half) as a within-subject factor and either statistical learning or
rule-based learning score as a dependent variable. Bonferroni-corrected pairwise
differences were reported in the Results section. This was done to limit the number
of post-hoc tests and still ensure the correction for multiple comparisons. The
Huynh-Feldt epsilon was considered as a correction for lack of sphericity in the
ANOVA models. Effect sizes are reported as partial eta-squared. Post hoc pairwise
comparisons were Bonferroni-corrected.

Statistical learning was calculated as the difference between high-probability
random and low-probability random trials in RT, accuracy and mean activity.
Rule-based learning was calculated as a difference between the high-probability
pattern and high-probability random trials in RT, accuracy and mean activity. For
all analyses, two types of low-probability triplet configurations were excluded, since
previous studies54,87 showed frequent response bias in these combinations:
repetition (e.g., 2r-2P-2r, 3r-3P-3r) and trills (e.g., 1r-2P-1r, 4r-3P-4r). Therefore,
repetitions and trills were not part of the low-probability random triplet averages
and segments for the behavioural and EEG analyses. Given the characteristics of
the N450 component in the different conditions (Fig. 3), latency of the component
was analysed in an exploratory fashion. To quantify the onset latency of the N450,
the fractional peak method was used88. The onset of the component was marked at
the time point when 30% of the peak amplitude was reached.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
De-identified human behavioural data and neurophysiological datasets have been deposited
at Open Science Forum https://osf.io/yn4fg/?view_only=b1f8bb4be0c9458396dbb51882
9908e889. We used standard software packages as described in the “Methods” section.
Neurophysiological datasets in different stages of processing (e.g., raw, pre-processed) are
available after specification of requested format upon reasonable request by the lead contact.

Code availability
No custom code was used to generate or process the data described in the manuscript. A
history file that includes the EEG analysis steps after pre-processing has been deposited at
Open Science Forum https://osf.io/yn4fg/?view_only=b1f8bb4be0c9458396dbb5188
29908e889. The file can be opened in Brain Vision Analyzer (Brain Products, Germany).
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